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The ground state of a generalized Anderson model for valence fluctuations between two magnetic p, d, or
f configurations is discussed. In the isotropic limit, in contrast to the ordinary Anderson model, the localized
problem (limit of zero bandwidth) does not correspond to a stable fixed point, except in the extreme case of
j—j coupling. Taking the simplest possible case (fluctuations between p* and p3 or p>) under a tetragonal
(C4,) crystal field, depending on the retained low-energy multiplets, the model can be mapped into an ordinary
Anderson model, another model with a magnetic ground state, and for particular parameters, a two-channel

Kondo model.

The unusual normal state properties of high-7,. supercon-
ductors can be explained by a non-Fermi liquid (NFL)."! Also
several strongly correlated f-electron materials display NFL
behavior in their low-temperature specific heat, magnetic
susceptibility, and electrical 1resistivity.2‘5 Thus, the study of
microscopic models with NFL behavior, particularly if they
are relevant to real systems, is of great interest at present.®™
The spin-1/2 two-channel Kondo model'® (TCKM) has been
solved exactly'! and is consistent with several properties ob-
served in Y, gUy,Pd; (Refs. 2 and 12) and other U alloys.*
Renormalization-group calculations show that the low-
temperature properties of the overscreened multichannel
Kondo model are characterized by an intermediate-coupling
fixed point13’14 with NFL behavior.!*!15 It is interesting that
an analytic approach valid for large spin and number of
channels reproduces the leading critical exponent in all
cases.”

The Anderson model for dilute magnetic alloys and its
integer valent limit, the Kondo model, were used to explain
several properties of strongly correlated f-electron materials.
The scaling behavior of these models is known, and in con-
trast to the TCKM, the low-temperature properties are de-
scribed by the strong-coupling fixed point (SCFP) (infinite
value of the coupling constant V or J) with a nonmagnetic
ground state and Fermi-liquid behavior.'®~! The SCFP is
characterized by a Hamiltonian Hy+H', 4, where H, con-
tains the impurity and the innermost Wannier function of the
conduction electrons and Hy, 4 describes the rest of the con-
duction electrons.'’™!® Exact solutions of the Kondo and
Anderson impurity models and several generalizations were
obtained using the Bethe ansatz.’°=2* All Bethe ansatz solv-
able models for valence fluctuations between two magnetic
configurations have a magnetic ground state,?? which corre-
sponds to a SCFP similar to that described above, but with a
degenerate ground state of H0.24 However, no rigorous re-
sults exist for the generalized Anderson model which de-
scribes an impurity in an isotropic medium fluctuating be-
tween two realistic magnetic configurations.

In this paper we study the possibility that at very low
temperatures, the behavior of the above-mentioned general-

0163-1829/95/52(17)/12497(4)/$06.00 52

ized Anderson model is described by a stable SCFP of the
form Hy+ H', 4. If this were the case, the degeneracy of the
ground state of the local Hamiltonian H, would determine
the magnetic or nonmagnetic character of the ground state of
the system, and the latter would necessarily be a Fermi liquid
at low temperatures. However, it turns out that in general, the
model for infinite hybridization V is highly non trivial, and
an eventual ““local” SCFP of the form Hy+ Hy,,4 is unstable.
As a result it cannot be concluded for the general isotropic
case whether the ground state is magnetic or not, or whether
the low-temperature excitations are those of a Fermi liquid.
We show, however, mapping the model into simpler effective
Hamiltonians, that the simplest case for valence fluctuations
between two magnetic configurations under a strong tetrag-
onal (C,4,) crystal field can lead to different behaviors, in-
cluding a NFL one, depending on the parameters. Previously,
Cox has derived selection rules for the applicability of the
TCKM to U** and Ce** ions in metals.?

The generalized Anderson model for an impurity ion in an

isotropic medium has the form:26:27:2!

