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Rigorous results on a first-order phase transition in antiferromagnetic spin-1l2 coupled chains
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Some rigorous results are presented for a first-order quantum phase transition between the dimerized state
and Haldane-type state (i.e., a state similar to the ground state of the one-dimensional spin-1 Heisenberg chain)
in the spin-1/2 coupled chains with nearest-neighbor and next-nearest-neighbor Heisenberg interactions. Also
presented is a class of exact excited states in both phases. A partial phase diagram of the general spin-1/2

coupled chains is discussed.

Spin-1/2 coupled chains have attracted attention for the
last few years' partly because of their relevance to such
materials as (VO)2P207 (Ref. 4) and Sr2cu406, and partly
because of their intrinsic theoretical interest. For the isotro-

pic coupled chains with only nearest-neighbor couplings,
current consensus is that the system has a nonzero energy

gap separating the ground and low-lying excited states, and

the spin-spin correlation length of the ground state is
finite. ' No long-range order has been reported.

It is well known that, for one-dimensional spin chain sys-
tems, the spontaneous dimerized phase (the perfect dimer
state being defined by every two adjacent atoms forming a
spin-singlet pair in the spin-1/2 or spin-1 chains) and

Haldane-type .phase (spin-1 chain) are both possible. It is

also well known that these two phases both exhibit nonzero

gap and finite correlation length. The main difference be-
tween the two phases lies in the fact that the Haldane-type
state is nondegenerate and translationally invariant with a
hidden string order, ' while the spontaneous dimerized state
of a single chain is doubly degenerate with translational sym-

metry broken. For the system of spin-1/2 coupled chains, it is
therefore natural to consider the possible existence of these
two phases in despite of the dimerized phase being nonspon-
taneous and to study corresponding phase transitions if the
two phases do exist. In fact, spin-1/2 coupled chains as a
subject of research have a longer history. ' "The main inter-

est there was to construct effective one-dimensional chains
with larger spin moments from spin-1/2 coupled chains.
Many interesting results were produced. ' "In particular, it
was found that spin-1/2 coupled chains can have the same

ground state as that of the one-dimensional spin-1 Heisen-

berg chain.
Because of their relevance to the experiments, the general

spin-1/2 coupled chains are important models in their own

right. In this article, we study spin-1/2 coupled chains which

clearly exhibit both the dimerized phase and Haldane-type
phase when the coupling parameters vary. Specifically, we
consider spin-1/2 coupled chains with nearest-neighbor and

next-nearest-neighbor Heisenberg interactions. The spin sys-
tem consists of N pairs of 5=1/2 atoms, with interactions
described by the following Hamiltonian:

N

H = g I
JS", S2+J'(S; S",+'+ S2 S2+ ')

+ Ji'(Sr Sr+ t+ Sr Sr+ t

where the rung index r denotes each pair of spins with the
spins on the top chain denoted as S1 and the spins on the
bottom chain denoted as S2, J is the coupling constant
across each rung, J' is the nearest-neighbor coupling con-
stant along each chain, and J" is the next-nearest-neighbor
(diagonal) coupling constant. We mainly discuss the antifer-
romagnetic region (J,J',J")0).Periodic boundary condi-
tions are taken in this article. The Hamiltonian of Eq. (1) at
J=O is the so-called composite spin model. "

We first consider a single rung with a pair of spin-1/2
atoms only. The rung has four states: the singlet state with
zero total spin, namely IO)=(1/+2)(IT() —

IJ T)) in the
usual spin-1/2 notation; and the triplet states with total spin
equ» to I, namely ll)=ITT) 12)=(I//2)(ITl)+IlT ),
and

I 3)=
I J, J ), respectively. In a matrix representation, ' '

these four states are denoted by four column matrices, re-
spectively, and the single spin operators (S and 5 with

p, = 1,2) can then be written as 4 X4 matrices. We then in-
troduce the so-called composite operator A

(n, m = 0, 1,2,3), which is a 4 X 4 matrix with a single non-
zero entry, namely (n ' A„ lm ') = 8„„8' . The single spin
operators can then be written as linear summations of com-
posite operators A . The meaning and bosonization of
these composite operators have been discussed in detail in
Ref. 13.Brielly, Aoo (= 1/4 —St S2) is the singlet projection
operator, Ao„and A, o (n = 1,2,3) make transitions between
the singlet and triplet states, and A„(n,m=1,2,3) make
transitions among the triplet states. A obey pseudospin al-
gebra, [A„,Akt] =A„/6 /, A/, 6t„. —

