
PHYSICAL REVIEW B VOLUME 52, NUMBER 2 1 JULY 1995-II

Elastic theory of flux lattices in the presence ef wreak disorder

Thierry Giamarchi*
Laboratoire de Physique des Solides, Uniuersite Paris Su-d, Batiment 510, 91405 Orsay, France

Pierre Le Doussalt
Laboratoire de Physique Theorique de l'Ecole Normale Superieure, 24 Rue Lhomond, F 7528-1 Paris Cedex, France

(Received 16 January 1995)

The effect of weak impurity disorder on Hux lattices at equilibrium is studied quantitatively in
the absence of free dislocations using both the Gaussian variational method and the renormalization
group. Our results for the mean-square relative displacements B(x) = (u(x) —u(0))2 clarify the
nature of the crossovers with distance. We find three regimes: (i) a short distance regime ("Larkin
regime" ) where elasticity holds, (ii) an intermediate regime ("random manifold" ) where vortices are
pinned independently, and (iii) a large distance, quasiordered regime where the periodicity of the
lattice becomes important. In the last regime we find universal logarithmic growth of displacements
for 2 ( d ( 4: B(x) Asln~x~ and persistence of algebraic quasi-long-range translational order.
The functional renormalization group to O(e = 4 —d) and the variational method, when they can
be compared, agree within 10+0 on the value of Ag. In d = 3 we compute the function describing
the crossover between the three regimes. We discuss the observable signature of this crossover in
decoration experiments and in neutron-difFraction experiments on flux lattices. Qualitative argu-
ments are given suggesting the existence for weak disorder in d =—3 of a "Bragg glass" phase without
free dislocations and with algebraically divergent Bragg peaks. In d = 1+ 1 both the variational
method and the Cardy-Ostlund renormalization group predict a glassy state below the saxne tran-
sition temperature T = T„butwith difFerent B(x) behaviors. Applications to d = 2 + 0 systems
and experiments on magnetic bubbles are discussed.

I. INTRODUCTION

The interest in the pinning of the Abrikosov vortex lat-
tice by impurities was revived recently with the discovery
of high-T superconductors. Impurity disorder conflicts
with the long range translational order of the fIux lattice
and some glassy state is generally expected to appear.
Understanding the precise nature of this new thermody-
namic state and how it depends on the type of disorder
existing in the system is very important for the determi-
nation of the transport properties of these materials, such
as critical currents and I-V characteristics. This prob-
lem, however, is only one aspect of the more fundamental
and broader question of the effect of quenched impurities
on any translationally ordered structure, such as a crys-
tal. This question arises in a large number of physical
systems under current active experimental study. Exam-
ples are charge density waves, signer crystals, mag-
netic bubbles, 2 Josephson junctions, ' the surface
of crystals with quenched bulk or substrate disorder,
and domain walls in incommensurate solids. All these
systems have in common a perfectly ordered underlying
structure modified by elastic distortions and possibly by
topological defects such as dislocations, due to tempera;
ture or disorder. The effect of thermal Quctuations alone
on three-dimensional and especially on two-dimensional
structures is by now well understood, and it was shown
that topological defects are not important in the low-
temperature solid phase. Much less is known, however,

on the additional effects of quenched disorder. In partic-
ular, the important question of precisely how quenched
disorder destroys the translational long range order of
the lattice is far &om being elucidated. If disorder is
strong, the underlying order is a priori destroyed at every
scale and an analytical description of the problem start-
ing &om the Abrikosov lattice is diFicult. One then has to
use a Inore macroscopic approach based on phenomeno-
logical models such as the gauge glass models. ' ' The
success of these approaches then crucially depends on
whether these effective models are indeed a good repre-
sentation of the system at large scale, a largely uncon-
trolled assumption. If disorder is weak enough, however,
one expects the perfect lattice to survive at short scales.
Thus a natural erst step for a theoretical description is
to neglect dislocations and to treat the simpler problem
of an elastic medium submitted to weak impurities. In
that case one can consider a Gaussian random potential
created by many weak impurities with short range corre-
lations. In this paper we will focus on pointlike disorder.
The problem of correlated disorder, such as columnar or
twin boundary pinning in superconductors, which is
also relevant for any type of quantum problems can be
treated by similar methods, and is examined in detail in
Ref. 20.

This simpler problem of an elastic lattice in the pres-
ence of weak disorder is already quite nontrivial. Despite
several attempts, its physics has not been completely un-
derstood. An important quantity, which measures how
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fast translational order decays, is the translational corre-
lation function C~, (r) = (e'~0 ~"~"l "~ l~), where u(r) is
the displacement &om the perfect lattice and Ko one of
the first reciprocal lattice vectors. We denote by () and—the thermodynamic average and the disorder average,
respectively. C~, (r) can be extracted from the Fourier
transform of the density-density correlation function at
wave vectors near q = Ko, or directly measured by imag-
ing the deformed lattice, and is thus a quantity easily
accessible in experiments.

A calculation of Ca;(r) was performed by Larkin2i
using a model in which weak random forces act indepen-
dently on each vortex. . These forces are correlated over
a small length go, of the order of the superconducting
coherence length. This model predicts that weak disor-
der destroys translational order below four dimensions
and C~, (r) exp( —r "). The destruction of the long
range order in this simple Gaussian model can be under-
stood easily &om the standard Imry-Ma argument. To
accommodate the random forces a region of size R will
undergo relative deformations of order u. The cost in
elastic energy is R" u, while the gain in potential en-

ergy is uR"~ . The optimal is thus u = R~ "&~ leading
to the above decay of C~, (r). Using similar arguments
in the presence of an external Lorentz force, Larkin and
Ovchinikov constructed a theory of collective pinning
of the 8ux lattice. In this theory the critical current is
determined &om the length scale R at which relative dis-
placements are of order u = (o. This theory was very suc-
cessful in describing conventional superconductors. How-
ever, a need to reconsider this theory was prompted by
high-T superconductors where the Hux lattice is usually
probed. at larger scales. It turns out that the Larkin
model, while it is useful for estimating critical currents,
cannot be used to study large scale quantities such as
translational order.

In fact the purely Gaussian model with random forces,
and the resulting linear elasticity, becomes inadequate
beyond the Larkin-Ovchinikov length R . It has only
one trivial equilibrium state and responds linearly to ex-
ternal force. It is thus too simple to approximate cor-
rectly the full nonlinear problem and grossly overesti-
mates the effect of disorder. At larger scales the lattice
starts behaving collectively as an elastic manifold in a
random potential with many metastable states; thus the
exponential decay of C~, (r) in d = 3 cannot hold be-
yond r )R . Using known results on the so-called "ran-
dom manifold" problem, Feigelman et al. showed that
the system presents glassy behavior and computed trans-
port properties. This was also pointed out by Bouchaud,
Mezard, and Yedidia (BMY), who used the
Gaussian variational method (GVM) to study this prob-
lem, and found a power-law roughening of the lattice with
stretched exponential decay of C~, (r).

However, the periodicity of the lattice was not properly
taken into account in all the above works. The periodicity
has important consequences for the behavior of correla-
tion functions at large scales. Indeed, it was suggested
with the use of qualitative Flory arguments that peri-
odicity leads to logarithmic roughening, rather than a
power law.

In. this paper we develop a quantitative description of
the static properties of a lattice in the presence of dis-
order. A short account of some of the results of this
paper was presented in a recent Letter. We take into
account both the existence of many metastable states
and the periodicity of the lattice. One of the difFiculties
in the physics of this problem is that the disorder varies
at a much shorter length scale than the lattice spacing.
As a consequence the elastic limit has to be taken with
some care. Indeed in this limit the displacement varies
slowly, but the density still consists in a series of peaks.
To couple the density to the random potential it is thus

important to distinguish between its slowly varying cora-
ponents L~ 0 and its Fourier component L~, close to
the periodicity of the lattice. This separation of harmon-
ics exposes clearly the physics and allows us to treat all
the regimes in length scales in a simple way. To study
the resulting model, we mainly use the Gaussian varia-
tional method, developed to study manifolds in random
media. 2~ We also use the renormalization group (RG)
close to d = 4 dimensions and in d = 2 dimensions. Com-
parison of the two methods provides a confirmation of the
accuracy of the GVM.

One of the main results of the present study, which
is somewhat surprising in view of conventional wisdom
based on Larkin s original calculation, is that quasi-long-
range order survives in the system. This means that
C~, (r) decays as a power law at large distance. Such a
property for a disordered lattice is similar to the qua-
siorder found for clean two-dimensional solids. This
state, however, has the peculiar property of being a glass
with many metastable states, and at the same time shows

Bragg peaks as a solid does. For these reasons we would
like to call it a "Bragg glass. " Note that this is a much
stronger property than the so-called "hexatic glass"
since hexatic order in the elastic limit is a straightforward
consequence of the absence of dislocations. In the Bragg
glass, two important length scales control the crossover
towards the asymptotic decay, a consequence of the fact
that the disorder varies at a much smaller scale than the
lattice spacing a. When the mean square of the relative
displacement ([u(x) —u(0)]z) of two vortices as a func-
tion of their separation x is shorter than the square of the
Lindemann length l&~

——(u~), the thermal wandering of
the lines averages enough over the random potential and
the model becomes equivalent to the random force Larkin
model. At low enough temperature, l~ is replaced by the
correlation length of the random potential (o, which is
of the order of the superconducting coherence length. In
that case the crossover length is R~. 23 When the rela-
tive displacement is larger than the correlation length of
the random potential but smaller than the lattice spac-
ing a, this is the random manifold regime where each
line experiences effectively an independent random po-
tential. When the relative displacement becomes larger
than the lattice spacing, one enters the asymptotic qua-
siordered regime. This occurs for separations of order (.
In general the two lengths B, and ( are widely different.
The theory developed here can be applied to any elastic
system in the elastic limit $ )) a. In relation with exper-
imental systems we focus particularly on the triangular
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Abrikosov lattice in d = 2+1, point vortices in thin films,
and magnetic bubbles in d = 2+ 0, and will also mention
lines in a plane d = 1 + 1.

In this paper we will not treat topological defects quan-
titatively. Although a full description of a lattice in the
presence of disorder should also include topological de-
fects, their effect might not be as severe as commonly be-
lieved &om misleading Imry-Ma type arguments. Indeed
the fact that within the elastic theory quasi-long-range
order is preserved at large distances makes the system
much more stable to dislocations. Since in d = 3 the
core energy of a dislocation increases as its size I, it
is actually very possible that a phase without unbound
dislocations exists in d = 3 in the presence of weak dis-
order. Indeed, Bitter decoration experiments at the
highest fields available, about 70 G for these low-field
experiments, show remarkably large regions &ee of dis-
locations. In recent neutron experiments it was shown
that the degree of order depends on the way the system is
prepared. A more perfect lattice with a smaller number
of dislocations was prepared by first driving the system
at a velocity high enough for translational order to heal,
and then slowing it back down to zero velocity. It is thus
conceivable that in d = 3 the presence of dislocations
is overall a nonequilibrium feature. In two dimensions
(d = 2 + 0), dislocations are energetically less costly and
will probably appear at large scales, although this has not
yet been firmly established. However, as we will discuss
here, the length scale between unbound dislocations (D
can be much larger than ( in a low-temperature regime.
In that regime the main cause of the decay of transla-
tional order is elastic deformations due to disorder.

The paper is organized as follows. For convenience we
have separated the mostly technical sections III and V
&om the ones discussing applications to physical systems
IV and VI. In Sec. II, we introduce the model and derive
the correct elastic limit. Simple dimensional arguments
like those of Fukuyama and I ee are given to identify the
relevant length scales. In Sec. III we apply the Gaussian
variational method to a simplified isotropic version of the
model. Thus the method can be exposed without being
obscured by unnecessary technical complications specific
to real vortex lattices such as anisotropy and nonlocal
elasticity, while the essential physics is retained. This
section contains most of the technical details and meth-
ods used. We explain why a previous application of the
variational method by BMY led to erroneous conclusions
about the behavior at large scales. In Sec. IV we apply
the theory to d = 2 + 1 solids such as the vortex lat-
tices using a realistic elastic Hamiltonian. We compute
the translational order correlation function Clc, (r) with
the full crossover between the three regimes in distance.
We discuss the experimental signatures for decoration
and neutron-difFraction experiments. In particular, the
results of a comparison between decoration images and
theoretical predictions are mentioned and detailed pre-
dictions are made for the neutron-difFraction intensities.
We then give a simple physical interpretation of the var-
ious regimes in distance and also argue that dislocations
are less likely to appear than commonly believed. In
Sec. V we apply the functional renormalization group in

II. DERIVATION OF THE MODEL AND
PHYSICAL CONTENT

A. A general elastic Hamiltonian

In the absence of disorder the vortices form, at equi-
librium, a perfect lattice of spacing a whose sites are
labeled by an integer i and position will be denoted by
B,. Since we want to apply this theory also to a lattice
of vortex lines, we consider the more general case where
the B, are m-component lattice vectors and there are
in addition d —m transverse directions denoted by z so
that the total spatial dimension is d. Throughout this
paper we will denote the d-dimensional coordinates byx—:(r, z) and similarly the Fourier space (momentum)
coordinates by q = (q~, q, ). For example, the Abrikosov
lattice corresponds to m = 2 and d = 3 and z is along
the direction of the magnetic field. The displacements
relative to the equilibrium positions are denoted by the
m-component vector u(R;, z) = u,.(z). For weak disorder
(a/( (( 1 where ( is defined below) and in the absence
of dislocations, it is legitimate to assume that u(R;, z)
is slowly varying on the scale of the lattice and to use a
continuum elastic energy, as a function of the continuous
variable u(x). We consider the simple elastic Hamilto-
nian

1 . d q~.i =
2 ): 2

„u-(q)C' n(q)un( —q)
a,P

(2.1)

where o, P = 1, . . . , m label the coordinates, and BZ de-
notes the Brillouin zone. The 4 p are the elastic matrix.
Such an elastic description is valid as long as the relative
displacement of two neighboring points remains small,
i.e., ~u(R, ) —u(R, +i) ~

(( a, but does not suppose the in-
dividual displacements themselves to be small. We defer
the study of the realistic elastic Hamiltonian (2.1) until
Secs. IV and VI, and in order to illustrate the method in
Secs. II and III we use the fully isotropic elastic Hamil-
tonian

II,i = — d"2:[V'u(x)]'
2

(2.2)

corresponding to the case C p(q) = eq2b p.
In the limit where many weak impurities act col-

lectively on a vortex the disorder can be modeled by

d = 4 —e, and compare its findings with those of the vari-
ational method. In Sec. VI we examine two-dimensional
systems, for which thermal Buctuations play a more im-
portant role. We first apply the variational method which
shows that below a critical temperature T the system is
glassy with logarithmic growth of displacements. This is
compared to predictions of the renormalization group in
d = 1+ 1. We then give a physical discussion of what
should be expected for d = 2 + 0 systems, such as mag-
netic bubbles, where dislocations have to be considered.
Conclusions can be found in Sec. VII. Finally, the reader
can look at the Appendixes to which most of the most
tedious technicalities are relegated.
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p(x) = ) b(r —R; —u(R;, z)) (2.3)

the total Hamiltonian is therefore

H=Hi+ d"zV x px. (2.4)

The simplest way to recover translational invariance
is to use the well-known replica trick. This amounts to
introducing n identical systems by replicating the original
Hamiltonian. It is then possible to average over disorder,
the proper quenched average being recovered in the limit
n —+ 0. After replicating, the interaction term becomes

IIr, ——— & f d xd x'd(r —r')
a, b

a Gaussian random potential V(x) with correlations
V(x)V(x') = A(r —r')b(z —z'), where A(r) is a short
range function of range (o (the superconducting coher-
ence length) and Fourier transform Ez . The other liinit,
corresponding to a few strong pins, can be modeled by a
Poissonian distribution and will not be considered here.
Since the density of vortices at a given point is given by

P(r, z) = r —u(P(r, z), z). (2.7)

p(x) = ppdet[8 Pp]) e'
K

(2.8)

where the K are the vectors of the reciprocal lattice and
po is the average density. In the elastic limit one can
expand (2.8) to get

p(x) = pp 1 —8 u (P(x)) + ) e' "p~ (x) ~, (2.9)
)KQO

Such a field will allow the continuum limit of (2.6) to be
taken easily. For each configuration of disorder, or alter-
natively for each replica set, one introduces a diferent
field (b. Such a labeling is always exact when the trans-
verse dimension m is m = 1. In more than one trans-
verse dimension, this representation assumes the absence
of dislocations in the system. In a self-consistent manner,
we will justify a posteriori both assumptions of elasticity
and absence of dislocations using the solution in Secs.
IIID and IVC.

