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Core-level satellite excitations of K/Al(100) and K/Al(111)
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Alkali-metal-induced satellite peaks associated with the K 3p and Al 2p core levels have been mea-

sured with photoemission for K/Al(111) and K/Al(100) under both low- and room-temperature prepara-
tion conditions. For low-temperature deposition we observed loss peaks in good agreement with

electron-energy-loss spectroscopy studies of analogous systems which we assign to the excitation of col-
lective plasmonlike modes in the alkali-metal overlayer. For room-temperature preparation conditions,
we observed significant changes in the satellite loss structure which we attribute to a decrease or loss of
metallic behavior in the alkali-metal layer. We account for some of our results as a change in bonding
configuration of the K atoms from on-top-of surface to substitutional adsorption for low versus room-
temperature preparations.

I. INTRODUCTION

In the past few years, quite a lot of interest has been
generated in the properties of alkali-metal atoms ad-
sorbed on aluminum single-crystal surfaces. Some of this
renewal of interest stems from the determination for the
Al(111) surface that many if not all of the alkali-metal
atoms adsorb in either low-symmetry top sites (at low
temperature) or in substitutional sites (at higher
temperature)' —in neither case in the high-symmetry
threefold hollow sites which intuition had previously sug-
gested. Substitutional adsorption has also more recently
been reported for alkali metals/Al(100). ' '" In other
words, alkali-metal adsorption on the aluminum surface
is not the simple, classic free-electron-like system that
had been assumed for decades.

Along with the significant interest in the geometric
structure of these overlayers, ' ' a substantial number of
both experimental' and theoretical investiga-
tions of the electronic structure have also appeared over
the past few years. Much of this work was carried out
without knowledge of the unexpected geometry of these
overlayers, particularly the transformation to substitu-
tional sites at higher temperatures. As a result, the inter-
pretations of some of these theoretical and experimental
results may need to be reexamined. It is the purpose of
the present study to investigate some aspects of the elec-
tronic properties of alkali metals/aluminum, in particu-
lar, K/Al(100) and K/Al(111), with special attention to
changes which occur upon transformation from supersur-
face ("normal" top or hollow sites) to substitutional
bonding of the alkali-metal atoms. A further difference
in alkali-metal adsorption between K/Al(100) and
K/Al(111} which also may be refiected in our results is
the fact that K forms islands on the Al(111) surface, vs
uniform growth on Al(100).

One particular probe of the electronic structure of

alkali-metal overlayers which has been applied to many
systems over the years, including fairly recent stud-
ies of alkali metals/aluminum, is electron-energy-
loss spectroscopy (EELS or ELS). Distinct loss peaks in
the energy range of 1 —6 eV have been observed for many
different alkali-metal overlayer systems in both submono-
layer and multilayer coverage ranges. For low coverages
(below —,

' of one alkali-metal layer) this peak in most cases
is observed to decrease in loss energy as a function of in-
creasing coverage. Over this coverage range it has gen-
erally been assigned as an alkali-metal interband transi-
tion or transition between alkali-metal atomiclike energy
levels. For submonolayer coverages above approximately
—,
' layer, the loss peak in most cases stops decreasing in

energy and then increases in energy as a function of in-
creasing coverage up to the completion of the first layer.
[EELS results of K/Al(111) (annealed) are actually an ex-
ception to this general behavior, ' as will be discussed
further below. ] For one layer and above, the loss occurs
at or very close to the plasmon energy of the alkali metal
(at the surface and/or bulk plasmon energy depending on
the film thickness}. Partly for this reason the loss peak in
the higher submonolayer coverage range is usually as-
signed as a collective, plasmon or plasmonlike excitation
in the alkali-metal layer.

In this investigation, we have investigated loss features
analogous to those previously observed with EELS by
studying satellite peaks associated with alkah-metal and
Al core levels in photoemission spectra. Our results for
low-temperature adsorption are in good agreement with
the assignment of plasmon excitations based on EELS
measurements of analogous systems for the higher sub-
monolayer coverage range. For the alkali-metal layers ei-
ther deposited at or annealed to room temperature (re-
sulting in adsorption in substitutional sites) we observe
significant differences vs low-temperature adsorption in
the core-level satellite structure which we feel reAects the
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IV. DISCUSSION

Our photoemission results clearly demonstrate the ex-
istence of satellite peaks below both the K 3p and Al 2p
core levels for higher K coverages [above approximately
—,
' of a K layer (0 & 0.25 ML)] for low-temperature deposi-

tion on the Al(111) and Al(100) surfaces. These peaks
grow in intensity and shift to higher loss energy with in-
creasing K coverage up to the completion of the first K
layer, and are very similar in behavior to analogous
EELS studies of alkali-metal overlayers. In Fig. 5 we
have also plotted some of the results of loss energy vs
density from an EELS study of K/Ni(100) by Andersson
and Jostell. Our own results from core-level photo-
emission are in very good agreement with this study.
This good agreement along with the similarities to other
EELS studies lead us to make an assignment of the core-
level satellite peaks in our own investigation as collective
plasmonlike excitations in the K overlayer. This is one of
the first photoemission studies in which satellite peaks as-
sociated with core levels have been identified for sub-
monolayer alkali-metal coverages. In several previous
investigations, alkali-metal induced loss peaks below
copper d bands, which may have a similar origin, have
been reported. ' '