In terms of these composite operators, A,', , with the in-
dex r denoting each rung in the coupled chains, the Hamil-
tonian of Eq. (1) can be rewritten as

(I 1
H= g J ——

Aoo + —(J' —J")H„„it
~4

where
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and

H«+ i —= (Ap2+ A2p) (A2p +Ap2 )

H„' „~,=—(A"„—A/3)(A", $ A33 ')

derstood. The state-of-the-art calculations were recently per-
formed by the density-matrix renormalization-group
technique and extremely accurate results have been ob-
tained. In particular, the long-range string order,
g(~) =0.374325 096(2), is obtained by calculation of the
string correlation function g(r) which is defined as

r 1—
pz [ imP, pz

It is interesting to compare this Hamiltonian with that of the
one-dimensional spin-1/2 frustrated Heisenberg models [i.e.,

Eqs. (3.4)—(3.5) of Ref. 13]. As we can see, by using the
composite operators, the algebra of the spin-1/2 coupled
chains becomes quite transparent. It is trivial to note that
when J ' = 0 and 1"= 0, the ground state of the system is
simply the perfect dimer state ~D) which is given by the
product of singlet states of all N rungs, namely

~D) = II„,~O)„. More significantly, we notice that the
Hamiltonian of Eq. (2) consists of three parts, the first part
consisting only of the operators App which is nonzero only
when acting on the singlet state of the rth rung, the second
part consisting only of the operators H„,+& which makes
transition between the singlet and triplet states, and finally
the third part consisting only of the operators H,' „+, which
is nonzero only when acting on a state in which both the rth
and (r+ 1)th rungs are in the triplet states.

In fact, it is easy to prove that H„' „+& is similar to the
usual spin-1 Heisenberg interaction, " namely

where we define operator P„by

(3)

P —A )) A33, P„'= +2(A "i2+A,",),

P„=+2(A 2 i+ A 32), (4)

with the usual SU(2) algebra, [P+,P ]= 2P' and
[P' P ]=~P-

At J' =1", the second part of H disappears. The Hamil-
tonian is then reduced to

N

Hp= g ( —App+ j'P„.P„~i), 1"=J',
r=1

(5)

where, for convenience, we have set J'/1 =j ' and J= 1, and
where we have ignored the constant term, N/4. We notice
that operators App and P„P„+& commute with one another.
We have therefore arrived at a Hamiltonian consisting of two
decoupled parts. The first part, —X+pp, is trivial, with no
interaction between different rungs and with a gap value of 1
between the singlet and triplet states. The second part,
X,P, -P,+&, is similar to the spin-1 Heisenberg chain with
each rung in the coupled chains corresponding to each site in
the spin-1 chain (the only difference is appearance of a new
type of excitation to be discussed later). The spin-1 Heisen-
berg model has been the focus of intensive investigations in
the last decade and its physical properties are now well un-

Since the two parts of Hp are decoupled and since all
excited states of both parts have nonzero energy gaps (to be
discussed later), its ground state is either that of the first part,
or that of the second part, depending on the value of j'. The
exact ground-state energy of Hp is therefore given by

F
N

—1 for j'&j,
for j'~j, (7)

AEd(n)=n+[ —ep(n —1)+e']j', n large.

where j, is the transition coupling constant, defined by
j,= 1/ep =0.713 529 353 310(1)with ep the ground-state en-

ergy per site of the spin-1 Heisenberg chain. Clearly, the
phase transition at j'=j, is a first-order one because the
first-order energy derivative with respect to j is discontinu-
ous at the transition point.