H:Hband+Hion+HmiX' (1)
H,,,q describes the extended states with the same orbital an-
gular momentum [/ as that of the impurity shell. Calling
k,u, and o the radial momentum, orbital angular momen-
tum, and spin, respectively, one has

Hyana= 2 ekclwck,LfE Ekcltjmckjm' 2
kpo kjm

The last member is an alternative expression in terms of the
total angular momentum j=1[=*(1/2) and its projection m.
The impurity shell is described by H;,,. We retain only the
ground state multiplets of two neighboring /" and [**! con-
figurations,

HionsE; |J0M0><JOM0|+(E+A); [J1M )(J M ],
0 1
(3)

where J;,M; are the total angular momentum and projection
of the ["** configuration. The hybridization part can be writ-
ten in the following equivalent forms:
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H 3
V=2 Clafust e =2 clifit He, H=Ho(V)+ Hippgt 2 (eJup¢1,0tHe), ()
Mo jm no

= >

kjmMoM |
+H.c.) 4)

aj<JojMom|J1M1>(Cij|JOM0><JlM1|

where the (JojMom|J M) are Clebsch-Gordan coefficients
and the a; are two numbers which depend on the particular
form of the highly correlated ionic states.?*?”2! When Jo
#0 and J;#0, both a;#0 except in the extreme (unrealis-
tic) case of pure j-j coupling, where for a configuration with
n electrons, a;+1,=0 if 0<n<2/—1 and a;_p=0 if
21<n=<41[+2. For the more realistic LS coupling and Hund
rules, the expressions of the a; are given and their values are
tabulated for all cases of valence fluctuations between two
magnetic p,d, or f configurations in Ref. 21.

The model cannot be solved with the Bethe ansatz except
when only a,, is different from zero®® and the resulting
ground state is magnetic if both configurations are
magnetic.>??  For the interesting case in which
Jo.J1,a;-1, and a4y, are all different from zero,
renormalization-group calculations have not been done,
probably due to the fact that the Hilbert space is enlarged by
a factor 2*/72 in Wilson’s renormalization group.!’~!” The
narrow-band limit H, [ €, equal to the chemical potential for
all k, and any A (Ref. 29)] for Hund rules multiplets
has been solved by Balina and me using exact
diagonalization.m‘29'30 The results can be summarized as fol-
lows. For configurations p" and p"*!, only for n=3 and
n=4 are  both  configurations  magnetic, with
J=2 (J=3/2) for an even (odd) number of electrons ac-
cording to Hund rules. Since Jy and J; can be interchanged
by a special electron-hole transformation?!?? both cases are
equivalent. For n =4 the ground state consists of two singlets
with total number of particles N=n+2 and n+4 and one
doublet with the number of conduction electrons at the in-
nermost Wannier function n.=N —n=3.28 The results for
two magnetic d” and d"*! configurations (n = 1,2 and 5 to
8) are qualitatively similar: there are 2/+1=15 consecutive
values of the n, in the ground state and the total angular
momentum of each of them is J, = 0, 3/2, 2, 3/2, and 0,
respectively. The minimum value of n, is ny "=n+2 for
n<5 and n™=10—n for n= 5. The case of Tm
(I=3,n=12) is also similar and all values of n, between 7
and 13, and J,=0,3/2,2,5/2,4,9/2, are present in the ground
state.”” However, the cases of [=3 and n=1 or n=2 (which
might be relevant for Pr and U systems) have only n,=8 in
the ground state and J, = 15/2 and J,=8, respectively.’® A
common feature of all ground eigenstates with J,#0 is that
the impurity is overscreened: the impurity component of J, is
small and points in the opposite direction as the projection of
J, 212930

