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Dpnan1ical efFective potentials in electron tunneling: Path-integral study
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Dynamical effective potential felt by an electron tunneling in the planar metal-insulator-metal
system is considered. The tunneling electron coupled to the surface-plasmon modes is described
within Feynman s path-integral formalism. Self-consistent numerical results for the effective poten-
tials, tunneling times, and tunneling rates are presented. The classical image potential is obtained
in the limit of long tunneling times. It is shown that in cases when the traversal time T becomes
comparable to the plasmon, i.e., screening time cu, , considerable departure from the classical image
potential appears.

I. INTRODUCTION

In this paper, we consider dynaxnical effective potential
felt by an electron tunneling in a planar metal-insulator-
metal (M-I-M) system. Knowledge of this potential is
of great importance in determining the current-voltage
(I-V) characteristic of an M-I-M heterostructure. In the
simplest theoretical approach, a rectangular barrier of
height Vo independent of the distance I between two
semi-infinite metals is assumed. . It is known that the
reduction of the barrier height, due to the image poten-
tial has a significant effect on the tunneling resistance. '

In order to improve agreement with experimental re-
sults, several attempts were made to find semiempirical
corrections to the classical image potential. ' Essential
progress was made by realizing that the origin of im-
age potential is in the electron interaction with surface-
plasmon (SP) modes. 4 s Calculation of dynamical cor-
rections to the classical image potential, for an electron
moving with uniform velocity perpendicular to the face
of a sexni-infinite metal, followed. Such a semiclas-
sical description is, however, inadequate in a situation
where the electron tunnels through the classically forbid-
den region. Consequently, various quantum-mechanical
descriptions of the tunneling electron were presented.
Experimental evidence for the occurrence of dynamical
eKects in the limit of short tunneling times gives an ad-
ditional motivation for further theoretical investigation.
More recently, a detailed study of the dynamical ef-
fective potentials within the Jonson theory was made.

In the present work, tunneling electron coupled to
the SP modes is described within the Feynman's path-
integral formalism. Thus, we avoid the wave function
concept, and in contrast to the self-energy approach, '

our treatment is nonperturbative. The paper by Pers-
son and BaratofFx2 is especially relevant for our work,
but they have calculated tunneling rates directly, with-
out discussing the ixnage potentials and barrier shapes.
We also show that they have underrated the efFect of non-
locality, which becomes important for narrow barriers.

We present self-consistent numerical results for the dy-

namical effective potentials, tunneling times, and tunnel-
ing rates for various physical parameters. We show that
the classical image potential is obtained in the limit of
long tunneling times, and by setting cutofF wave vector
q of the SP modes to the infinity. In the opposite situ-
ation when the traversal time T is comparable with the
plasmon, i.e., screening time u, , the dynaxnical image
potential is obtained. Also, it is pointed out that the
e8'ect of nonlocality, which is especially strong for nar-
row barriers, causes additional reduction of the barrier
height.

II. FORMULATION OF THE PKOBLEM

where p and r = (z, p) are electron momentum and po-
sition operators; bt and bq are the creation and anni-
hilation operators of the SP modes. SP &equencies and
coupling matrix elements for even and odd (n = +1)
plasmon modes, have the form20'

= ~.+1+ne-«,

(z) = 2vrL 'e' e« -~~+n -&

Ag(dq ~ 2

where A. is the interface unit area.

For a description of the metallic electrodes, we use the
local scalar dielectric function e(u) = 1 —tu„/~, valid
in the long-wavelength limit. Therefore, the electron,
which tunnels through the insulator layer (0 & z ( L),
is coupled only to the SP modes. For the static barrier
described by an arbitrary potential V(r), we write the
Hamiltonian

2

H = + V(r)+) her~ bt b~
q)w

+).I'.,-( )""(b.,-+ b'-..)
q, n
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Propagator of the system with several degrees of &ee-
dom can be represented as a path integral,

( (r(f) (z(f) ) . r(') ~z(') ) iT)
r(T') =r(~)

1)r(.)
r(0)=r(')

(f)
x Vz~ ()

(p) =~(') '

)
( ( ) ( , ( )))i'&

7 (4)

~~(r(.) IzQ, -())) = «
I

—
I + V(r)

p 2 (dtj
T „/1dz, .dz, .+ dt's

~2 dt dt

(dq, a+ 2' —q, a&q, a

where superscripts (f) and (i) denote final and initial val-
ues of the electron (r) and SP [z~ = gh/2u (b
b z )] coordinates. Sa is the "Euclidean" action

In the planar M-I-M system, the static barrier depends
only on the z coordinate, e.g. , V(z) = Vp —eVsz/L, where
Vp is the height of the rectangular barrier (the band off-
set) and Vs is the applied voltage. For simplicity, we
consider only paths perpendicular to the surface, but it
is still impossible to find an analytic solution for the path
integral (4). We proceed according to Refs. 21, 22, and
define the reduced propagator of the system2 by

Z'(z( ), z('), —iT)

dx(') G z( ), x(');z('), x('), —zT .
q,a

Following standard procedures, integration over SP co-
ordinates in Eq. (6) may be carried out exactly,

K(z( ), z('), —iT)

~.".2sinh(~~ T/2)
~

~(T )—(f)
1)z( )e

—s,qf(z( ))/5
~(0)=~(i)

Here S g is the effective Euclidean action,

m' fdz))'
~ir(z()) = «

l

—
l

+V(z)
() 2 (dt)

d') "'["-(~' '~ ""]~..(.())~..(('»,25 () () sinh((u~ T/2)
qicx

&om which we deduce the expression for the effective potential,

(9)

which is functional of the path taken by the electron. We see that the effective potential (9) at some point z depends
on the value of the coupling matrix elements I'q at all other points in the barrier region. Effect of this nonlocality
will be discussed in the next section.