Using P(x) the density can be rewritten as (see Ap-
pendix A)

x b(z —z') p (x)p~(x'), (2 5)
where

where a, 6 are the replica indices. Equation (2.5) can be
rewritten

IIr;, = —
& f dzxd x'& d(x —x')d(z —z')
-,b )2

xb(x —R; —u, (z))b(x —R~ —u (z))

& j'd'=zd(Z, —a,
a, b ij

+ ,'( ) — ,'(.)), (2.6)

where a, 6 = 1, . . . , n are the replica indices. As we show
in the following section it is extremely important to keep
the discrete nature of the lattice in (2.6), and the contin-
uum limit of H~;„should be done with some care.

( )
—i' u(P(a)) (2.10)

dxV(x)p(x) = —pz f dxV(x)d. x.

+po dz V K x pK x, 2.11
KQO

where

is the usual translational order parameter defined in
terms of the reciprocal lattice vectors K. Expression
(2.9) respects the periodicity of the lattice, i.e., is ob-
viously invariant by a global translation u —+ u+ a. An-
other advantage of the decomposition (2.9) is that the
various Fourier components of the density relative to the
periodicity of the ordered lattice appear clearly in H&,.„,

B. Decoxnposition of the density
Vlc(x) = V(x)e-' (2.12)

Using the form (2.6) for the Harniltonian in terms of
the displacement fields u,. is rather cumbersome. Equa-
tion (2.6) leads to a nonlocal theory, even in the limit
where the disorder is completely uncorrelated A(r r')=-
b'(r —r'). Indeed, vortices belonging to two difFerent
replica sets can be a priori at the same point in space
r = R,. + u,. (z) = R~ + u (z) while having very differ-
ent equilibrium positions R; g R~. This occurs when
the displacements of the vortices are large enough. Since
B;, the equilibrium position of the vortices, have clearly
no physical significance, except as an internal label, it is
much more convenient to use instead a label that is a
function of the actual position of the vortices. This can
be achieved by introducing the slowly varying field

is the part of the random potential with Fourier com-
ponents close to K. Since the energy is invariant when
changing u —+ u+ a, u itself cannot appear in the expres-
sion (2.11), but only c)u, and in principle higher deriva-
tives or a periodic function of u are allowed.

The first term in the right-hand side of (2.11) is the
part of the deformation of the lattice that couples to the
long wavelength of the disorder potential. It results in
an increase or decrease of the average density in regions
where the potential is favorable or unfavorable. The sec-
ond term couples to the higher Fourier components of
the disorder. The average density is not affected but the
lattice can be shifted so that the lines sit in the minimum
of the disorder potential. In the usual elasticity theory,
one takes the continuum limit for the displacement field
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and assumes that the density itself is smooth on the scale
of the lattice. This allows one to keep only the gradient
term in (2.11). Here, although it is possible to take the
continuum limit for the displacements u since they vary
slowly on the scale of the vortex lattice (V'u « 1), it is
imperative to retain the discrete nature of the density.
This is because the scale at which the disorder varies (for
superconductors it is comparable to the scale of the real
atomic crystal) is usually shorter than the lattice spacing
of the vortex lattice itself.

If one uses the representation (2.9) of the density and
(2.6) and discards spatial averages of rapidly oscillat-
ing terms, the replicated Hamiltonian becomes, in the
isotropic case,

II.~ = — d'x[Vu(x)]'
2

d x ) l9~u~Opup
a, b

+ ) ' cos(K [u (x) —u (x)]) .
K+0

(2.13)

The Hamiltonian (2.13) can be applied directly to
study quantum models with a time dependent disorder.
A more physical disorder for quantum systems would be
only space dependent. This would correspond to corre-
lated disorder in one (the "time") direction for the classi-
cal system and can be studied by the same method as the
one used in this paper. For completeness we also give
here in Appendix 8 the connection between the quan-
tum mechanics of interacting bosons and fermions and
an elastic system in d = 1 + 1 dimensions.

C. Dimensional arguments

Before starting the full calculation, let us estimate the
eff'ects of the different terms in (2.11) in a way similar
to Ref. 33. In the presence of many weak pins, u can-
not distort to take advantage of each of them, due to the
cost in elastic energy. One can assume that u varies of
~ a over a length ( )) a. The density of kinetic energy
is c(a/(), where c is an elastic constant. The vari-
ous Fourier components of the disorder will give difFerent
contributions. The long wavelength part of the disorder
gives

To be rigorous the last terms in (2.13) should be writ-
ten in terms of u(P(x)) rather than u(x), but this has
no effect on our results. It leads only to corrections of
higher order in Vu which we neglect since we work in
the elastic limit a/( « 1. The Hamiltonian (2.13) will
be our starting model, and &om now on we absorb the
coeKcient po in 4K, po+K

A general property of the Hamiltonian (2.13) is the in-
variance of the disorder term under the transformation
u (x) ~ u (x) + m(x) where zv(x) is an arbitrary func-
tion of x. This statistical invariance guarantees that the
elastic term in (2.13) is unrenorrnalized by disorder. Note
that in the original nonlocal model (2.6) this symmetry
is only approximate, and indeed one would find there a
small [of order (a/()2] and unimportant renormalization
of the elastic coeKcients by disorder.

The principal quantities of interest are the mean
squared relative displacement B(x) of two vortices, aver-
aged over disorder, which is determined by the correla-
tion of u diagonal in replicas

p dxVxOu x

For the higher Fourier components the disorder term

Hdis dd ~( )
iKs: iKu(s—)q-K = PO (2.is)

~dis ~&/2gd/2
q K (2.ig)

Optimizing the gain in potential energy versus the cost in
elastic energy determines (. One can therefore associate
to each Fourier component a length scale above which
the corresponding disorder will be relevant and destroy
the perfect lattice

can be estimated over the volume
as e '

j&s d"xV(x)e' . This sum can be viewed as

a random walk in the complex plane and the value of u
adjusts itself to match the phase of the random potential.
Therefore the gain in energy density due to the disorder
term is of order

&(x) = —([u(*) —u(o)]')
m

d"q= 2T [1 —cos(qx)]G(q),
2m ~ (2.i4)

gq p o, (c a /Ap)

a (c a /bK)

ifd(2 (2.2O)

(2.2i)

(u. (q)up(-q)) = ~-/TG(q)

and the translational order correlation function CK(x)

CK(x) = (PK(x)PK(O)). (2.i5)

(2.16)

In the Gaussian theory that will be considered below, the
two correlation functions are simply related by

u (x) + u (x) + f (x),

where the Fourier transform of f is

(2.22)

The q 0 component of the disorder is relevant only for
d & 2 and the second term in (2.13) can be dropped for
d & 2 if one is interested in the asymptotic regime. In
fact, the q 0 part of the disorder can be eliminated ex-
actly from (2.13) and leads only to trivial redefinitions of
the correlation functions. One can perform a translation
of the longitudinal displacement field u by
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y ( )
ipoqn+q 0

cq
(2.23)

The translation (2.22) when performed on the replicated
form (2.13) eliminates the long wavelength term but does
leave the cosine term invariant since it is a local transfor-
mation. Note that such a transformation is only possible
due to the fact that the various Fourier components of
the disorder are uncorrelated. The mean squared relative
displacement B(x) becomes

noted above. Two general classes of solutions can exist
for (3.2). One preserves the symmetry of permutations of
the replica, and amounts to mimicking the distribution
(thermal and over disorder) of each displacement mode
u(q) by a simple Gaussian. The other class, which is a
better approximation in the glassy phase, breaks replica
symmetry and approximates the distribution of displace-
ments by a hierarchical superposition of Gaussians cen-
tered at different points in space. Each Gaussian at the
lowest level of the hierarchy corresponds to a different
metastable "pinned" position of the manifold.

(2.24)

As expected, the additional term produces only a sub-
dominant finite correction above two dimensions. In the
following we simply set Lp = 0.

As is obvious from (2.20), higher Fourier components
Vq K disorder the lattice below d = 4. We will now ex-
amine the effect of these Fourier components more quan-
titatively.

III. VARIATIONAL METHOD

We now study the Hamiltonian (2.13) using the varia-
tional method introduced by Mezard and Parisi. Hamil-
tonians with more realistic elastic energy terms, directly
relevant for experimental systems, will be considered in
Secs. IV and VI.

B. Replica symmetric solution

Let us first examine the replica symmetric solution
G gb(q) = G(q) and B gb(x) = B(x) Usin. g (3.3) one
has

d"q
B(x = 0) = 2T G, (q).(2')" (3.4)

For d & 2, B(x = 0) is infinite, and the off-diagonal part
of cr b is zero. The K g 0 Fourier components of the
disorder do not contribute. This solution turns out to be
the correct solution for d ( 2, as shown in Appendix C.
This can be explained physically by the fact that for d (
2 thermal fluctuations are strong enough to disorder the
system.

For d & 2, G is given by

A. Derivation of the saddle point equations
G(q)= + ) A~K e

cq~ c~q4mT
K

(3.5)

We now look for the best trial Gaussian Hamiltonian
Hp in replica space which approximates (2.13). It has
the general form

1 d q,G.b'(q)u-(q) ub(-q) (3.1)

where the [G ] b(q) is an n x n matrix of variational pa-
rameters. Without loss of generality, the matrix G b (q)
can be chosen of the form G b

——cq b~b —o.~b where
the self-energy o b is simply a matrix of constants. The
connected part is defined as G, i(q) = Pb G b (q). We
obtain by minimization of the variational Bee energyF„,= F0 + (H, rr —H0)~, the saddle point equations

B-b(*) = —([u-(x) —ub(0)]')

d q
~ [G-(q) + Gbb(q)

(2~)"
—2cos(qx)G b(q)].

Note that the connected part is unchanged by disorder, a
direct consequence of the statistical symmetry of (2.13)

G ()= cr =) K e ~ "~*=l, (32)c q cq)' agb my ) ~

K

where m is the number of components of u. One defines

dd

2a "cq~ c d —2

(3.6)

where 1/Sg = 2" 7r ~ I'[d/2]. Due to the term in 1/q
in (3.5), the relative displacement correlation function
grows as

B(*)- *'-". (3.7)

The replica symmetric solution is therefore equivalent at
large distances to the Larkin result based on a model of
independ. ent random forces acting on each vortex. As ex-
plained in the Introduction, this solution does not contain
the right physics to describe the long distance behavior.
In this variational approach this shows by the fact that
the replica symmetric solution is unstable towards replica
symmetry breaking for 2 ( d ( 4. This can be checked
&om the eigenvalue A of the replicon mode

] ~ (g )d ~c(q)-
m (27r)"K

(3.8)

lz is the Lindemann length and measures the strength of
thermal fluctuations. It is defined as
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A negative eigenvalue A indicates an instability of the
replica symmetric solution. We introduce a small regu-
larizing mass in G„G(q)

i = cq2 + p, , and take the
limit p -+ 0. It is easy to see from (3.8) that for d ( 2 the
replica symmetric solution is always stable (see also Ap-
pendix C). In that case disorder is in fact irrelevant, due
to the strong thermal Huctuations. For d = 2 the con-

TKg
dition becomes p & 4 & & 1 for small p. Thus there
is a transition at T = T = 4vrc/Ko2 between a replica
symmetric stable high-temperature phase where disorder
is irrelevant and a low-temperature (glassy) phase where
the symmetric saddle point is unstable. We will examine
the physics in d = 2 in detail in Sec. VI. For 2 & d & 4
the replica symmetric solution is ahoays unstable and dis-
order is therefore always relevant.

C. Replica symmetry breaking far 2 & d & 4

where

( ) ) ~ IcK2 —~K H(o, v)
mTK

d"qB(0,v) = 2T „[G(q)—G(q, v)].

(3.9)

(3.iO)

B(0,v) corresponds physically to the mean squared rela-
tive displacement between the position of the same vor-.
tex (x = 0) when the manifold is in two difFerent low-

lying metastable states. The large distance behavior of
disorder-averaged correlators will be determined by the
small v behavior of B(0,v).

As we will show in Sec. IIIC2, to discuss the large
distance behavior x )) ( it is enough to keep the smallest
reciprocal lattice vectors with K2 = Ko2 in (3.9) since
B(0,v) » a . We will thus first study a single cosine
model obtained by keeping only K = Kp,

Since for 2 & d & 4 the replica symmetric solution is
unstable, to obtain the correct physics one has to look for
a replica symmetry broken solution. We will focus here
on the case 2 & d & 4, the d = 2 case being discussed in
Sec. VI. Following Ref. 27 we denote G(q) = G (q), sim-

ilarly B(x) = B (x), and parametrize G b(q) by G(q, v)
where 0 ( v ( 1 and B b(x) by B(x,v). Physically, v

parametrizes pairs of low-lying states in the hierarchy of
states, as described in Ref. 27, v = 0 corresponding to
states further apart. The saddle point equations become

Asymptotic behavior (single cosine modeL)

We look for a solution such that o'(v) is constant for
v & v, v, itself being a variational parameter, and that
has an arbitrary functional form below v . The algebraic
rules for inversion of hierarchical matrices give

B(o, v) = B(O, v.)
d"q 2To'(io)

)'(G.(q) '+ [ol(~)}'
(3.12)

where [o.](v) = ucr(v) —j"dzvo(iv) and

g 2T
(2~)'G. (q) '+ lo](v. )

(3.13)

In that case, taking the derivative of (3.9) (keeping only
K=KO) with respect to v, using [o']'(v) = vo'(v), (3.12),
and (3.9) again one finds

(3.i4)

Since the integral is ultraviolet convergent, we have taken
the short distaiice momentum cutofF A = 2vr/a to infinity,
a limit discussed below. Taking the derivative one more
time one gets for the effective self-energy

CT V = V Vp ) (3.i5)

where vo ——2KriTc~c "~ /(4 —d) and

C(g
= ( i l '

(2 —d)~'
(2m)" (q2 + 1) 2"+i sin(d~/2)I'(d/2)

(3.i6)

with cd—s ——1/(8vr) and cq 2 ——1/(4vr).
The behavior of [cr](v) controls the scaling of the en-

ergy fluctuations b,E oc I oc T/v, with the scale L,
and the large scale behavior is controlled by small v.
Equation (3.15) thus gives an energy Quctuation expo-
nent 0 = d —2.