We next discuss excitation states in two phases. For the
dimerized phase (j &j,), the excitations states can be easily
obtained. For convenience, we define n singlet-to-triplet
spin-fiip (STSF) state as a configuration in which n rungs are
in the triplet states, while the remaining (N n) rungs ar—e in
the singlet state as in the dimer ground state. If each fIip is
separated from each another in a n-STSF configuration, the
energy gap (i.e. , total excitation energy minus total ground-
state energy) of the n-STSF state is simply b.E„(n)=n with
3"-fold degeneracy. However, if n Hips form a contiguous
cluster, the excitation gap can be much lower, with gap val-
ues given by AEd(n) =n+E(n)j ', where E(n) are the ei-
genvalues of the open-ended n spin-1 Heisenberg chain. As
well known, the ground state of the open-ended spin-1 chain
is singlet when n is even and triplet when n is odd; the
energy difference between the singlet (triplet) ground state
and next triplet (singlet) excited state for a given n decreases
exponentially to zero in the large-n limit and the exact
ground-state energy was obtained for up to n = 14 in Ref. 14.
For the one-fiip state, E(1)=0, therefore, AEd(l) = 1 with
triplet degeneracy. For the contiguous 2-STSF cluster,
b, Ed(2) =2(1 —j'),2 j', and 2+j—' for the singlet, triplet,
and quintuplet states, respectively, with a minimum gap of
about 0.573 when j'~j, . (For 3- and 4-STSF clusters, the
minimum gaps as j'~j, are about 0.895 and 0.685, respec-
tively). If we consider a single STSF state as a (soliton)
particle with spin momentum equal to one, it is obvious these
particles attract to one another at low values of their total
spin quantum numbers. For large n (n~14), the lowest
E(n)=—[—ep(n —1)+e'], where e' represents the residual
boundary effect [its magnitude is expected to be much
smaller than ep (Ref. 14)], the minimum gap of the n-STSF
cluster state is then given by
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When j'~j, , AEd(n)~1+e j', , a number independent of
n .Since ~e'~(&1, AEd(n)=1 for large n .When n ap-
proaches N, it is easy to see that the dimer ground state is
unstable against the large n-STSF cluster state when
j'~j, , as expected.

The excitations in the Haldane-type phase have been dis-
cussed for the Hamiltonian of Eq. (1) at J=O in Ref. 11.
Here, we take advantage of the recent accurate results for the
spin-1 Heisenberg chain, and focus on the excitations of Eq.
(5) for j ' &j, . As we know, the low-lying excited state of the
spin-1 chain is given by the one-magnon state with momen-
tum q = m, and with the well-known Haldane gap
b, =0.41050(2). Multimagnon states have larger gaps. '
We consider here a new type of excitations where the spin-1
chain is embedded with singlet rungs. " Again, for conve-
nience, we define n triplet-to-singlet spin-flip (TSSF) con-
figuration as a state in which there are n singlet rungs and the
remaining (N n) rungs —are in their Haldane-ground-state
configuration. We consider a single TSSF configuration,
which corresponds to the ground state of the (N 1) spin-1—
Heisenberg chain with two open ends enclosing the singlet
rung. Its total energy can be written as
Ei,(1)=E(N 1)j ' —1, —where, as before, E(N 1)—
= —eo(N —2) + e '. Hence, AEh(1) = (2eo+ e ')j ' —1.
Since ~e'~(&1, we obtain AEh(1)=1 as j'~j, , a value
larger than 0.4105j,=0.293 of the one-magnon Haldane gap.
Furthermore, from the numerical calculations of the open-
ended spin-1 chains, we note that each of the two ends
enclosing the singlet rung in the 1-TSSF state has an effec-
tive 5=1/2 spin with exponential decay of the local spin
moment away from the ends, and with decay length
/=6. 03(1) (which is also the usual spin-spin correlation
length). Therefore, the single TSSF configuration can be con-
sidered as particlelike (soliton) state with a size of about 14
lattice spacings (the core occupying two lattice spacings). We
also notice that the degeneracy of the single TSSF state is
four, while the one-magnon state of the spin-1 chain is trip-
let. Similar to the n-STSF cluster state in the dimer phase,
the n-TSSF state has lowest energy when n flips are contigu-
ous, with the minimum gap

b, Eh(n) = [(n+ 1)en+ e ']j' —n.

We notice that when j ' —+j, , all clusters have the same mini-
mum gap of (1+ e'j, )= 1, a number identical to that of the

(large) n-STSF cluster state of the dimer phase when ap-
proaching the transition point. When n —+N, the Haldane-

type phase is unstable against formation of the large n-TSSF
cluster state when j'(j, , as expected.