Substituting (3) into (9), and replacing

we find

cosh(~~, -[lt(z) —t'I —T/2])
4 () () (u~ sinh((d~ T/2)

x (cosh(q[L —z —z(t')]) + o( cosh(q[z —z(t')] j).
Before we discuss the criterion for the choice of the path, which will be used in the calculation of the effective

potential (11), let us consider a situation in which L + oo and an electron is placed in the vicinity of the left metal
electrode. From Eq. (2), we conclude that u& ~ u, Also, it is w. ell known that SP modes decay into single-particle
excitations for large q, and we introduce a cutoff wave vector q, so the effective potential (11) becomes
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e~(uz, . ~ cosh((u, [it(z) —t'i —T/2]) (,+,(,~) j

8 0 0 u, sinh(u, T/2)
(12)

Integration over a wave vector yields

ezra), , cosh((u, [it(z) —t'i —T/2]) 1 —e i.('+ (' )j

In the high plasmon &equency limit u, m oo, we could take

cosh((u [It(z) —t'I T/2]) —~.~i( )—i'~ 2
[ ( )sinh(~, T/2)

and find the static classical result

(14)

e2

v. ( ) = v(.) ——(1 —.-".).
4z

At the surface V,ii(0) = V(0) —e q, /2. The classical divergence is obtained by setting q, -+ oo.
Standard. WKB result for the probability that an electron tunnels through the barrier is

D(E) —2B(R)

In our approach (generalized WEB approximation), the tunneling exponent B can be calculated along the path of
least action (8) for which z(0) = z(') and z(T) = z(~). Requiring bS,& = 0 to the first order in hz, we obtain

(gV(z) e (u, „, . cosh[a) (it —t'i —T/2)]
dz 4 o 0 (u~ ~sinh((u~ ~T/2)

( ( [ — (t) — (t')]) — ( [ (t) — (t')]))

Equation (17) describes the classical motion of an elec-
tron in the inverted effective potential, and this is the rea-
son why we have introduced imaginary time into prop-
agator (4). Without applied voltage, the height of the
static barrier is constant V(z) = Vo, so the first term on
the right hand side of (17) is equal to zero. We can solve
(17) numerically for various values of the time T. From
the energy conservation requirement, we find

sion for the WKB exponent,

B = dz/2m [Vir(z) —E]/h~.
z(')

III. RESULTS AND DISCUSSION

(2o)

(f)
dz

+2[Vg(z) —E]/m»
'

B = [S ir(z, )) —ET]/h (19)

Note that Eq. (19) is equivalent to the standard expres-

which is the traversal time for the particle moving be-
tween classical turning points z~'& and z~~~ in the inverted
effective potential. ~5

We solve the equation (17) by iteration. It is conve-
nient to use the classical motion of the electron in the in-
verted static barrier for zeroth iteration denoted by z,&,
with the corresponding traversal time T& ~. Now the so-
lution z, &

of equation (17) can be used to calculate the
first iteration V,& (z) of the efFective potential (11). This
enables us to solve Eq. (18) for the first iteration of the
traversal time T~ ~. After a few steps, we can thus obtain
the self-consistent solutions for z,~, V,g, and T.

Tunneling exponent B is now given by

In this section, we present and discuss self-consistent
numerical solutions of Eqs. (17), (18), and (11) for vari-
ous SP &equencies, electron energies, and barrier widths.
In order to avoid divergences in Eqs. (17) and (ll) at
metallic surfaces, wave vector integration is performed
with the cutoff wave vector q . As in the L —+ oo case
discussed in the previous section, the finite cutoff wave
vector affects the barrier only near interfaces. For com-
parison, in Figs. 1, 2 and 3, the classical image potential

e
V,](z) = Vo — [2e(1) —e(z/L) —e(l —z/L)] (21)4L

is drawn, where 4 is a digamma function.
Figure 1 shows the energy dependence of the dynam-

ical effective potentials V,s(z) for three SP &equencies
(Ru, = 0.01,0.05, 0.2 Ry). We see that the V,ir(z) is
not too sensitive on electron energy. As electron energy
approaches the top of the barrier, the iteration proce-
dure fails because the traversal time T rapidly increases,
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FIG. 1. Dynamical effective potentials for the parameters:
potential step Vo ——0.1 Ry, effective mass m = 0.07m, bar-
rier width L = 200ao. Circles: classical image potential.