Using (3.15) in (2.14) one can now compute the corre-
lation functions. Larger distances will correspond to less
massive modes, and one obtains

H,g ——— d"x V'u x
a

cos(Ko[u (x) —u (x)]}.a 6

2T (3.ii)
([u(x) —u(0)]2) = 2mT [1 —cos(qx)]G(q),(2~)"

(3.17)

Each tixne we consider this particular model, e.g. , in the
following subsection (III C 1), we will denote Nbb, Ic, by
L, where Ng is the coordination number, i.e. , the number
of vectors Kp with minimal norm.

1 ' dv [o.](v) i Zg
cq2 ( 0 v2 cq2+ [o](v)) qd

' (3»)

with Zg = (4 —d)/(TK02Sq) and 1/Sg = 2" iver"~ I'[d/2].
Thus for 2 & d & 4 we 6nd logarithmic growth:
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([u(x) —u(0)] ) = 2Agln~x]
Kp2

(3.19)

with Ag ——4 —d. Note that the amplitude is independent
of temperature and disorder.

The solution (3.15) is a priori valid up to a breakpoint
v„above which [o] is constant, since o'(v) = 0 is also
a solution of the variational equations. To obtain the
behavior at shorter scales for the single cosine model, we
need to determine the breakpoint v . For v ) v using
[cr](v) = Z one can rewrite (3.15) as

placements. This is to be expected since the disorder is
here characterized by a single harmonic. It has therefore
no fine structure for distances smaller than a, the lattice
spacing. This will not be the case any more if higher har-
monics are included. The disorder will be able to vary
strongly for distances smaller than a, and one expects l
and ( to be different, and a third regime to appear in
between: the so-called random manifold regime.

2. Study of the crossover

2(v') '
[~Hv) = ~

I

—
I4v. )

(3.2o)

(4 &} AKp cg 1 ~2 gy(p & )
mcd/2 (3.21)

in terms of the nonuniversal quantity B(0,v, )

d"q 1
B(0,v, ) = 2T

2m. "cq'+ Z' (3.22)

One can define a length l such that cl = Z. Since x (& l
corresponds to v )) v, where [o](v) is a constant, the so-
lution is similar to a replica symmetric one. l is therefore
the length below which the Larkin regime will be valid.
When l )) a, one finds B(0,v, ) lT, . For instance, in
d = 3, B(0,v, ) = lT2(1 —[a/(2vrl)] arctan(2vrl/a)). Equa-
tion (3.21) can be rewritten

d —2
with v = vpZ & . Using (3.9) and (3.14) the equation
determining Z is

B(v) =

—2c
s(v/vt)

Vg

G
b(v/vt)

(3.27)

As will be obvious later ( is the crossover length between
the random manifold regime and the logarithmic one, and
vg corresponds to the value of v for which the crossover
occurs. One chooses ( and vt such that (3.9) and (3.12)
become, in terms of the dimensionless quantities (3.27),

s(y) = ) p2e i '&(w) (3.28)

We study now the full model (2.13). Since this model
contains all the harmonics of the disorder, it can describe
correctly the short distance regimes. In particular, we
will examine here the crossover &om the random mani-
fold regime to the logarithmic one.

In order to rewrite the equations in term of dimension-
less quantities, we introduce the rescaling

TK& J «& d"q 1.
(2m) & cq2+Z

m (2m)" (cq'+ Z)2
=0)

(3.29)

(3.23)

which is equivalent to A„~i;,„(o.) = 0. Assuming l )) a
one finds

where y, = v, /vt and the integration over inomentum
in (3.12) has been performed. We have introduced the
dimensionless variable p such that K = 2vrp/a. When
using the definition (3.28) one gets

with

—Ko lT /(4 —d) (

g = (m" /aZ, 'c,)'«'-")

(3.24)

(3.25)

1
r' ma4c' ) 4-'

q16vr42 cq )
2m 2 (2Tcda2 l (a)

(3.3o)

and

2Kp Tcg
(4 —d) cl"—2 (3.26)

Note that, although the breakpoint v ~ 0 when T ~
0, the length l which is associated with the transition
between the two regimes remains finite.

For the single cosine model, the characteristic length
l below which the replica symmetric part of the solution
([cr](u) = Z) determines the physics, is equal to (, the
length for which the relative displacements are of order
a. For this model one has a direct crossover between
the Larkin regime and the logarithmic growth of the dis-

h(z) = ) (p ) e II(z) = ) p e

(3.31)

It is possible to keep diferent L~, for instance, A~
exp( —K Q), to describe the effect of the finite correla-
tion length of the random potential, by just modifying

Thus vt is always very small compared to 1. In (3.30), for
simplicity, we have assumed that all L~ have the same
value 4 = A~, .

The equations (3.28) and (3.29) can be solved in a
parametric form. We introduce the variable z = b(y)
and define
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the functions H and 6 = —H' to [s](y) — y2/sRM (3.43)

Ko
(3.32) where the Buctuation energy exponent of the random

manifold regime is 8 = (2d —2m + dm) /(4 + m) and
the amplitude

s(y) = H(z), (3.33)

Using the variable z and taking the derivative of (3.29),
Eqs. (3.28) and (3.29) become r ~-/2 m(m+ 2)

-- -+-
0 4 4+ m)

"(w)
[s](y) ( ~)/

Taking the derivative of (3.33) one gets

s(y) = H(z),

[sl(~) ' = h(z).

(3.34)

(3.35)

(s.36)

(s.44)

Equations (2.14) and (3.18) once rescaled using (3.30)
give

(3.45)

[sl(&) ' = h(z)

y = — h'(z)h(z) 4-~,
4 —d

(3.37)

(3.38)

»r
Finally, using y = ", '")) ——&' /&' we obtain the solution
in a parametric forxn:

b(x) = ~~RM @~M //2

2 sin(srORM/2) cd

[1 —cos(qx)]~ q2+SRM (s.46)

with z, = b(y ) ( z ( oo.
Let us examine first the various asymptotic behaviors

of the solution (3.37). As will be obvious later, large z
correspond to large scales and small z to small scales. At
large z only the smallest p contributes in the sum (3.31)
for h(z), giving

f

�~9
p g 1+@

vr/a

sinvr a

Using the asymptotic expression

with the useful intermediate formula

(s.47)

h(z) =2me '

h( )
—4z/33'

for a square lattice

for a triangular lattice.

(s.39)

with

[1 —cos(qx)] = Ig, x2D

2' q
(s.48)

In that case the high harmo11ics are irrelevant and (3.37)
and (3.38) give back formula (3.15), for the single co-
sine model. One recovers the quasiordered large distance
logarithmic regime.

We now study the behavior at small z. In that case all
harmonics must be kept and it is convenient to use the
following duality transformation of formula (3.31):

one gets

~1—d//2

2"+'"I'(d/2 + v)I'(1+ v) sin(ver)
'

b(*) -
I

~~RM

cg 2 sin(7r~RM/2) ' )

(s.49)

I(z)=) e *= —) (
—

) e

y R
(3.40)

where the vectors p have been defined above. 0 is the
volume of the unit cell in the space of the vector p (0 =
2/~3 for a triangular lattice and 1 for a square lattice).
The vectors B are the reciprocal vectors of the p which
themselves are normalized in units of 2a/a. The B thus
correspond to the original lattice with a spacing unity.
For small z, only B = 0 contributes and

with 2v = 2+0RM —d. Thus the exponent entering in the
relative displacexnent growths is v = 4 ~ with v = 1/6
for m = 2. This corresponds to the random manifold
regime. ' In this regime each vortex is held by the
elastic forces of the other vortices and experiences an
independent random potential. The mean squared dis-
placement grows more slowly than in the Larkin regime
(the exponent is 1/3, compared to 1 for the Larkin regime
in d = 3). In d = 3 and m = 2 one gets ())RM = 4/3 and
for a triangular lattice in d = 3,

(3.41) 1

6 SO' (s.51)

Therefore

which gives

~-/2 m(m + 2) 1
n 4 z&-+4)/" (s.42)

the amplitude in (3.50) is 2.3817.
As for the single cosine model of Sec IIIC 1, the solu-

tion (3.43) is valid up to a breakpoint v above which the
self-energy [o.](v) is constant. This corresponds to scales
such that B(x) is smaller than lT2, and Q. One then re-
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)~ K d —rK B(pe )
4

2 j c
mc"»

K
(3.52)

covers the replica symmetric propagator G(q) 1/q for
q2 )& [cr](v ), and Larkin's model behavior. To compute
the crossover and to determine the breakpoint v = y vg,
we proceed similarly to Sec. III C 1. The equation deter-
mining Z is now

8. Croaaoeer in d = 3

In d = 3, it is possible to solve the equations describ-
ing the crossover analytically, and thus to obtain the full
crossover function between the random manifold and the
quasiordered regime. We will examine d = 3 and I, = 2
for the model (2.13). Such a case is physically relevant
for the case of vortex lattices. The crossover lengths are
given by (3.30):

1

l = C,( i— (3.53)

where

where B(0,v ) is given in (3.22). Note that keep-
ing the correlation length of the disorder using L~
Aexp( —1/2K (p ) amounts to changing B(0,v, ) into
B(0,v ) + (p and thus t~ into lT, + (p . We will thus
take L~ ——A, keeping in mind this change.

Solving (3.52) and using the small z expansion of h(z)
one gets for the length scale I such that Z = cl (as-
suming 1 )) a and lz (( a)

a4c'

4

ng = Tb, /—(a e ) - tT/(a().
2

Using (3.45) one has

1 dsk
b(x) = — [1 —cos(kx)]

cs (27r)s

Isl(y)
y' k'(k' + [s](y))

(3.58)

(3.59)

(2 2)1/(2u) ) 1/(4 —d)
40

/2m(m+ 2) )
(3.54)

Performing the angular integration over momentum in
(3.59) we find

The breakpoint v, can obtained using (3.37) with the
value z = z, = 2vr21&2/a2. This gives using (3.30)

~RM
(lT &

y. -
(

—
I

( ~) (3.55)

which leads to

( a/( ) a
( (lT /a)'/" y t

(3.56)

1

&~)
(3.57)

and corresponds therefore to extremely weak disorder
and intermediate temperatures. The absence of a Larkin
regime means that the disorder-induced relative displace-
ment of two neighbors in the lattice is already larger than
max(l2. , (p).

The characteristic length l separates the Larkin regime
&om the random manifold regime, and is in that case
much smaller than (. Lowering the temperature reduces
the range over which the Larkin regime occurs. This is
because the thermal wandering responsible for smooth-
ing the random potential on a scale lT decreases. The
relative displacements of two vortices separated by l is of
order max(lz, (p), giving B(l) max(tl, (p) . As T ~ 0,
l becomes identical to the Larkin-Ovchinikov length B .
Using the expression of B(z) ( x " in the random rnan-

ifold regime and the additional relation B(() a2 one
recovers the expression (3.53) for l When v, .= 1 the
Larkin regime disappears. This occurs when l a. The
criterion l )) a for which the Larkin regime exists is
equivalent to

dk 1 — sin(kixi)
27r cs p ( k x )

[s](y)
p y k +[s](y)' (3.60)

b(*) = —, I [ 1"(y)
-dy(=

4~c

e
—I*I(~1"(w) ) (3.61)

Using the parametric solution (3.37) and (3.38) for [s](y)
we obtain the Anal expression

b(x) = dt, f (xh(t)),
6"(t) b, (t) (3.62)

(3.63)

Expression (3.62) gives the full relative displacement cor-
relation function as a function of distance. To recover the
asymptotic expression of Sec. III C 1, for large distance x,
one notices that in (3.62) h(t) Ae as shown in (3.39)
for large t. Thus the large x behavior will be controlled
by small t. One obtains the asymptotic expression

OO

b(x) = — f(oo) [in(Ax) + 1] + dzln(l/z) f'(z)
0! 0

(3.64)

where we have extended the integral over y to in6nity,
assuming vg (( v or equivalently lT && a, in which case
there is a wide random manifold regime. Performing the
remaining integration over k one gets
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where we have used [6/6']0 —— 1—/n. Using (3.62), one
finds

b(x) = —[in(Ax) + p], (3.65)

where a = [Koa/(2vr)] and p 0.57721 is the Euler
constant. This implies that the translational order cor-
relation function

As is obvious from (3.70), one has always ((V'u)~) (( 1,
provided that l )) a or, equivalently, using (3.24) for
the single cosine model, provided that one is far &om
the melting temperature lz && a and that the disorder is
weak ( )) a. In that case one can indeed use an elastic
theory in the absence of dislocation, even in the presence
of disorder, and our solution is valid in such a regime.

) (
iK au{a) —iRo u{&)) (3.66) E. Comparison with BMY

behaves for large x as

(3.67)

One recovers the power-law behavior of Sec. IIIC1 as
well as the amplitude. The intermediate distance be-
havior will be examined in more detail for more realistic
elastic Hamiltonians in connection with vortex lattices in
Sec. IV.

The previous application of the variational method by
BMY (Refs. 24 and 23) led to the erroneous conclusion
that the Quctuations are enhanced at large scale. They
find for d = 3 B(x) x ~ instead of the logarithmic be-
havior found here. Although they want to describe the
same physical situation as the one studied here, they in
fact consider a model which turns out to be fundamen-
tally different, in which each vortex experiences a differ-
ent disorder. In their model the random potential is also
dependent on the line index i such that

D. Self-consistence of the physical assumptions V(B,r, z) V(R~, r', z')

Finally, for our solution to be valid, one has to check
self-consistently that even in the presence of disorder
the basic assumption that elastic theory was applica-
ble remains valid. One has therefore to check that
='((7 )') «1

For simplicity we will make the analysis for the single
cosine model (for which l () but similar results can be
derived for the full Hamiltonian. Using the variational
solution of Sec. IIIC 1, one obtains

—((&~)') =1 2T d"q " dv Z(v/v, )'~s

c (2m) 0 v cq + Z(v/v, ) ie

(1 ) Z
+l ——1 +1

(vc j cq~+~ (3.68)

Using (3.6) one gets, for the case I )) a,

2

V'u ~ Z +
m cv, 4 —d

~
a )

(3.69)

where the last contribution is due to thermal Quctuations
only. Replacing v, by (3.26) one finds

8 sin[sr(d —2)/2] a
~(d —2) ~ 2vrl

+ a ) d

When d ~ 2 one cannot neglect Z in the denominator of
(3.68), and the expression (3.70) becomes

= ~S( —")a( —~') ~Z, —~, ~-". (3.71)

This amounts to introducing an extra disorder in the orig-
inal model (2.4) with correlations decaying as 1/~B;—
B~~". Then BMY retain only the long wavelength part
of this disorder, which indeed for a fixed A ) 0 dominates
the contribution of higher harmonics. They then look at
the limit of the exponents when A —+ 0. The result they
obtain with this procedure is incorrect (although their
derivation is technically sound) and comes from the fol-
lowing artifact: by assuming that different lines experi-
ence different random potentials, they make it possible
to optimize the pinning energy by a global translation of
the whole lattice. In that case the pinning energy will
obviously be dependent on u, even for a uniform u. On
the other hand, for genuine disorder, which is only de-
pendent on the space position of the lines, it is obvious
that a translation by one of the vectors of the lattice can-
not change the energy, and therefore the q 0 part of
H~;„cannot depend on u but only on Ou. By regularizing
the integrals with a disorder dependent on the line index
they introduce an extra and nonphysical disorder which
is relevant and changes the long range behavior of the
correlation function compared to the physical case. In-
deed, there is a crossover length (g associated with this
disorder above which the long distance behavior is the
one given by BMY. Below this distance the vortices all
experience the same random potential. To recover the
physical model one has to take A ~ 0 and in that case
+moo.