The above analysis for the Hamiltonian of Eq. (1) at
J'= J" represents our main results in this article. Before we
discuss the implication of these rigorous results to the gen-
eral phase diagram, we should point out that the Hamiltonian
at J' =J" is an interesting model on its own right; it repre-
sents, among other things, the Heisenberg model on a tetra-
hedronic chain (i.e., every two nearest-neighbor pairs of at-
oms form a tetrahedron) with only nearest-neighbor
coupling s.

We now discuss the phase diagram of Eq. (1) on a spheri-
cal surface of unit radius with J,J',J" being the three axes,
as shown in Fig. 1(a). We firstly discuss the region near the

(a)

FIG. 1. A partial phase diagram for the spin-1/2 coupled chains
of Eq. (1). (a) Region I (ABD) is the dimerized phase, II (BCE) is
the Haldane-type phase, III (BED) may be some new spin-liquid
or still the Haldane-type phase. ABC is given by J"=J' with the
exact transition point at B, D is obtained by the valence-bond spin-
wave theory (Ref. 16), and the dashed line is based on the exact
results of BC and numerical results from Ref. 11. (b) The complete
phase diagram when J"=J', with GAB denoted the dimer phase,
BCI' Haldane-type phase, and FG ferromagnetic phase.

north pole A. We have applied the (dimerized) valence-bond
spin-wave theory developed by us' via bosonization for the
composite operators A„' in Eq. (2) with J"=0, starting from
the perfect dimer state ~D) which is the exact ground state at
J' =0.' Good results for the ground and spin-wave excited
states are obtained for a small nonzero region of J'/J, but
the theory breaks down at J'/J= 1/2 [denoted as D in Fig.
1(a)] and the dimerization order (similar to that of the one-
dimensional spin-1/2 frustrated chain' ) is nonzero in the re-
gion 0~J'/J( 1/2. This breakdown seems to suggest a tran-
sition from the dimerized phase to other phase(s). Combining
with the exact dimer state along AB where B is the exact
transition point between the dimer and Haldane-type phases,
we draw a phase boundary BD enclosing dimerized region I
as shown in Fig. 1(a).

Secondly, we discuss the phase diagram near the Haldane-
type phase. Since the Hamiltonian of Eq. (1) at E
(J=J"=0) reduces to the two decoupled spin-1/2 Heisen-
berg chains which is exactly known to be critical and gap-
less, E point provides another exact reference for the phase
diagram. Combining with the rigorous results for J"=J'
along BC presented above, the numerical results along CE
from Ref. 11 which indicates CE is Haldane-type, and the
fact that the Haldane-type phase have a nonzero gap, we
enclose this Haldane-type phase II by a dashed line joining
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from BD to E Cl.early, the boundary (dashed line) between
the Haldane-type phase (II) and a third possible phase
(III) is uncertain at this moment. We consider the three pos-
sible scenarios for III: (a) The valence-bond spin-wave
theory is unreliable and the dimerized phase persists from I
to III; (b) The valence-bond spin-wave theory is qualita-
tively correct and the whole region enclosed by BCED (i.e.,
II plus III) is the Haldane-type phase, including the isotro-
pic model with J=J' and J"=0; (c) A new phase (e.g., a
new spin liquid) appears in III which also has a nonzero gap
but without any long-range order (dimerized or string order).
We consider the first scenario most unlikely because the
(dimerized) valence-bond spin-wave theory is expected to be
at least qualitatively correct if the system is dimerized. ' Re-
sults from the numerical calculations' seem to suggest the
third scenario. However, since there is not any report on

calculations of the string order, we cannot rule out the second
scenario. In any case, it is interesting to apply powerful nu-

merical techniques such as the density-matrix
renormalization-group to calculate the string order particu-
larly in region III, using Eqs. (4) and (6).

Finally, we should also point out that there are other re-
gions in Fig. 1(a), where exact results can be obtained. For
example, we show in Fig. 1(b) the complete phase diagram
for the Hamiltonian of Eq. (1) at J"=J', where GAB de-
notes the dimer phase region, BCF the Haldane-type phase
region, and FG ferromagnetic region. All of the three critical
points, G, B, and F, which separate the three phases, are
first-order ones.
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