FIG. 3. Same as Fig. 2, but for barrier width L = 400ao.
Inset: enlarged top of barriers.

which results in a rapid increase of the right hand side
of Eq. (17). So, we take electron energy E = 0.08 Ry as
an upper bound in our calculation, while Vo ——0.1 Ry.
This energy would be enough for the real excitation of
SP modes of the &equencies her, = 0.01 Ry and 0.05 Ry.
However, because of the small electrode separation in the
considered systems, the probability that an electron will
traverse the barrier without dissipation is large. The
fundamental parameter in our theory is the product ~,T,
which takes the values 0.94, 2.82, 4.79, 18.34, 20.34, 78.67
for the effective potentials shown in Fig. 1. The smallest
value (u, T = 0.94, i.e., the traversal time is compara-
ble with the plasmon time) corresponds to ~, = 0.01
Ry and E = 0.01 Ry, when departure &om the classical
image potential (21) is strongest. Coincidence with the

0.10

classical image potential is achieved for Lu, = 0.2 Ry and
E = 0.08 Ry, i.e., for u, T = 78.67, when the traversal
time becomes considerably longer than the plasmon time.
This happens exactly when ur, T ~ oo (for q, -+ oo), i.e.,
for a static electron, but in this case there is no tunneling
at all.

The WKB tunneling exponent given by Eq. (19) or
(20) is shown in Fig. 4. This exponent is calculated up
to Ru, = 1 Ry, in order to show that the classical limit is
recovered even for lowest electron energies. Nevertheless,
its value is increased about 10 —30%, due to dynamical
effects. This will have a signi6cant inQuence on the tun-
neling rate (16), and consequently on the I-V character-
istic of a M-I-M heterostructure.

Figs. 2 and. 3 show dynamical effective potentials for
narrow (L = 100ao) and wide (L = 400ao) barriers in
both dynamic and static (classical) limits. Persson and
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FIG. 2. Dynamical effective potentials for the parameters:
potential step Vo ——0.1 Ry, effective mass m, = 0.07m, bar-
rier width L = 100ao, and electron energy E = 0.05 Ry.
Circles: classical image potential.

FIG. 4. WKB tunneling exponent for the parameters as in
Fig. 1.
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BaratofF, following the arguments of Refs. 21 22& have

replaced h[~q~~(lt —a'I —T/2)j with e +q&&l« I in equationah(aoq, T/2)
(8), which we shall call the "local approximation. " In ad-
dition to our results, we show in Figs. 2 and 3, dynam-
ical effective potentials calculated in this local approxi-
mation. In the high &equency limit, both results tend
to the classical image potential. Disagreement arises for
low SP frequency and is particularly strong for the nar-
row barrier shown in Fig. 2. In order to explain such
behavior, let us consider for simplicity only the top of
the dynamical barrier. Using symmetry in integration
over t' when t' = T/2, i.e. , z = L/2, and the fact that
I'z (I/2) = 0, effective potential (9) can be written in
the form

~l

The term +' '+T omitted in the local approxima-
1—e q+

tion is responsible for the barrier lowering in our calcu-
lations. Without this term, the contribution of the cou-
pling matrix elements I'z+(z(t')) is attenuated by the
factor e &+(+~2 t

&, as z(t') moves towards the xnetal
surface where I'z+ is largest. Including this term, which
increases for lower SP &equencies and smaller barrier
widths (i.e., traversal times T), this attenuation is sup-
pressed. Therefore, stronger nonlocality is responsible
for the reduction of the barrier height below the classi-
cal image potential. For a wide barrier shown in Fig. 3,
the efFect of nonlocality is weak even for the low SP &e-
quency, because traversal time T increases (see Fig. 5), so
that the attenuation length becomes small in comparison
with the barrier width. Similar conclusions about non-
locality eKects have been drawn in Refs. 15—17, where
attenuation is contained in the Green's function.

Traversal time (18), as a function of electron energy
and barrier width for both dynamic (Ru, = 0.01 Ry)

FIG. 5. Traversal time T in units To = h/Vo for the param-
eters: potential step Vp ——0.1 Ry, effective mass m* = 0.07m.
Solid line: ~, = 1 Ry; dashed line: ~, = 0.01 Ry.

and static (Ru, = 1 Ry) limits, is shown in Fig. 5. A
remarkable di8'erence is obtained for E = 0.08 Ry and
L = 100ao, and its origin is obvious &om Fig. 2. Namely,
traversal distance z(f) —z(') for the dynamical barrier
is greater, and its height is lower than for the classical
image potential, so the corresponding traversal time (18)
is raised.

In conclusion, we can say that (i) the dynamical ef-
fective potential (9), as defined within the Feynman's
path-integral formalism, is not too sensitive on electron
exxergy; (ii) in the cases when traversal time T becomes
short enough to be comparable with the plasmon, i.e.,
screening time ur, x dynamical effects appear; (iii) the
WKB tunneling exponent is increased about 10 —30'%%uo,

due to dynamical effects; and (iv) the effect of nonlocality
is strong, especially for narrow barriers.
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