In more mathematical terms, the variational method
gives three types of contributions for the self-energy as
shown in Appendix D:

(3.70) Kppo.(q, v) - c,q + cue ~ ") + AB(0, v) ' " . (3.72)



52 ELASTIC THEORY OF FLUX LATTICES IN THE PRESENCE. . . 1253

The first term is the long wavelength contribution of the
genuine disorder which is irrelevant. The second one is
the higher harmonic contribution which is responsible for
the logarithmic growth at large distances, and the third
term is the long wavelength contribution of this extra
disorder giving a B(x) x~) 2 for x ) (&. Only the third
term was kept by BMY, artificially taking the limit A —+ 0
in the exponent only but not in the amplitude of such a
term. Note that if one takes the limit A -+ 0 (which
corresponds to the physical situation) before taking the
limit x —+ oo one recovers that the q 0 part of the
disorder does not play any role, and the amplitude they
obtain vanishes.

A simple Flory argument can be made to estimate the
efFect of the long wavelength part of the disorder on the
displacements. This confirms that it is irrelevant above
d = 2 (see also Sec. IIC). Let u be the typical relative
displacement over a length scale L. The elastic energy
cost is u I" while the typical energy gain due to the
disorder is

(3.73)

which comes &om the change of density of the vortices.
Since the vortices in the center are unafFected the gain of
energy can come only &om boundary terms. Balancing
the two terms one finds u I ~" &~ which is obviously
irrelevant above two dimensions.

In fact one can simplify the the saddle point equations
of Refs. 24 and 23 by noting that the x dependence of
B(x,u) in these equations is unimportant, up to higher-
order terms in V'u. Such a calculation is performed in
Appendix D. One then recovers the local model (2.13)
which is simple and physically transparent enough to al-
low for the exact solution of Sec. III C.

IV. FLUX LATTICES

A. Model

(4.1) is identical to (2.1) with 4 p(q) = G ~'T(q)P+& +
G ' (q) P p where

(q) = c44q + c66qJ

G~ ' (q) = c44q~ + cl1qJ

(4.2)

P p(q) = h p —q qp/q
T

P.'p(q) = q-qplq~

(4 3)

are the transverse and longitudinal propagators. q~ de-
notes the in-plane vector, whereas q is the out-of-plane
component. Equation (4.1) corresponds to a local elas-
tic theory, but nonlocal elasticity can also be considered
at the expense of introducing q-dependent coeKcients c.
This point will be considered in greater detail below. For
the moment we restrict ourselves to dispersionless elastic
constants.

Weak pointlike disorder such as oxygen vacancies, or
defects introduced artificially in a controlled way, e.g. , by
electron irradiation, can be modeled by a Gaussian ran-
dom potential of correlation length of order (p. Here the
disorder will be taken as completely uncorrelated &om
plane to plane, A(x —x') = A(r —r')b(z —z'). Such a
description will be valid as long as each pinning center
is weak enough so that the pinning length l [also called
R, in formula (51) of the Larkin-Ovchinikov paper22] is
much larger than the average distance between impuri-
ties.

The disorder term in (4.1) is transformed into a form
similar to (2.13). We can now use the methods of Sec. III
with the realistic elastic Hamiltonian (4.1) to get the
physical properties of a vortex lattice. Most of the the-
oretical calculations are confined to Sec. IVB, whereas
a simple physical interpretation of the results is given in
Sec. IV C. The experimental consequences are d.iscussed
in detail in Sec. IV D.

H = — d rdz[(cqq —c66)(8~u~) + c66(0~up)
2

(8, )*)+jdzzdzV(z, z)p(z, z), (4 1)

where n, P denote in-plane coordinates. The Hamiltonian

The theory developed in Sec. III, when specialized to
m = 2 and d = 3, can be applied to describe the efFects
of weak disorder on the Abrikosov phase of type II su-
perconductors. High-T superconductors can be modeled
by stacks of coupled planes. The system is therefore de-
scribed by layers of two-dimensional triangular lattices
of vortices. The displacements u are two-dimensional
vectors, hence m = 2 (the vortex can only move within
the plane). We denote by R; the equilibrium position
of the vortex labeled by an integer i in the x-y plane,
and by u(R, , z) their in-plane displacements. z denotes
the coordinate perpendicular to the planes and along the
magnetic field. The total energy is

B. Theoretical predictions

Hp ——— ~G p ~(q)u (q)up( —q) (4.4)

G-p, -s(q) = GL(q)P p+ G.a(q)P p. (4.5)

The saddle point equation (3.9) for the self-energy now
becomes

0. (v) = ) K K e
T

(4.6)

The correlation function B p is defined by (3.3) with the
replacement of 0 by 0 p.

One can then perform a variational ansatz identical to
(3.1) but for the introduction of the longitudinal G+p and

transverse part G &,
T
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1 ( 1 1 ~ "' o'(v)dv
B(v) = B(v,) + Tcd, ] + ]

[ ],],( )
.

44

(4.7)

The solution of (4.6) can trivially be obtained &om the
isotropic solution with the replacements

C M C44, (4 8)

i (c„c..&

Ccg + Cg = Ccg
— +
2

I C66 Cll j
One can now compute the correlation functions

Since B~6(x = 0, v) is a purely local quantity it is
isotropic and B&g(x = 0, v) = h&6B(x = 0, v). This im-
plies that 0' p = (r(v)b' p, i.e., an isotropic self-energy.
Thus B(v) = 2[B (v) + BT(v)], where by definition
B ' (v) satisfy Eq. (3.12) with respect to GL T. In-
tegration over q leads to

where the functions F are given for z = 0 by

(4.i4)

Il (r) =

(4.15)

Performing the q~, q integrations, one gets

P T,L WfT, L( )9 ) (4.16)

where

1 dP~(c) = q, —,[c](q)f d'qcdq. ccs*(q)
27r cs () g

x (1 —cos[q~r cos((I))])
1 1

q~~ + q2 q~~ + q2 + [6](71)
'

1 dg
1

2 2

(27r) 6cqs p y2
—Ic](q) f ~ qc@*]q —«c (q)]

x (1 —cos [q~ r cos (0)))
1 1

«+q! q~+q!+ [6](~)

B.,(*) = ([ .(*) — .(o)1 [,(*)—,(o)1)
=B P p(r)+B P p(r), (4.9)

fL( ) 2

1

[sl"I*I'

B'(...) = a C44 -L2

Cil

c44 FT
c66

r Z
Cl1

c„
)Z

c66
(4.11)

Those integrals contain the self-energy [o](v) which is
determined itself from Eqs. (4.6) and (4.7). These equa-
tions are rescaled similarly to (3.27) with the replacement
(4.8). This defines two crossover lengths $ and (, for in-
plane and z directions, given by

4 4 1/2 3/2
c66 2a c44 c66
c44

' 7rsb, (1+—"') '

where the longitudinal and transverse propagators have
been defined in (4.3), and similarly to (3.17)

3
B (r, z) = 2T (q~r) [1 —cos(ql r + q, z)]G (q)27r 3

+[1—(q~r) ][1—cos(qzr+ q z)]G (q),
(4.io)

and a similar equation for BT obtained from (4.10) by
permuting I, T. G ' are defined similarly to Eq. (3.18)
with the replacement of cq2 by G l'LT defined in (4.2).
One then rescales q and r to obtain isotropic integrals
over momenta. Equation (4.10) then takes the form

+I + & -w"'i*i
[61"I*I'j e

fT (x) = fI(x) —fL(x),
I

fI(*) = [']' ' ——+ —' "
(4.i7)

BI,T( )
a 2cii TLb '

27( Cii + C66 ((j
( c„r'~

+ 6
Cll + C66

E
Cll (j

(4.18)

where gL T have an expression similar to (3.62):

h,"~t~h~t~

0
(4.19)

with fL T given by

1 1 (1 1)f'(x) = ———,+ —+ —, 6-*,
2 x2 (x x )

f (x) = f(*) —f'(x).

(4.20)

Expressing again the [6] in terms of the functions h, one
gets

where, as we recall, A is the
ppV(q)V( —q) = A.

Rescaling by the lengths ( and (

(4.12)
disorder strength

one gets

Equations (4.18)—(4.20) give the complete expression of
the displacement correlation function for equal z as a
function of the distance in the transverse plane.

In the large distance regime one obtains an expression
similar to (3.64), with the f replaced by f ' This gives.

B (r, z) = a c44 —
L r2

F
2

lc44 -
T J r z

+
c66

C66 Z

Cll (z j
(4.i3)

&'(*) =

b (x) =

1
ln(Ax) + p+—

1
ln(Ax) + p ——

2

(4.2i)
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where n = [Koa/(2ir)j, p 0.57721 is the Euler con-
stant, and A = 32/3 for the triangular lattice. This leads
for the B ' functions at large distance to

C —CBL' (r) = In(Ar/() +p+
0 2 C11C66

+ („,)
lnI

2(cll + C66) (Cll )
(4.22)

X

QCV 4

where e = —1 and e = +1. Note that B = (B +
B~)/2.

It is interesting to note that complete isotropy in the
displacement correlation functions is recovered at large
scales. The translational correlation function is

c661~(c66/c11 )
Q(c11+c66)

Ar
[(g &)2 1

j (~11—&B6
) (4.23)

2
BL,T( ) P,L

ir' g()
(4.24)

In the limit of weak disorder ( && a we find that there
should be a well-defined crossover function, i.e., all curves
should scale when plotted in units of x/(. The relative
displacement correlation functions B ', as predicted by
the variational method, are plotted in Fig. 1 and Fig. 2 for

10

For the vortex lattice (2.4), shear deformations dom-
inate (css &( cii) in most of the phase diagram. The
expression for the function BL (r) which describes the
crossover between the raiidom manifold (intermediate
distance) regime and the large distance regime then sim-
plifies:

0 2
In (x/()

KFIG. 2. Plot of 2 BI.,T for the triangular Abrikosov lat-
tice, in the limit css (( cii. The longitudinal (solid line)
and transverse (dashed line) relative displacement correlation
functions BL,T are defined in (4.9). Ko is one of the first re-
ciprocal lattice vectors, and ( is the crossover length defined
in (4.12). When x ) ( one sees the logarithmic regime.

the triangular lattice, by numerically integrating (4.19).
The crossover between the random manifold regime and
the asymptotic quasiordered asymptotic regime is appar-
ent, and occurs at a scale of order (. At the length
scale r = ( where the random manifold regime ceases
to be valid, the translational order correlation function
CJi (r) = e ~ s s(") is of order C~, 0.1. There-
fore the crossover should be experimentally observable.
In Fig. 3, we have shown the ratio R of the transverse to
longitudinal displacements. As was shown by BMY,
its value is 2v + 1 in the random manifold regime (the
variational method gives R = 4/3). At large scale, we
find that this ratio decreases to R = 1, and in that sense
isotropy is restored. However, if one looks at the correla-

1.35

X

1.30

1.25

10 i CD~ 1.20
i CD

1.15

10 '10
x/t

10
I.10 '—

'I .05 I I l ill

KoFIG. 1. Plot of 2 BI.,T for the triangular Abrikosov lat-
tice, in the limit css (& cii. The longitudinal (solid line)
and transverse (dashed line) relative displacement correlation
functions BL,T are defined in (4.9). Ko is one of the first re-
ciprocal lattice vectors, and ( is the crossover length defined
in (4.12). When a & ( one sees a power law with 2v = 1/3
characteristic of the random manifold regime.

'1 0 10 'I 0 10 10 10 10

FIG. 3. Plot of the ratio BT /BL for the triangular
Abrikosov lattice, in the limit c66 && cqq, where BI.,T are
defined in (4.9). ( is the crossover length defined in (4.12).
When 2: & ( the ratio takes the random manifold value 2m+ 1.
It decrease slowly to 1 in the asymptotic regime z )) (.
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5)02 s 1'0

FIG. 4. Plot of the ratio of the translational order corre-
lation functions Cl, (r, z = 0)/C'T (r, z = 0) for the triangular
Abrikosov lattice, in the limit c66 &( cqq. CI.,T are de6ned in
(4.25). $ is the crossover length defined in (4.12). The ratio
increases from 1 at short distance x & $ and saturates rapidly
to a universal number in the asymptotic regime x » (. The
variational method predicts this number to be e.

tion functions for translational order, one finds that the
di8'erence between the longitudinal and transverse parts
persists at large scales. Defining the longitudinal and
transverse translational correlation functions by

CL,T ( )
—~~ 8 r (r ) (4.25)

C. Physical discussion: Crossover lengths,
dislocations

One can give a simple physical explanation for the
three regimes found here. Consider two aux lines sep-
arated in the ideal lattice by x. In the presence of dis-
order the mean squared relative displacement is B(x).
There is a length at which the potential experienced
by a line is smooth. This length is the greatest of the
correlation lengths of the random potential (o, or the

C '+(r) correspond to correlation functions with a sepa-
ration r, parallel and perpendicular, respectively, to the
vector Ko. As is seenin Fig. 4, the ratio Bc = C+/C+ in-
creases &om 1 at short distances and saturates at a finite
value at large distances. This value depends on the elas-
tic constants, as seen Rom (4.23). In the limit css « cii,
this number takes a value which the variational method
gives as the universal constant e = 2.7182. . . . The fact
that B~ saturates at large distance is a consequence of
the existence of the quasiorder. Had a random manifold
or a Larkin regime been valid up to large distances, this
ratio would increase indefinitely. On the other hand, if
the system was genuinely ordered Bc would saturate at
a much smaller value than e, a value which would go to 1
when T —+ 0. As is discussed in more detail in Sec. IV D,
this should have observable experimental consequences.

I.indemann length lT = g(u2)T. This defines a sepa-
ration between vortices which we have denoted by l in
this paper such that B(l) max(Q, lT) At zero tem-
perature it equals the length defined by B, the Larkin-
Ovchinikov length (and L, in the z direction), and in
general L' can be thought of as the Larkin-Ovchinikov
length renormalized by temperature. Below this length
the elastic manifold experiences a smooth potential with
well-defined derivatives, thus a local random force can
be defined. Indeed, expanding in u the disorder poten-
tial energy in (2.18) gives a random force terin f u with
f(x) = P~ V(2:)Kexp( —iKz) = VV(R;). In the sum
over harmonics the maximum K is K „=2vr/(o. Thus
this expansion is valid only as long as u « (o. This de-
fines the range of validity of the Larkin regime, i.e., at
T = 0 x & B, and more generally 2: & I (we assume
R, ) a).