Unfortunately, the local Hamiltonian H, does not describe
the zero-temperature properties of the system because an
eventual SCFP with H, decoupled from the rest of the sys-
tem is unstable, if crystal fields are neglected.>’ When there
is degeneracy in n., the Hamiltonian near this possible
SCFP has the form (eliminating eventual potential scattering
as in Ref. 19, Appendix A, Sec. 4)

where H,(V) is the model including only the innermost
conduction-electron Wannier functions c¢,,, discussed
above, for large V, and H {)and is the band without ¢, states,
discussed in Sec. III B 3 of Ref. 18. The CS#U and cg,, con-
nect different states with the ground state energy. If the first
and second terms of Eq. (5) describe a stable fixed point, the
last term should be negligible after a sufficiently large num-
ber of iterations. However, in this case, the operators ¢ .,
cl o are affected by a factor A~ 4 in each iteration, where
A>1 is the parameter of the logarithmic discretization [see
Eq. (4.23) of Ref. 18]. This, together with the overall factor
A2 of each iteration, gives a factor A" for the last term of
Eq. (5), indicating that it is a relevant 0perator.31 Thus, in the
case that Hyo(V)+Hy,4, V— actually corresponds to a
fixed point; it is unstable. In fact, in this case, the limit
V—o does not lead to a trivially solvable model as for the
ordinary Anderson or Kondo impurity.”‘19 For the two cases
of H, solved before in which there is no degeneracy in
n.,>® we expect an analogy with the TCKM in which over-
screening makes the SCFP unstable.!>'* However, in con-
trast to the TCKM, there is not a ‘“‘self-similarity” by which
the Hamiltonian near the strong-coupling fixed point takes
the same form as the original one. Thus, it is possible that the
low-temperature physics of the model is described by a
Fermi-liquid fixed point in which more than one of the in-
nermost Wannier functions of the conduction electrons is
coupled with the impurity. This is the case of a recently
proposed simplified model for Tm impurities under a cubic
crystal field, in which the 4f'? configuration is represented
by an A; singlet and a T, triplet, while only the lowest
doublet of the 4f'3 configuration and the conduction-electron
doublets (to make Wilson’s renormalization-group calcula-
tions tractable) are retained.>? Depending mainly on the rela-
tive strength of the A -doublet and T,-doublet hybridiza-
tions, the ground state is a singlet or a doublet, and in an
intermediate region the SCFP is unstable but the ground state
is a singlet with Fermi-liquid behavior.** Also, in the sim-
plest case p*<p> (or equivalently p3—p*) the effective
Hamiltonian Eq. (5) for V—o has a form similar to the
ordinary Anderson model,'®!8!1® but with hybridization de-
pendent on the occupation of the localized level. Similar
models have been solved with the Bethe ansatz and have a
singlet ground state.”> Thus, one might expect that the
ground state for valence fluctuations between two magnetic
isotropic p configurations is a singlet. However, we show
below that under an appropriate strong crystal field, this case
can display magnetic or NFL behavior at low temperatures.

Both cases for valence fluctuations between two magnetic
p configurations are equivalent (they are related by a special
electron-hole transformation.”??) In one of them, the con-
figurations with J;=2 and J,=3/2 are hybridized through
conduction electrons with j=1/2 and j=3/2. Under a tetrag-
onal (C,,) crystal field the states with total angular momen-
tum 3/2 (Jo and j) split into two doublets E; and E;. The
states with j=1/2 transform like E], and J;=2 splits into
three singlets with symmetries A{,B{,B,, and an E doublet.
Let us assume that one can neglect all states of each p”
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configuration except those of lowest energy. For definiteness,
let us assume that E| is the lowest lying doublet of the
Jo=3/2 configuration. In the other case all following argu-
ments are equivalent. From the decomposition of the direct
product of representations,

E,®E;=A,+A,+E; E|®E;=B,+B,+E, (6)

one realizes that if the lowest state of the J; =2 configuration
is a singlet only one of the conduction-electron doublets E;
(i = 1,2) mixes both configurations. Thus, the problem be-
comes equivalent to the ordinary Anderson model (in the
limit of infinite repulsion at the impurity site) and the ground
state is a singlet.'6~1?