For separations larger than B, but such that B(x) «
a each Bux line explores only its immediate vicinity
and experiences different disorder. This is the regime
explored by BMY which is identical to the random man-
ifold. This can be seen, on a more mathematical level,
from our model by summing over all the harmonics, for
instance on the replicated Hamiltonian (2.13). One gets
V(u) P& b(u —ub —R,). For u « a only the
B = 0 term contributes and each line experiences an
independent random potential. This intermediate ran-
dom manifold regime holds up to the length x = ( such
that B(() a at which periodicity becomes important.
There is no gain in energy to shift the lattice by a. In
this regime displacements grow much more slowly and
only the lowest harmonics contribute. This is the qua-
siordered regime.

In order to apply this theory to experimental systems
one has in principle to worry about topological defects,
such as dislocations. Although the in8uence of disloca-
tions is still a controversial question, their inBuence has
been clearly overestimated in the past. Let us mention
some arguments, which we believe are incorrect, put for-
ward to argue that unbound dislocations will proliferate
even at weak disorder. An Imry-Ma type argument is the
following. The core energy cost of a dislocation cannot
be avoided and scales as L" 2. A dislocation loop of size
L creates extra displacernents of order O(1) up to loga-
rithms, in a region of size L". By adjusting the position
of the loop one can hope to gain an energy &om disor-
der I"~ . Thus below d = 4 dislocation will be favorable.
Such an argument is incorrect because it is again based on
the Larkin random force model for which the disorder en-
ergy is linear in the displacement. For the real model the
energy varies as cos(2vru/a) and adding a dislocation dis-
placement will not necessarily gain enough disorder en-
ergy. In fact if the Larkin or the random manifold regime
were true up to infinite scales it would indeed be favor-
able to create dislocations. The energy Quctuation due to
disorder is L~ ~ L + ~ )& L . If ~ ) 0 dislocations
will occur because it will always be energetically favor-
able to replace an elastic distortion by a dislocation.
However, in the case of a lattice or if quasi-long-range
order is preserved in the system as is the case here, both
energies scale the same way, since v = 0, maybe up to
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logarithms. The prefactor of the disorder term can then
be made arbitrarily small at weak disorder while the core
energy of the dislocation is a given finite number. Thus
if disorder is weak enough it is likely that dislocations
will not appear. Even if they do the scale will be huge,
and the effects associated with disorder that we discuss in
this paper should be observable over a wide range of dis-
tances. If the disorder is Gaussian one could also argue
that rare fluctuations will eventually lead to dislocations
at exponentially large scale. Realistic disorder, however,
is bounded and thus such an effect should be absent.

D. Experimental consequences

Let us now discuss in more detail the experimental
consequences of our findings. Two main types of ex-
periments exist at the moment to probe the transla-
tional order of the vortex lattice: magnetic decoration
experiments and neutron-diffraction experiments. One
would expect for these two experiments that the results
of Secs. IV B and IV C would apply. However, direct com-
parison with experiments could be complicated due to the
effects of the nonlocal elasticity and three-dimensional
(3D) anisotropy. These effects can be included, in prin-
ciple, in the variational calculations by simply changing
the elastic Hamiltonian, at the price of extremely tedious
calculations. Even if a detailed treatment of such effects
is beyond the scope of this paper, their importance can
be estimated by the following simple arguments.

In the high-T, Abrikosov lattice, the elastic constants
vary by orders of magnitude when the wave vector goes
from 1/(0 to 1/A. A good approximation of the elastic
moduli for H~i (( B && H~2 is

(4.26)

CpB
css(q) =

(8~A)

where A is the I.ondon penetration depth in the ab plane,
A, = I A along the c axis with I' = gM, /M, and c44(q, )
is the single flux line contribution to the tilt modulus.
One must have also B ( Hg„=I'2CO/d to avoid fur-
ther effects of decoupling between planes, where d is the
distance between CuO planes. Since in this regime c66 is
dispersionless and much smaller than cii, most of the ef-
fects of nonlocal elasticity come from the q~ momentum
dependence of c44. In the region of Fourier space where
c44 varies strongly, i.e., for 1 (( A, q~ (( A,a, a good
approximation to c44 is

cii(q) =

B2
4m A2q~2

(4.27)

This new momentum dependence of c44 will lead to very
difFerent lattice displacements. Using (3.14) with the
proper c44(q~) (4.27), one finds now [o'](v) v/hi (v).
This leads, using (3.17), to a very slow growth of the rel-

ative displacements, (([u(x) —u(0)]))2 oc ln(x) or con-
stant, for A ( x ( A, . If the translational correlation
length 1 ) A, the random manifold regime will survive,
whereas if ( ( A, one would expect the nonlocal elasticity
effects to dominate the random manifold regime. Note,
however, that the asymptotic large distance regime for
( ) A will be completely unchanged.

In decoration experiments, however, one is usually in
a regime of very small fields. In particular B & H i
(bulk), giving a ) A. For example, in the experiments
of Grier et al. performed on 10 pm thick samples of
Bi-Sr-Ca-Cu-O, one has A = 0.3 pm and A, = 60A. The
highest field pictures (69 G) have very large regions &ee of
dislocations, for which one can hope to apply the theory
of the present paper. For such fields a 2A, and thus
A ( a & A . It is likely, since the interactions between
vortices are less important than in the regime B ) H q,
that single vortex contributions will dominate. Thus the
q~ dependence of c44 will be weaker, and one can hope
nonlocal elasticity to be unimportant.

Recently, we have carefully reanalyzed the data of
Ref. 29, performing a Delaunay triangulation of the larger
field images which do not contain dislocations. This
allows one to compute B(r) directly. Preliminary re-
sults indicate a very good fit to a power-law behavior
B(r) r " from r = a up to r = 30a with an exponent
2v = 0.4 + 0.05. Thus, assuming dispersionless elastic
constants, this is a strong indication that one is seeing
the random manifold regime. The exact exponent 2v for
the random manifold regime is unknown, but the (Flory)
value 2v = 0.33 predicted by the variational method is
expected4 to be a (relatively good) lower bound. An-
other prediction ' for the exponent using refined scal-
ing arguments, which might turn out to be more accu-
rate, is 2v = 4(4 —d)/(8 + m), i.e. , 2v = 0.40 for d = 3
and m = 2. The data exclude a Larkin-type behavior
B(x) x, and in fact there seems to be no measurable
Larkin regime for small r, indicating that l a. One does
clearly observe a saturation in B(r) around r = 30a—40a
at a value of B(r) consistent with the predicted satura-
tion to the slower logarithmic growth. However, larger
pictures would be necessary to make conclusions unam-
biguously on the crossover itself, as well as the large dis-
tance regime. The main obstacle is of a statistical nature,
i.e., there are not enough pairs of points uncorrelated sta-
tistically to perform the necessary translational average.
Larger pictures would allow such an average to be taken.

Clearly, both the understanding of the short distance
regime, of the importance or not of nonlocal elasticity,
and of the existence of the quasiordered regime deserve
further studies. Other difficulties in interpreting data
IIrom decoration experiments can come &om the fact
that surface interactions may be different &om the bulk
ones. 3 It has been argued recently, however, that the
effects of the surface interactions may be visible only
at scales much larger than the size of the decoration
pictures. 42

Another good probe of the correlations in the vor-
tex lattice, which is free of potential surface problems,
is neutron-scat tering experiments. Detailed neutron-
diffraction studies are now available for different type
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II superconductors such as NbSez (see Ref. 30) as well
as Bi-Sr-Ca-Cu-O. Neutron experiments measure (up to
a form factor taking into account the Beld distribution
created by a single vortex line) the Fourier transform at
k —KQ + q of the density correlation around a reciprocal
lattice vector KQ. The structure factor which is measured
is given by

S( i ds iqz —
~~ z KpB p(z)

where B is given in (4.9) and (4.18)—(4.20). The full cal-
culation of S(q) requires a numerical integration of (4.28),
but the main features can be given analytically. Let us
recall that ( is the translational correlation length due to
disorder defined in (4.12) and that trivial anisotropy has
been taken into account by proper rescalings of z versus
r directions.

At sxnall q, q ( 1/(, the integral (4.28) is dominated by
the large distance regime where B(x) = Asln(x), where
A3 —I according to the variational method. The struc-
ture factor is therefore

V. FUNCTIONAL B.KNOB.MALIZATION GB.OUP

Another method widely used to study disordered prob-
lems is the functional renormalization group (FRG). It
turns out that its application to the present problem is
simple due to the perjodicity in (2.13). It provided a
good complement to the variational method, none of the
methods being rigorous. The functional RG can only give
results in an e = 4 —d expansion, which does not have
presently the status of rigor of the standard c expansions
of the usual critical phenomena for pure systems. In par-
ticular, the eKects of multiple minima will afFect higher
orders in perturbation theory and could very well result
in replica symmetry breaking instability in the FRG Bow,
as found recently in Ref. 43 (see also Sec. VI). On the
other hand, the functional RG should include Huctua-
tions more accurately than the variational method, pro-
vided it does not miss another part of the physics. Com-
parison of the two methods near four dimensions should
allow one to test their accuracy.

S(q) - (1/q)' "' (4.29) A. One-component mode}

and thus diverges at small q, a consequence of the per-
sistence of quasi-long-range order in the system. True
Bragg peaks therefore exist. This is in sharp contrast
with previous predictions assuming simple or stretched-
exponential decay of the translational correlation func-
tion up to large distance. At a wave vector of order
q 1/(, the behavior of S(q) will cross over to a slower
decay, controlled by the random manifold regime. In this
regime

S(q) - (1/q)'+". (4.30)

A clear signature that one is indeed in the regime (4.29)
described here should show in the neutron experiments
by the fact that S(q) has no true half-width. The max-
imuxn value of S(q) will be limited either by the exper-
imental resolution or by the distance between unpaired
dislocations (D. Varying these parameters should leave
the rest of the curve nearly unchanged (this is valid as
long as (xx )) (). The distance between dislocations could
be controlled by annealing the lattice, using either a driv-
ing force or a field-cooling procedure similarly to what is
done in Ref. 30.

Another interesting prediction can be made for the in-
plane, q~-dependent ratio S(q~ ~~ Ko)/S(q~ J Ko). Af-
ter integration over q the structure factor becomes, at
small q~,

For simplicity we confine our study to a model with
isotropic elasticity as in (2.13). Let us first consider u
to be a scalar field (m = 1) and set c = 1. The full
replicated Hamiltonian is

H/T = f d'T['7u(x)]*

, ):f ~'*&(~-(*)—»(*))
ab

= (e —4()A+ (zb, '+ —(3,")' —0 "A"(0),
dl 2
QT = (2 —d)T.

(5.2)

A factor 1/Sg = 2" x7r+21'[d/2] has been absorbed into
A in (5.2). The texnperature is an irrelevant variable and
Hows to zero. The correlation function

For simplicity we take Ko ——2vr, so that the function A(z)
is periodic of period l. In the original Hamiltonian A(z)
is a sum of cosines given in (2.13). One then performs the
standard rescaling ~ ~ to ~ and ~ —+ e~ ~. The idea of
this renormalization is to perform an expansion around a
classical solution at zero temperature. One should keep
the whole function 4 in the renormalization procedure.
The RG equations to order e = 4 —d have been derived
by Fisher for the random manifold problexn (see also
Refs. 41 and 45

I'(q) = T&(q) = (u (q)u (-q))

Thus the ratio goes for small q~ to the value
satisfies the RG Bow equation

I'(q, T, b.) = e "+ 'I (qe' Te~ ' A(l)). (5 4)

S(q ~K„z=o)
S(q~ ~~ Ko, z = 0)

(4.32) The periodicity of the function. L implies that the
roughening exponent is g = 0 for the large distance be-
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havior. This allows us to obtain the only periodic fixed
point function A*(z) in the interval [0, 1]:

A"(0)
4 (5.12)

&*(z) = —
I

——z (1 —z)
r72 q36

(5.5)

Values for other z are obtained by periodicity. The fixed
point is stable except for a constant shift, which cor-
responds to a change in the &ee energy. The linearized
spectrum is discrete and the eigenvectors can be obtained
using hypergeometric functions. The fixed point function
is nonanalytic at the origin. It has a singular part which
behaves as z lzl for small z and leads to 4*~4&(0) = oo.
As discussed below this is a general feature of fixed points
for this type of disordered systems. For a periodic fixed
point, i.e., g = 0, one can set e q = 1/a in (5.4). This
allows one to obtain perturbatively, provided l* )) 1,

f(q, T, ~) =
l

—
l

f
l , x =0—,~ l.fl) - (1

Eqr i )
(5.6)

r(qr~) =
l

—'
l

(5.7)

One can evaluate the correlation in (5.6), at a scale of
the order of the cutofF, perturbatively in L. One then
gets

which corresponds to the Larkin random force regime.
This, however, holds only at short scales. This fixed
point is unstable, and a nonanalyticity at z = 0 de-
velops, corresponding to an algebraic decay of the L~
in (2.13). 6 eventually Bows towards the long distance
regime described by the fixed point (5.5). There might
be an intermediate random manifold regime.

Another renormalization method that has been used
was a real space RG by Villain and Fernandez. 4 For
2 & d ( 4 this method, which is approximate, also pre-
dicts a logarithmic growth of the correlations. It does
not allow one, however, to compute the universal prefac-
tor Ad or the crossover function. The agreement between
these methods, none being rigorous, lends credibility to
the additional results in d = 3 obtained using the varia-
tional method.

B. General case

Let us consider now the more general case of an m-
component vector u, and isotropic elasticity (2.2). The
equation giving the fixed point function becomes instead
of (5.2)

Using (5.5), and remembering the factor 1/S~ in b, , one
obtains

A[u]+ —(0 BpA[u])' —0 Bpb, [u = 0]0 Bpb. [u] = 0,

(5.13)
a4 —d~

'(') =
36S.,'

This gives

([u(*) —u(O)]')
18

whereas the variational method gives

([u(*) —u(o)]') = 2, »l*l.

(5.8)

(5 9)

(5.10)

while the displacement correlation function becomes,
similarly to (5.7),

1
( -(q) p(-q)) =(~-~p&*[ =0])—,„, (5.14)

where e has been included in L. For the case m = 1,
(5.13) reduces to (5.2). For the case m = 2, the analysis
depends on the symmetry of the lattice. For a square
lattice a separable function

( ) = (e —2()b,"(0).
dl

(5.11)

Setting ( = e/2 allows one to get a fixed point b, (z) =
Azz —2A2. Using (5.4) one obtains

Equation (5.9) gives a power-law decay for the transla-
tional correlation functions with an exponent Ad RG ——

e(2vr) /36 = 1.10e against Ag RG = e for the variational
method. The agreement of the two methods on the ex-
ponent A~ is within 10%, which is very satisfactory. The
fact that Ad, & Ad RG is not surprising since the varia-
tional method underestimates a priori the effect of Huctu-
ations. One can remark that omitting the term (4")2/2
in (5.2) leads to a fixed point b.*(z) = cos(27rz)/(2vr)2,
which gives exactly the same exponent as the variational
method.

At intermediate distance it is enough to focus on the
small u behavior of the function L, and thus to forget in
effect the periodicity. At short distances the function 4
is analytic. In that case

A[u, uy] = 4'[u ]+b, '[u„], (5.15)

where 4' is a solution of (5.2), satisfies (5.13) and gives
(3.19) with the same exponent Ag RG as for the case
m = 1. A rectangular lattice would give the same expo-
nent. The triangular lattice is more difficult to treat and
no siinple solution of (5.13) can be found. We have per-
formed a numerical solution of (5.13). There is a nontriv-
ial solution which has the full symmetry of the triangular
lattice. In that case one would expect in general a differ-
ent exponent Ad than for the square lattice, unless there
is a hidden symmetry reason for which the exponent does
not depend on the lattice symmetry. It is difficult to get
a high precision for the exponent because of the nonan-
alytic nature of the solution. The numerical value found
for Ag was within 5% of the one for the square lattice, but
we were unable to decide within our accuracy whether the
two exponents were equal or different. The exponent is
again very close to the one predicted by the variational
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method, which is independent of the lattice symmetry.
Once again, neglecting the term 2 (8 O~A[u]) in (5.13),
one recovers exactly the result of the variational method.

VI. d=2

In d = 2, thermal fl.uctuations are expected to play
a more important role. Already in the case of the pure
system, they change the true long range order of the lat-
tice into a power-law decay of the correlation functions,
with an exponent controlled by the temperature. One
can therefore expect a stronger competition between dis-
order and temperature than in higher dimensions. In
addition, standard renormalization group techniques are
available in d = 2 and can be compared with the varia-
tional method. In Sec. VIA we examine the d = 2 prob-
lem using both the variational method and the renormal-
ization group. We will focus 1nainly on d = 1+ 1 (Hux
lines in a plane). The results are mostly relevant there
since the starting model (2.13) becomes exact, due to
the fact that dislocations cannot exist in d = 1+ 1. The
physical consequences for various experimental systems
in both d = 1 + 1 and d = 2 + 0 will be discussed in
Sec. VIB, together with the e6'ects of dislocations.

where the cutoff A c(21r/a)2. Assuming the cutoff to
be very large (i.e., ( &( a) in (6.1) one gets

TK'
Vc-

4ac
( ~K4 ) 1/(1 T/T—, )

Z1 ——A
g41rmA y

(6.2)

As we will show below Z» defines a characteristic
length

((T) g /y (
2 2/~)1/(2 —TKO/2mc)

(
2 2/~) 1/(2 2T/T —) (6.3)

1
B(*)= —([ ( ) — (o)]')

above which there is a crossover to the asymptotic regime
dominated by the disorder. The above expression for
((T) in d = 2 is valid for ( )) a. At zero temper-
ature it coincides with the length found using simple
Fukuyama-Lee arguments (see Sec. II C) and it is renor-
malized downwards by thermal Huctuations at finite tem-
perature, an efFect specific to two dimensions.

Using (2.14) and the form (C2) for G(q) one obtains
for the relative displacement

A. Theoretical results

In d = 2 the variational method applied to the starting
model (2.13) leads to a solution which belongs to the class
of "one-step" replica symmetry breaking26 4 in some ex-
tended sense, i.e., such that [o.](v) = 0 vanishes for v ( v

and [o](v) ) 0 for v, ( v ( 1. This can be seen readily
by taking the limit d -+ 2+ in (3.15), a lixnit which van-
ishes for e ( vp ——TKp/(41rc). This solution represents
a glass phase. Since vq cannot be larger than 1, the glass
phase exists in d = 2 for T ( T, = 4mc/Kp For T &. T,
the disorder is irrelevant, and the replica symmetric so-
lution is stable, as already discussed in Sec. IIIB. The
detailed behavior below T will again depend on whether
one consid. ers simply a single cosine model, or takes into
account all the harmonics present in (2.13). For simplic-
ity we will focus here on the single cosine model, which
has been simulated numerically and is interesting in it-
self. The main eÃect of the higher harmonics is again
to allow for a random manifold crossover regime at low
enough temperature in the glass phase. It is examined in
detail in Appendix E.

In the case of the single cosine model (3.11) one can
look simply for a constant solution [o.)(v) = Z1 for
v ) v . The details of the calculations can be found
in Appendix C, where the saddle point equations (C9)
for Z» and v are d.erived. These equations are solved in
(C12) to give

= Bp(x) + 2T ——1
~

A:dk
(v, ) (2m) p

[1 —Jp(kx)],ck2+ Z1)
f 1

X

(ck2
(6.4)

where Bp(x) is the value of B in the absence of disorder,

T
Bp(x) = —ln(Ax).

C71
(6.5)

Equation (6.4) is convergent although each term is indi-
vidually divergent, but is easily regularized by multiply-
ing by Jp(ek) with e —+ 0. This leads to

T T —T
B(x) = —ln(Ax) + '

In(x/() + Kp(x/()
C7i C7t

+p + ln(l/2) (6.6)

T
B(x) —ln(x), x«( (6.7)

T
B(x) —ln(x)

where p is the Euler constant. The expression (6.6) gives
the following crossover for B(x):

vc =

( A ) SCoT/(4~c)—
Z1 ——Kp

'
I

+1
i'mr EZ, )

where T = 41rc/Kp. Note that for o, « x (& ( there
is in principle a Larkin regime where one has algebraic
growth of the disorder part of the correlation function
with 2vL, = (4 —d) = 2 plus logarithmic corrections:
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simply

(6.8)
1

G(q) oc —y —.
q2 q4

' (6.12)

A = T/(v, cm) = T, /(cur)
Zi/A

ln(1+ Zi/A)
' (6 9)

However, except at very low temperatures, the thermal
part always exceeds the disorder part and thus disorder
efFects are masked by thermal effects at short distances.

The variational method predicts therefore a simple log-
arithmic growth of the displacements at large distances,
both above T, and below. The effects of disorder are lim-
ited to the &eezing of the prefactor to the value T, for
temperatures below T . Note that T is a universal quan-
tity, independent of the strength of the disorder. Such a
result is valid in the limit where the ultraviolet cutoff A
is very large. The disorder strength enters the crossover
length ( above which the asyxnptotic behavior for T & T,
can be observed. Of course ( ~ oo when T ~ T, as can
be seen &om (6.3).

Note that the effect of the cutoff, which could be im-
portant for a numerical simulation not at small disorder,
led to some temperature dependence of the amplitude of
the logarithm. The amplitude in (6.7) becomes

This usually leads to bj3(x) x, but here one must
take into account renormalization by thermal fluctua-
tions. This is done by integrating the RG equation in
the small distance regixne where we note that (6.10) is
correct as long as Aa2/T2 « 1, which is equivalent to
(a/$) /(lz /a) « 1. One can integrate (6.10) to obtain

(6.13)

Applying the RG flow equation

G(q, T, Eo, b, ) = e 'G(qe', T, Ao (l), A(t) ), (6.14)

where G has been defined in (2.14), immediately leads to

(6.15)

The RG therefore predicts that the Larkin regime is in
fact anomalon8 with an exponent continuously varying
as a function of the temperature,

where one can use Zi from (6.2) or better from Eq. (C13)
for y in Appendix C. One finds an increase of the ampli-
tude A when the temperature decreases.

In d = 1+1, it is also possible to write renormalization
group equations for the disorder. ' To lowest order,
and on a square lattice for simplicity, such RG equations
were derived by Cardy and Ostlund and read

dA ( KoT)~
dt k 2~c )

where we put L = L~, and

(6.10)

d&o ~o'a4
dl T2 (6.11)

Both A and Ao are defined in (2.13). C is a constant4
which is unimportant for our purposes. For T & T the
disorder is irrelevant, in agreement with the variational
method. For T ( T the disorder term becomes relevant
and there is a new nontrivial fixed point, at 6 = (T, T). —
This fixed point, however, has the unusual feature that
the variable Ao Hews to infinity Ao(l) oc /. However,
since this variable does not feed back at any order in per-
turbation theory [only averages of the type (P G P )2
with g C = 0 appear] it has been assumed that this
fixed point was correct.

Using the RG one can again define a short and large
distance regime. At short distances the RG is certainly
correct, and is more accurate than the variational method
since it treats the fluctuations correctly. As was noted in
Sec. III C 1, at short scales x such that ~u(x) —u(0)

~

&& (
(for the single cosine model), it is possible to expand the
cosine to equivalently recover the Larkin random force
model. The correlation function for that model reads

(6.16)

instead of (6.8), for x & ( (in the low Tregime (-is re-
placed by another length). There are also corrections
coming &om the renormalization of Ao. Integrating
(6.11) one gets

K2a4L ~0~2
&o(l) = &o(0) + ' '

~) (e" ' ~. —1) (6.17)
2T2(2 —~~ )

but such corrections are obviously smaller at short dis-
tances.

At large distance b,o(l) » 1, in order to obtain the
correlation functions, one has to assume that the unusual
Cardy-Ostlund (CO) fixed point is indeed correct. If one
does so, correlation functions can be computed using
RG How equation (6.14). Iterating until l' such that
ex q = 1/a allows one to obtain for large I

G(q, T, b, o, 3,) = —G(a, T, b, o(l), b, *) ln(l/q)/q

(6.18)

which leads to B(x) ln (x). In (6.18) it has been as-
sumed that simple perturbation theory could be done
for the correlation functions at scale x = a. The RG ap-
proach would therefore predict a ln (x) growth of the dis-
placements, at variance with the predictions of the varia-
tional method, which gives a simple logarithmic growth.
In fact the RG result is based on the assumption of replica
symmetry. As we have shown recently, 43 a careful analy-
sis of the Cardy-Ostlund fixed point and of the RG flow
shows that it is unstable to replica symmetry breaking
(RSB).When RSB is allowed one obtains a runaway How
of the RG which is consistent with the findings of the



THIERRY GIAMARCHI AND PIERRE LE DOUSSAL

variational method. Two recent numerical calculations
on this model seem to con6rm that the GVM does
describe the correct physics at large distance. None of
them is compatible with a ln (x) growth of the displace-
ments. In Ref. 49, no change in the static correlation
functions was observed in the presence of small disorder,
whereas a transition occurring in the dynamic correlation
functions was observed at T . A careful comparison was
performed with the predictions of the RG calculations,
and the results were found incompatible. These numeri-
cal results are, however, consistent with the prediction of
the variational method. Indeed, for such weak disorder
the length ((T) is very large, especially near T, and sim-
ulations performed on a too small system will show no
deviations as is obvious &om (6.7). However, in Ref. 50
the disorder is much larger, and ((T = 0) is of the order
of the lattice spacing a. This simulation indeed. shows
quite clearly a breeze of the amplitude of the logarithm
below T at the value A = T,/(c7r).

B. Physical realization in 2 + 0 dixnensions:
Magnetic bubbles

Elastic models in two dimensions have been studied
for some time. The Hamiltonian (2.13) describes several
physical disordered systems, such as randomly pinned
Aux arrays in a plane, ' ' the surface of crystals with
quenched bulk or substrate disorder, planar Josephson
junctions, and domain walls in incommensurate solids.
In addition, a very nice realization, investigated in de-
tail recently, is provided by magnetic bubbles. In such
systems one should be able to test the predictions of the
previous section. However, if the elastic objects are not
lines (d = 1+1)but points (d = 2+0) it is now important
a priori to take into account the effects of free disloca-
tions. In two dimensions, dislocations are expected to be
much more important than in three-dimensional systems,
and to have observable consequences on the destruction
of translational and/or orientational order. A very naive
argument in d = 2 is that while the energy of a disloca-
tion pair of separation r increases as Tpln(r/o) in the
absence of disorder (a slowly growing function but still
allowing for a quasisolid phase for T ( Tp), in the pres-
ence of disorder, the energy should saturate to a finite
value E „Tpln((/a) when r ) (. This is because
long range order is supposed to be destroyed beyond this
length, effectively screening the elastic pair interaction.
If it is the case, unpaired dislocations will be thermally
excited at any finite temperature with weight e
Note that the same type of argument in d = 3 excludes
dislocation loops of size r whose energy scales as rln((/a)
and thus cannot proliferate so easily. This was discussed
in Sec. IVC.

As was discussed in Sec. VI A, in the absence of disloca-
tions quasi-long-range order persists in the system even in
the presence of disorder, and the above naive arguments
need to be reexamined. A quantitative theory including
both disorder and dislocations is dificult. One can, how-
ever, get an idea of the effects of dislocations by using the
renormalization equations of Cardy and Ostlund in the

presence of topological defects. These equations were
derived by Cardy and Ostlund for a one-component field
(XY model) with both disorder (random field) and vor-
tices. They correspond to the modification of (6.10) and
(6.11) to include the dislocation fugacity, and an addi-
tional equation for the renormalization of the dislocation
fugacity itself. Generalizing them to a triangular lattice
beyond linear order goes beyond the scope of this paper,
but we do not expect radically new conclusions, rather
a change by a small factor of the parameters (temper-
ature, etc.) (note that extension to n = 2 components
on a square lattice is obvious). There are several reasons
why we believe that the CO equations might overesti-
mate the effect of dislocations. One is that, as we saw
before (Sec. VIA), these RG equations implicitly assume
replica symmetry. They lead to a faster decay of the
translational correlation function in the absence of dislo-
cations, of the type exp[ —ln (r)j and thus overestimate
the effect of disorder compared to the GVM, which in-
cludes replica symmetry breaking. The GVM predicts
that quasi-long-range order exists in the system. Thus
the CO equations should also overestimate the effects of
dislocations.

A stability diagram can be constructed by examining
the renormalization equations to linear order, for the fu-
gacity of topological defects and for the disorder. In the
system considered by Cardy and Ostlund the fugacity
of vortices y satis6es to lowest order in y

=2y 1—dy ( 7rc ~pp24p ) (6.19)

while the q = Ko component of the disorder L~, renor-
malizes to linear order as

dAK, ( Kp2T )
Kp

dl g 4mc p
(6.20)

—=2y 1—dy c66 (cl1 c66) pp&p'a' (cps )
dl 4mT cia ~T (c„)

(6.21)

One easily sees that, to linear order, the q = Ko disorder
renormalizes also very similarly to (6.20):

( Kp (cii + css)T 5' =2AK, 1—
dl 87rc] i cps J

(6.22)

The inHuence of internal disorder on a two-dimensional
crystal was studied in Ref. 52. In that work the disorder
was taken as a quenched random stress coupling to the
strain, i.e. , a term —o(x)V u was added to the Hamil-
tonian with o(x)o(x') = p2pApb(x —x'). As discussed
in Sec. II this corresponds to including only the long
wavelength part of the disorder, and to neglecting the
q = Ko component of the disorder, which is very impor-
tant for the present problem of substrate disorder. For
the 20 elastic triangular lattice the fugacity of disloca-
tions y renormalizes, to linear order, in a way very similar
to (6.19):
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The stability diagram is shown in Fig. 5. In the
presence of dislocations there are thus various possible
regimes. There are two critical temperatures. One is
the melting temperature T = a css(cqq —css)/4mcqq,
above which dislocations unbind for the pure system
which melts into a hexatic. The other one is the glass
transition temperature Tc, = 8mcqqcss/Ko (cqq+ css), be-
low which disorder becomes relevant in the absence of
dislocations. The ratio between these temperatures is
equal to half of the exponent g~, of the pure system at
T . For the CO model it is thus universal and equal to
T /T~ = 1/8. For the triangular lattice it depends on
the (renormalized) elastic constants but cannot exceed
1/6. In Fig. 5 we have shown schematically how y and
y L~, are renormalized at linear order as a function
of temperature and long wavelength disorder Lo from
(6.21) and (6.22). At high temperature dislocations are
relevant and disorder is washed away by thermal Quctu-
ations. Below T~ disorder becomes relevant leading, in
the absence of dislocations, to the Cardy-Ostlund line of
fixed points. This line however is unstable to dislocations.
In the shaded region in Fig. 5, the dislocations would be
perturbatively irrelevant for the system with L~, ——0
and the solid would survive (in fact in that case if one
includes nonlinearities in y the solid is stable in an even
greater regions2). However, in this region the disorder
y 4~0 is relevant . It will eventual ly increase Ao as
can be seen from (6.11), and drive the Qow towards the
region where y itself increases and unpaired dislocations
will eventually appear at large scale.