In the case in which the doublet E is the lowest in energy
of the J;=2 configuration, both conduction-electron dou-
blets contribute to the hybridization. The eigenstates of E
(E3) under a rotation of 90° (C,) have eigenvalues
e!™2,e7iT2 (i34 o—i374y We denote these states by
[1),] = 1)(|+),]—)), respectively. The states of E; are de-
noted by [1),]]) in obvious notation (corresponding to the
two states of j=1/2). In terms of these states the Hamil-
tonian takes the form

- 1 2
H= kE €t crot ; eX(clicrrtelci)
o (o8

TEX |o)ol+(E+A) 11+ =1)(=1])
Vi (DUl (= 11+ He)

Vo2 (el (e[ (= 1[+He). ()

If one of the conduction-electron doublets is neglected (or if
V1V,=0), this model is equivalent to that proposed by
Balseiro and Alascio as a simplified model for Tm
systems.>>* The model was solved exactly by the same au-
thors and the ground state is a doublet.?® In the general case,
the properties of the model Eq. (7) are difficult to predict.
For A'=A—€>V,, where € is the Fermi energy, the
states |1),|]—1) can be eliminated through a canonical
transformation® and the interaction between localized and
conduction electrons takes the form

V2
1
Hint: - r% C;;UC/(O.‘(T><O'}

V2
— 32 (clyerd D(U+ e | TXTD

\20%
— 32 [efere el +Hel. @)
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Defining the states Yi+ = (CppFHep-)/ V2, Yi+1
=(cp ter)/V2,  and v =(e— e )N2, Yoy
=(cpy—cr+)! V2, the spin-flip part of Eq. (8) takes the same
form as the corresponding term of the two-channel xxz
model,*® but with opposite signs of the coupling constants.
For V{=V,, the model takes the form of two different xxz
models and following the arguments of the appendix of Em-
ery and Kivelson,?® or those of Noziéres and Blandin,!® we
expect that only the antiferromagnetic xy couplings are rel-
evant for the low-temperature physics and the ground state is
then a singlet.

Finally, let us assume that the system is under a strong
cubic field and a smaller tetragonal (Cy,,) field, such that the
states A, and B (degenerate under a cubic field) lie close in
energy and are the lowest lying of the corresponding multip-
let. Let us also assume hybridizations V4 and Vp of these
states with the ground state E| are similar, and that the en-
ergies A, ,Ay necessary to take an electron from the Fermi
energy and put it at the impurity leaving it in the state A; or
B, are much larger than the hybridizations. In this case a
canonical transformation leads to the TCKM, but with
slightly different antiferromagnetic couplings Vi/ A} and
V2/A}, for the two channels. This means that the ground state
is a singlet.!> However, a small difference of the couplings
means that NFL behavior exists down to very low
temperatures. >

In summary, we have shown that the low-temperature be-
havior of the appropriate generalization of the Anderson im-
purity model to two magnetic configurations in an isotropic
medium is not characterized by a strong-coupling fixed point
(infinite hybridization), in which a local Hamiltonian at the
impurity site H, is decoupled from the rest of the system,
except in the extreme unrealistic case of j-j coupling, where
the ground state is a singlet. This feature of the model is
shared with the multichannel Kondo model!®!13-15 and
other impurity models displaying non-Fermi-liquid
behavior,’~ but in the present case we are not able to predict
the low-temperature behavior of the system. In the case of
Tm, a cubic crystal field might render the strong-coupling
limit stable.*!

The importance of taking realistic configurations and the
effect of crystal field are illustrated in the simplest case of
valence fluctuations between two magnetic p configurations.
Depending on the crystal-field parameters, the model dis-
plays magnetic, nonmagnetic, or non-Fermi-liquid behavior
at low temperatures. The latter behavior extends to zero tem-
perature only for a particular ratio of the parameters.
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