Let us now estimate at which scale dislocations will
appear, assuming weak disorder. The disorder L~,
0 becomes of order 1 at length scale of order (. The
key point is that up to this length scale the fugacity of
dislocation has been renormal'zed domnmard8 and is now
much smaller with y(()/y(a) (a/$) ~ / i. At this
length scale, one ends up with a system for which the
disorder is of order 1 and the fugacity of dislocations,

PIG. 5. Stability diagram of a two-dimensional solid with
weak quenched substrate disorder, as a function of the tem-
perature T and the long wavelength (i.e., harmonic) part of
the disorder Ao. The diagram indicates schematically the
stability of the harmonic part of the free energy to disloca-
tions (fugacity y) and short wavelength disorder (y Dao)
by showing the relevance of these variables to linear order.

is extremely small. One can therefore predict that the
typical distance between unpaired dislocations (~ in the
shaded region is much larger than (, the distance above
which the effects of disorder become manifest and (6.7)
can be observed. It is impossible to compute rigorously
the ratio (D/( using perturbative RG since beyond ( one
of the coupling constants (b, Jc, ) is large, but one can still
estimate this ratio by the following heuristic argument.
If one assumes that, when A~, has become of order 1,
(6.11) is still valid, then above lengths of order g

b.o(l) = Ao+ nl, (6.23)

where o. is a coeKcient of order 1. Then estimating the
distance between dislocations as the scale at which y be-
comes of order 1, one gets using (6.19)

(~ )exp (cln ~ I((/u) ( /* )/y[u)]), (6.24)

where C is a constant of order unity and y(o, ) the bare
value of the dislocation fugacity.

The resulting prediction is that in the shaded region of
Fig. 5 dislocations appear only at scales large compared
to (, and the main reason for decay of translational cor-
relations is the pinning of the elastic manifold. Thus the
elastic theory developed in this paper should apply up to
distances up to order (D. In that low-temperature region
perturbative RG does not allow one to obtain the corre-
lation functions precisely even at not too large distance
since one is far &om the perturbative region T T~.
The variational method, on the other hand, predicts the
following results: as shown in Appendix E, there is a
crossover temperature T* = T~/ln((/a). For tempera-
tures T & T* there is no intermediate random manifold
regime and the displacement correlation function should
show the logarithmic growth of (6.7). However, since the
disordered solid regime corresponds to T ( T T~/8,
one is likely to be in the regime T & T*. In that
case there is a random manifold regime at short dis-
tances where the displacement correlation function grows
as B(x) (x/() / . At large distance one recovers the
logarithmic asymptotic regime. The anisotropy ratio
between the longitudinal and transverse displacements
R = Bz /BI. should cross over from 2v + 1 1.7 in the
random manifold regime to 1 in the asymptotic regime.

Experimentally, in the system of magnetic bubbles
some regimes are found indeed where the distance be-
tween dislocations $~ is of the order of up to five times
the translational correlation length. The authors of Ref.
12 observe a crossover between a regime where (~
and a regime where (D )) (, which probably corresponds
to the transition to the shaded region discussed above.
Indeed, the measured ratio $~/( keeps increasing with
density and is limited there only by the experimental
setting. It would be very interesting to increase the
range experimentally accessible. In Ref. 12 some com-
parison with the random manifold result was also per-
formed. However, the definition of the anisotropy ratio
used in Ref. 12 ((z /Q, ) does not seem appropriate, since
the data were first fitted to a simple Lorentzian shape.
New insight in to the physics of such disordered 2D sys-
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tems could be gained by a reanalysis of these data. More
theoretical work is also needed since the above analysis
of the dislocations is very crude. It has been generally as-
sumed that the nonperturbative RG Bow in the presence
of dislocations was towards a kind of hexatic, but noth-
ing is really known on this phase. In particular, in the
Cardy-Ostlund approach, the vortices are supposed to be
completely thermalized and to experience only a uniform
potential, and feel no effect of the disorder. This is phys-
ically incorrect, since in a disordered system the fugacity
will also depend on the position. One should therefore
take also into account terms which will pin the vortices.
This is another reason why we believe that the CO anal-
ysis overestimates the effect of topological defects.

To conclude, d = 2 elastic disordered systems have
therefore a very rich behavior. Many other experimental
systems could be investigated, among them colloids
and thin superconductors. A realization which would
exclude dislocations could be to adsorb a polymerized
membrane, with very high dislocation core energy, on a
disordered substrate.

VII. CONCLUSION

In this paper we have developed a quantitative descrip-
tion of the static properties of a lattice in the presence
of weak disorder. We have derived a model (2.13) valid
in the elastic limit V'u a/( (( 1 which contains the
proper physics at all length scales, and allows us to de-
scribe the various regimes as functions of distance. We
have applied the Gaussian variational method (GVM) to
this model and computed the correlation functions of the
relative displacements. This method has the advantage
of being applicable in any dimension. The comparison
with the renormalization group study that we have also
performed, which is possible in d = 4 —e and in d = 2,
indicates that the GVM is an accurate variational ansatz
for this problem. It also shows that the GVM should be
a good tool to explore other disordered problems where
different length scales are present. Contrary to previous
studies the present analysis includes the effect both of
metastable states and of the intrinsic periodicity of the
lattice, both effects being found to be very important.

We found that the effect of impurities on the transla-
tional order of the lattice is weaker than was previously
thought and that quasi-long-range order persists at large
scales. The resulting phase, which we call a "Bragg glass"
has the properties both of being a glass and of being qua-
siordered. The analogy with the quasiorder which sub-
sists at low temperature in pure two-dimensional solids
is puzzling. The Bragg glass possesses several intrinsic
length scales. At very short scales it behaves as predicted
by Larkin's random force model. This regime should be
quite limited in d = 3 at low temperature and for a po-
tential rough at scales smaller than the lattice. In d = 2,
however, thermal e8ects being stronger, this regime is
wider. At intermediate scales, and low temperature in
d = 2, the system behaves as a random manifold of Aux
lines independently pinned by impurities with stretched
exponential decay of translational order. At distances

larger than (, we have shown that due to the periodic-
ity of the lattice the pinning by impurities becomes less
effective and quasiorder survives.

We have not attempted to include explicitly topolog-
ical defects in the present quantitative study. However,
we have given evidence in both d = 3 and d = 2 that
for weak impurity disorder the efFect of dislocations is
less important than is usually believed. This is due to
the fact that quasi-long-range order subsists even in the
presence of disorder for the elastic system. In d = 2 it is
possible, but by no means established, that unpaired dis-
locations will appear at large scale. We have estimated
conservatively the length scale at which this happens and
found that it can be much larger than (. Thus in d = 2
there is a regime where the decay of translational order
is due primarily to the elastic displacements induced by
disorder. In d = 3, we have argued that there is probably
a phase without unpaired dislocations for weak disorder
and at low temperature.

Thus in the three-dimensional high-temperature su-
perconductors there could generically be (at least) two

types of glass phase caused by point impurities, i.e. , two
types of vortex glasses. The first one is the strong dis-
order vortex glass phase which is described by the gauge
glass type of model ' and presumably contains a lot of
dislocations. The second one is the quasiordered Bragg
glass described in the present paper. A natural specu-
lation then is that the tricritical point recently observed
in experiments, whose position in the H-T plane can
be raised by adding more point impurities in a controlled
fashion, has something to do with the relevance of dis-
locations. It could mark the separation between these
two phases since it is natural that the quasiordered glass
melts through a sharper transition, much like a pure
solid, while the vortex glass transition of Refs. 2 and
18 is believed to be continuous. In fact, it is not even
clear whether, strictly speaking, the strongly disordered
vortex glass phase of Refs. 2 and 18 is a true thermody-
namic phase rather than a very long crossover &om the
fl.ux liquid. Indeed, recent simulations indicate that d = 3
could be slightly below its lower critical dimension. The
Bragg glass, on the other hand, should not suffer from
such existential problexns.

The results of the present study suggest some com-
ments concerning experiments. First, decoration exper-
.iments should be reanalyzed. Clearly a fit to a simple
exponential as inspired by Refs. 28 and 58 is certainly
inadequate for pictures where no dislocation is present.
Since we predict that the crossover to the asymptotic
quasiordered regime occurs when the correlation function
t ~, (r) is of order 0.1 this crossover should be observable,
in principle. One must keep in mind that Abrikosov lat-
tices might not be the ideal system to compare with the
theory, since they are very complicated objects with addi-
tional intrinsic scales. In particular the effect of nonlocal
elasticity, 2D to 3D crossover effects, and surface inter-
actions, although they can in principle be incorporated
into the method, complicate the analysis by introduc-
ing new crossover lengths such as the London length. It
would be therefore highly desirable, in order to test the
above predictions, to investigate simpler elastic systems.
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One example are colloids which have been very success-
ful to investigate translational order in pure systems.
In addition, these experiments could help decide whether
dislocations are a thermodynamic property of the state
or simply a nonequilibrium feature which can be elim-
inated. Neutron-difFraction experiments could also help
decide on these issues. We obtained several characteristic
predictions for neutron difFraction, such as the existence
of algebraically diverging Bragg peaks and predictions for
the ratio of transverse to longitudinal scattering intensi-
ties.

We have addressed here only the statics of a lattice
in the presence of disorder, the quantities of interest in
that case being mainly related to positional order. It
would be clearly very interesting to obtain information
on the dynamics and especially the driven dynamics of
such systems. This is indeed particularly important for
superconductors where most experiments measure only
dynamical quantities. Several remarks are in order.

There exists presently a qualitative approach to the
dynamics of the vortex glass based mostly on scaling
arguments for energy barriers. On such a qualitative
level one usually assumes a single scale for the energy
landscape, i.e., that barriers E~(L) L scale with the
same exponent 0 which describes energy fluctuations in
the statics. Assuming that there is a regime of trans-
port where plastic deformations can be neglected, i.e.,
that energy barriers are controlled only by elastic mo-
tion, the present study of the statics can be used to de-
scribe the creep regime at low temperature. The argu-
ment goes that in the presence of an applied external
force f, such as the I orentz force created by an external
current

~ f ~ ~ j~, the barrier for an optimal deformation
u L away from a low-energy configuration on a scale
L is lowered and becomes Eq(L) Ls —fuL . To unpin
locally the manifold thus needs to go over an Arrhenius
barrier Eg 1/f~ with p, = 8/(d+ v —8). This and the
exponents found here lead to a nonlinear voltage-current
relation V exp[ —1/(Tj&)] in the flux creep regime,
where p crosses over &om p = 0.7—0.8 to p, = 1/2 as j
decreases.

On a more fundamental level one anticipates that the
methods used here for the statics and the results they
yielded will set the ground for the study of the dynamics.
As was discovered recently the hierarchical structure of
states which is encoded in the replica symmetry break-
ing solution of the statics Ands an exact translation in
the dynamics. There it corresponds to the existence of a
long time dynamics for which the fluctuation dissipation
theorem breaks down and nonequal time correlation and
response functions become highly nontrivial. It would be
interesting to generalize these studies to the flux lattice.
Let us Gnally note that the quantities computed here us-
ing the statics are equal time disorder averages and they
will coincide with the observed translational averages in a
given experiment provided equilibrium has been reached,
which will always hold below a certain length scale.
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APPENDIX A: RELABELING OF THE LINES

p(x) = ) b(r —R; —u;(z)). (A1)

In order to take the continuum limit, one can introduce
a smooth displacement field u(r, z) by

d m
u r, z = e'~~" e '~~ 'u z

Bz (2x)
(A2)

such that u(R, , z) = u;(z) which has no Fourier compo-
nents outside of the Brillouin zone (BZ). In terms of the
smooth field (A2) one can introduce the relabeling field

P(r, z) = r —u(P(r, z), z). (A3)

In the absence of dislocations there is a unique solution
of (A3) giving u(r, z) as a function of P(r, z). P is an
m-component smooth vector 6eld labeling the lines, and
which takes integerlike values at each location of a line

P(R; +u(R, , z), z) = R; (A4)

Substituting (A3) in (Al) one gets

p(x) = ) b(R; —P(r, z))det[B Pp(r, z)]. (A5)

Using the integral representation of the b function, (A5)
becomes

where

p(x) = det[8 Pp] po(q) e'~~~*l,d g

(2~)~
(A6)

po(q) = ) e'~~*. (A7)

For the case of a perfect lattice po(q) is

po(q) = po(2~)" ) b(q —~). (A8)

Using (A8) in (A6) one gets formula (2.8),

p(x) = podet[8 Pp] ) e'~'~~ l. (A9)

In this Appendix we det;ail the derivation of expres-
sion (2.8) for the decomposition of the density in terms
of the relabeling field (2.7). We denote d-dimensional po-
sitions x = (r, z) where r belongs to the m-dimensional
transverse space. The density is given by (2.3)

We thank D. J. Bishop, J. P. Bouchaud, M. Charalam-
bous, D. Fisher, M. Gabay, D. Huse, T. Hwa, M. Mezard,

Assuming that we are in the elastic limit 8 up (( 1 one
can expand (A9) to get
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g [y( )] + ) iR'tr —u(P(xl, z)]

KQO

(A10)

density operator then is

p(x) = — ) exp[2im4(x)].
1 DC(x)

ax (B2)

f
d

, ~g cos(qlu (*) —u'(x)D~(q) (A11)

where S(q) = po (q) po (—q) (with no averages) is the
structure factor of the lattice without disorder, with fixed
connectivity, and in its equilibrium position. If in addi-
tion one wants to allow for topological defects to equi-
librate one needs to perform some further average over
connectivities, which is a diFicult task.

APPENDIX B: LINK WITH QUANTUM
MODELS IN 1 + 1 DIMENSIONS

The variational method can also be applied to study
disordered one-dimensional (space) interacting bosons or
fermions. To see that fact we use a representation of op-
erators in terms of phase fields introduced by Haldane.
This representation maps the system into an elastic
Hamiltonian similar to the one used to describe fIux lat-
tices in Sec. II.

The single particle creation operator is written

In (A10) one can replace u(P(r, z), z) by u(r, z) up to
terms of order 8 up (( 1. Note that in doing so u has
negligible (suppressed by powers of a/() Fourier compo-
nents outside the Brillouin zone, and thus there is a com-
plete decoupling between the gradient term and higher K
terms.

The same procedure can be carried on in the case where
the equilibrium lattice of the R; contains topological de-
fects such as dislocations, vacancies, etc. Suppose for
instance that one wants to study a lattice with a fixed
number of dislocations at prescribed positions in the in-
ternal coordinate of the lattice, i.e. , a network with a
fixed topology (connectivity), but which is now allowed to
fIuctuate in the embedding space due to coupling to dis-
order and thermal noise. This is relevant for the physical
situation of a fIux lattice with quenched-in dislocations
whenever one can neglect dislocation motion, i.e. , glide
and climb. The equilibrium positions R; now correspond
to a minimum of the elastic energy with the constraint
of prescribed connectivity. The problem at hand is to
analyze the extra small elastic displacements around the
equilibrium position due to disorder. The density is still
given by (A6) where po(q) is now the Fourier transform
of the lattice of the R; (A7).

Upon coupling to disorder, the equivalent of the last
term in (2.13) will be generated. After averaging over
the random potential it reads

4' can be expressed in terms of another operator P by
C = mpox + P, and pe is the average density. The P and
0 fields obey the canonical commutation relations

P(x), —0(x') = i8(x —x').

Using (Bl), the single particle operator becomess2

1et(x) = p. + —V'y(x) imIm po K+@(x)j ie {K)

(B4)

For fermions the sum over m in (B4) is only over odd
m, whereas for bosons the sum is only over even values
of m. For fermions mpo can be replaced in (B4) by k~,
where k~ is the Fermi momentum. The long-wavelength
low-energy properties of the interacting boson or fermion
gas are described by the Hamiltonian

H= — dx — 0 + vK t9 0

When going to the Lagrangian, one gets

dxdv (0 P)'+—u(B P)'
2vrK (B6)

(p(r)p(0))

which is obviously the same as the classical Hamiltonian
(2.2).

From Galilean invariance one has (vK)/vr = po/m
and v = 1/(Kpom), where r. is the compressibility. v
and K are therefore functions of the interactions and in-
corporate all the interaction eÃects. The excited states
of H are sound waves with phase velocity v. For the
fermion problem the noninteracting case corresponds to
v = v~ and K = 1. For repulsive interactions K ( 1,
whereas K & 1 for attractive ones. For the boson prob-
lem K —+ oo when the repulsion between bosons goes
to zero, and K decreases for increasing repulsive inter-
actions. For the case of a b function repulsion, K varies
&om oo to 1. K = 1 would correspond to an infinite on-
site repulsion. K & 1 can be obtained only if longer range
interactions are considered. The coefficient K determines
the asymptotic behavior of the correlation functions.
For the bosons one gets

where p(x) is the particle density operator and g(x) the
phase of the 4' field. To take into account the discrete
nature of the particle density, one introduces an operator
4 which increases by vr at each particle's location. The

= 2K'(2~por) + Ape(por) cos(27cppr), (B7)

with some numerical constants A and I3', whereas the
fermion correlation functions are
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(@t (r) @ (p) } +p ( r)
—(Ry+Ky )/2 impov'

(p(r)p(0)}

= 2K'(2vrpor) '+ Apo(ppr)
' ~ cos(2kpr), (B8)

up to an angular part. The coupling to a random po-
tential uncorrelated in space and time will give again a
Lagrangian identical to (2.13). Terms of the form

a high-temperature phase (K ) 1) in this experimental
system.

APPENDIX C: ONE-STEP SOLUTION FOR d ( 2

In this section we examine a one-step replica symmetry
broken solution. For simplicity we look at the model
with a single harmonic (3.11). We now search a one-step
symmetry breaking solution of the form

Ld,.= » f.dx-d+Dpcos(2p($ (z v) P( —vT)](
p agb

0 V = 00)
0 V = oy)

[o.](v) = 0, v & v,

[~](v) = v (~i —~o) = Zi,
(C1)

v&v.
(a9)

where p is an integer and Dz some constants proportional
to the disorder, will appear. They correspond to Fourier
components of the random potential close to 2mppo. The
Fourier components close to q = 0 correspond to forward
scattering and give terms similar to the gradient terms
in (2.13).

As discussed in Sec. VI space and time uncorrelated
disorder is relevant when K & 1. The transition point
K = 1 corresponds to noninteracting fermions or equiv-
alently to bosons interacting with infinite b repulsive po-
tential. Disorder is thus always relevant for fermions with
repulsive interactions, and always irrelevant for fermions
with attractive interactions. Disorder is irrelevant for
bosons with only finite b-function repulsion, while it be-
comes relevant for bosons with sufBciently strong longer
range interactions. One experimental realization corre-
sponds to Aux lines in superconductors, confined to a
plane, which can be realized by proper alignment of the
magnetic field. It was argued in Ref. 51 that this always
leads to a glass phase, i.e., K & 1. This does not seem
correct to us. If the vortex line interaction was the sum
of an infinite repulsive b (i.e. , forbidden crossings) and
an extra repulsive interaction of finite range A, then dis-
order would indeed always be relevant. But this is not
the case, and the on-site interaction is finite, which pre-
sumably leaves room for both a glass phase (K & 1) and

I

Z G, (q) g2(
G(q, v) = ~.(&. '(a)+&.I

(To G,'(q), v(v„

(C2)

(C3)
(C4)

0, v(v
[G] = z, a. (q)

IG (&)+z, I
'

(c5)
(c6)

To determine v one has to minimize the &ee energy

T d gP/(nmO) = — — cq'G(q) —ln[G, (q)]2 (2'�)

G(q, 0) ' dv /a. (q) —[a] )

G.(q) . " «.(q) )
1 ~~2

+ dve- ~ ~~' "~
2mT 0

(C7)

where

With the form (Cl) one gets

G(q) = +
I

1 ——
I

G, (q) ( 1 l 1 + ~oa.'(q),v. ) G. '(q)+~i

2T F v&vf (2~)~ G.-'(~)+P, '
)

+(0)v o v~) + 2T j (2~), ~, ( )(G, ( )+~ ), & c.
(C8)

K() Av~ ~2T f
T '

z, &

Ziv, = TKO ln 1+
cq')

Zg

cg + Zy

(c9)

Note that oo does not appear in these equations. One

To get the saddle point equations one has to difFeren-
tiate (C7) with respect to oo(q), G„Ei,and v, . Dif-
ferentiation w'ith respect to o'o(q) gives G, (q) = cq .
DifFerentiating with respect to 1/v and Zi and then re-
placing G, i(q) by its value one gets

could in principle determine the value of pro by difFeren-
tiating (C7) with respect to G, (q). However, it is much
easier to use the saddle point equations (3.9). For d & 2
one has

—Z2T„& ""q
g —~ g (2~)~ cq +Z1'mr (C10)

~27 p

g —g g " (2m)~ cq2(cq2++1)vc (C11)

Thus 00 ——0 for d & 2. Note that in order to determine v
one should not substitute in (C7) the expressions (Clp)
before difFerentiating with respect to Ei and 1/v, . Such
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expressions are only valid at the saddle point.
In d = 2 the above equations read

Eiv = TKO ln 1+A Zi
'4~c A

(C12)

( A ) Kv T—/(4v c)

zi ——KO2
i

+1
i'mr (z, )

r ln(l+ y)
C )

c g

Ko A in[1 + y]
mr, A y(l + y) ~/~- '{i—T/T, )

where we used a circular cutoff A c(2x/a) . Let us set
r, = 47rc/Ko and y = Zi/A. We then have

at fixed T. When it exists the transition is discontinu-
ous and Zi juxnps from zero to some nonzero value. The
equations are in fact very similar to a variational ap-
proach to roughening in d = 1 where it is obvious that
the cosine term is irrelevant and the variational approach
cannot be trusted beyond weak disorder, where it gives
sensible results. Here it is also clear that q = Ko disorder
(i.e. , the cosine term) is irrelevant at large scale for d & 2,
in the sense that it will not pin the d = 1 manifold. It
will, however, renormalize the long wavelength disorder
which simply adds to the thermal roughening u I. ~ .
The physical meaning of the one-step solution for d = 1
being unclear, although it could be related to transitions
in the dynamics, we will not consider it further. Note
finally that in d = 0 the one-step solution does not exist
at all (since the mass is zero).

v. = rIC", ~g,z, ' c-"/',
/

K,av. ~2~ - ~«-»/2 —./22

Z 0 ~~ 1

mT

(c14)

(c15)

where

K A
We are interested in the case & & & 1 since ( )) a
and thus there is clearly a one-step solution for T & T, .
Note that for arbitrary A Zi vanishes when T + T, and
simultaneously v, goes to 1.

For d ( 2 the above equations lead to

APPENDIX D: VARIATIONAL CALCULATION
ON THE NONLOCAL MODEL

t'm

."+'( ') I,
R2

xe ~&~ *) cos(q~R~).

a2
2B b(R, ) )

If one does not use the decomposition (2.9) of the
density, the variational equation for the oK-diagonal self-
energy is24 2s instead of (3.2) [in the presence of the extra
disorder (3.71)]

d"q
(2~) q' + 1 2" sin(~d/2) I'[d/2]

(c16)

We can compare the free energy (C7) of the one-step
solution with the free energy of the symmetric one that
one obtains by taking v, = 1 and Zi ——0. The &ee energy
difFerence &E Pone step ERS is

As for the local model (2.13) one has to look for a non-
replica symmetric solution. I et us use the Poisson for-
mula valid for an arbitrary lattice of B;:

ss r &I
mnA 2 (v, )

&cq2+ z, )—ln
cq2 )

d"q E
X

(27r)" cq2 + Z,

+(1 )
—Ko B( vo, ) /2" 2mT'

where B(0,v ) is obtained &om (C8). Using the saddle
point equations (C9), (C17) simplifies into

Z, (1 —v.)'
mnO 2K02 v

(C18)

Thus whenever there exists a one-step solution it has
higher energy than the replica symmetric solution.

Examiiiing Eqs. (C14) one sees that indeed a one-step
solution survives in d = 1 even while the replica sym-
metric solution is stable there. Note, however, that the
one-step solution changes nature and, as an approxima-
tion to the original problem, acquires some unphysical
features. In d = 1 it does not exist for small disorder

V(R) 5 h(2: —B) = ) e'

where V(B,) is the volume of the unit cell and the K
are the reciprocal lattice vectors. One can then replace
the discrete sum in (Dl) by an integral and insert the
integration over x in formula (Dl). One gets

t'
x —— e ~&&" "& cos(qir). (D3)

~
2 2B(r, v))

Prom this exact expression, BMY kept only the compo-
nents with K = 0. As pointed out by BMY, ' if one
takes v small enough, then B(r = 1, v) is large enough so
that, for all the r contributing to (D3), one can replace
B(r, v) by B(0,v). The idea is that B(r, v) varies much
more slowly than r, which is true in the elastic limit. In-
deed one can easily see that for small v and large r one has
B(r, v) oc ln(vg/v) + Cln(r). Thus B(r, v) r implies
that r ln(vg/v) /2, and therefore B(r, v) B(0,v). If
one does so and since B(0,v) )) 1, one can restrict one-
self to K = 0 or K = +%0 in (D3). The off-diagonal
part of the self-energy becomes
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cr(q, v) AB(0, v) "/ + ciq e
K—~H(o, e)+Cg 8 (D4)

[s](y) = h(z)
y = —h'(z)/h(z), (E1)

The two first terms in (D4) come from the K = 0 part
in (D3). The term in A is due to the extra unphysical
disorder and as long as A is finite dominates the long
range behavior [q i 0 and large B(0,v)]. The other
terms correspond. to the same separation of the Fourier
components of the random potential as in the discussion
leading to our model (2.13). The q 0 components give
the same contribution as the terms in (2.13) in V'u Vus.
Indeed this K = 0 term comes from

(D5)

This term measures the smooth change in local density
due to the slowly varying displacement field, and keeping
only this term amounts to neglecting the discreteness of
the vortices in the original Hamiltonian. The third term
in (D4) comes from the q K'p component of the disor-
der, i.e. , the part which has the periodicity of the equi-
librium lattice. For the physical disorder A = 0 (D4) is
identical to the one obtained &om the local model (2.13).

In fact neglecting the x dependence in B(x,v) is equiv-
alent to the replaceinent P(x) = x —u(x), i.e. , identify-
ing u(P(x)) —u(P(y)) with u(x) —u(y), which led to the
model (2.13). Such a replacement becoines exact in the
elastic limit ((Vu)~) && 1 which has been checked self-
consistently on our solution.

APPENDIX E: RANDOM MANIFOLD IN d = 2

Let us consider the original model (2.13) in d = 2 keep-
ing all the harmonics. We will treat only the simpler case
of isotropic elastic matrix, but for arbitrary m and lat-
tice symmetry. Similarly to the study in d & 2 we use
the rescaled quantities (3.27) which satisfy the rescaled
equations (3.37). In d = 2 one has ( = a~cpm/4vrsE~,
and vt = mT/a~c. The equations read

where h(z) is defined in (3.31). It appears clearly in (El)
that y has a minimum value which is

t'Kpa) '
(E2)

Thus the function [o'](v) inust vanish for v & vp ——vgyp ——

T/T which is identical to the value of the breakpoint
v, in (6.2) of the one-step solution for the single cosine
model. The asymptotic behavior at large distance will
thus be identical to the one of the single cosine model
studied in Sec. IIIC 1. The transition temperature also
turns out to be exactly the same T = 4n'c/Kp~. How-
ever, for y & yp, [s](y) will increase continuously until
the breakpoint y = y, above which it becomes constant
again. Using Eq. (3.22) the breakpoint z, = b(y ) satis-
fies

vrT A~+

where we used the circular cutoff A = 2m/a. Using Eq.
(El) one sees that z is determined as the solution of the
equation z, = f(z ) where we have defined the function
f(z) as

AT A~(~
f(z) = ln 1+

ca h z

Let us study the function f (z) Using t.he two limiting
forms for h(z), i.e.,

h(z) =Ae, z»1
h(z) = B/z{ +')/', z « 1

(E5)
(E6)

from (3.39) and (3.42), one finds that the function f (z)
has three di6erent behaviors depending on the values of
z:

':..(~z+»[(&/a)'/&]) zg)1

f(z) &, , z+ ln(z) + in[((/a)~/B], (a/()4/{ +4) && z && 1 (E7)

mT (g/a)2 z{rn+4)/2 z « (a/()4/{m+4)

taking into account that (/a » 1.
The first regime corresponds to high temperatures.

One finds no solution when T ) T and when T ( T
one finds z, = vrTln[((/a) /A]/ca (1 —T/T, ). In that
regime y and yo are very close to each other and the so-
lution is very similar to the one-step solution of the single
cosine model. There is no true random manifold regime.

Solving the equation in the second regime one finds
approximately

ca
~»[(&/a)'/B]

(E9)

7rT m+4z. =, . n[(&/a)'/B] v. =
l [($/ ),/ ]

(E )

where we have used that in that regime y (m+4) j(2z).
The condition z &( 1 shows that this regime exists only
at low temperature:
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There all the harmonics contribute, y and yo are very dif-
ferent &om each other, and there is a large random man-
ifold regime between the Larkin regime and the asymp-
totic regime. In this regime one has B(x) A(z/() "
with V = VRM = 2/(4 + fll).

It is easy to see that the last regime of behavior of

f (z) never contributes. This is because one is restricted
to values of z such that v = y vg ( 1 which corresponds
to z, ) ca2/(Tz). This regime, where there is no break-
point (I a), and therefore no Larkin regime, as already
discussed after formula (3.56), arises at very low temper-
atures T ( T" (ca /z. )(a/$) ~& + &/In[((/a) /Bj.
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