The lowest potassium coverage for which we can clear-
ly identify a satellite peak is 8=0.24 ML (see Figs. 1 and
3). We do not observe a peak at half this coverage for
K/Al(100) (8=0.12 ML, bottommost curve in Fig. 3).
Based on the weak intensity of the 0.24 ML peak for
K/Al(100), we would not be sensitive to peaks at much
lower coverages than this, particularly if the peak was to
continue to shift to lower loss energy into the tail of the
Al 2p core levels. It may be significant that we only ob-
serve this core-level satellite over the higher-coverage

range in which the EELS loss peaks also increase in ener-
gy with coverage. For low coverages, for which a more
atomiclike origin for these EELS losses is suggested, the
probability of excitation by a core level may decrease,
contributing to the lack of observation of core-level satel-
lite peaks below —, layer in our investigation. More care-
ful studies at intermediate coverages are desirable in or-
der to address this issue.

At this time we would like to emphasize the impor-
tance of the difFerences in growth between K/Al(100) vs
K/Al(111). On K/Al(111), the K forms higher-density
islands at relatively low coverage (-0.1 ML) at 100 K,
which grow in size as the K coverage is increased. This
growth rejects itself in our results in the more or less
constant value of the loss energy observed at lower cover-
ages (as seen in the lower spectra in Fig. 1). On the other
hand, the K growth is more uniform on the Al(100) sur-
face at 100 K, with a more or less constant increase in the
average density of the K layer with coverage. This
growth produces the monotonic increase in loss energy vs
coverage or density which we have detected in this inves-
tigation.

Regarding the approximately linear dependence of the
loss energy on coverage as displayed in Fig. 5, it is ex-
pected that the plasmon energy will increase with in-
creasing electron density and therefore with alkali-metal
coverage in the present cases under consideration. How-
ever, simple models predict square-root dependence on
the electron density. The linear dependence on alkali-
metal coverage observed here and elsewhere was dis-
cussed by Andersson and Jostell in their earlier
work, but has still not been accounted for.

The results of a recent calculation by Ishida and
Liebsch of electronic excitations in alkali-metal over-
layers may also be relevant to a proper interpretation of
our results. They find in the dynamic linear response of
Na and K overlayers on a jellium substrate that collective
excitations appear for higher submonolayer alkali-metal
coverages approaching 1 ML. However, for low cover-
ages below the work-function minimum, they only detect
a broad loss peak in their calculations which is due to a
combination of surface screening processes and matrix
element effects. This seems to be consistent with our
core-level photoemission results since we only detect a
loss peak, which we interpret as some sort of collective
excitation, for higher alkali-metal coverages approxi-
mately above the work-function minimum for cold K
depositions on both Al(100) and Al(111).

Now we would like to turn in our discussion to the re-
sults from room-temperature deposition or annealing of
potassium on the aluminum surfaces. In terms of the sa-
tellite structure associated with the core levels, our data
reveal significant qualitative difFerences between the low-
and room-temperature cases. When one layer of K is an-
nealed to room temperature on Al(111) (see the topmost
spectrum in Fig. 1), the satellite peak shifts to lower loss
energy by —1 eV (to a loss energy of —1.5 eV). This loss
energy is in good agreement with the results of an EELS
investigation of K/Al(ill) by Tsuei et al. ' In that
study, the K was deposited at 100 K, then the sample was
annealed to 240 K, which would induce a transformation
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to a substitutional site, ' ' ' before the EELS spectra
were recorded. A loss peak at —1.5 eV was observed
over much of the submonolayer coverage range. Island
formation can account for the coverage independence of
the loss energy in both EELS and photoemission spectra.
Continuing with our results, for room-temperature depo-
sition of K/Al(100) (compare Fig. 3 to Fig. 6), the
changes in the satellite structure were even more
dramatic —no distinct satellite peak can be detected at
any K coverage.

How do we explain the dramatic differences in the
core-level satellite peaks for low- vs room-temperature
preparations? Clearly, it is reasonable to associate these
changes with the structural changes of surface vs substi-
tutional adsorption. If we assume that the loss peaks in
our investigation and in the EELS studies at higher cov-
erages are due to collective excitations, then the increase
in loss energy with increasing coverage can be attributed
to an increase in electron density in the alkali-metal over-
layer. If this is the case, the shift of the K/Al(111) loss to
lower energy and the disappearance of the K/Al(100) loss
for room-temperature preparations are consistent with
our expectation that the alkali-metal atoms in the substi-
tutional geometry are fairly well screened from each oth-
er, which would tend to diminish the metallic behavior
associated with collective excitations of the alkali-metal
layer. This more "atomiclike" behavior will be rein-
forced by the stronger bonding of the alkali-metal atoms
to the Al substrate atoms as a result of the substitutional
geometry.

Such changes in the electronic structure of the alkali-
metal layers on aluminum at room temperature have
been confirmed in a recent calculation of Na, K/Al(111)
by Wenzien et al. They carried out a surface Green's
function calculation of these systems for on-top and sub-
stitutional adsorption to determine the surface band
structure and surface charge density distribution. They
found a significant difference in the charge density in the
surface layers for on-top vs substitutional adsorption-
an almost complete lack of occupied density of states for
the alkali-metal layer in the substitutional case. This loss
of the "metallicity" of the alkali-metal overlayer for sub-
stitutional bonding is con6rmed by our photoemission

measurements of the core-level satellite excitations as de-
scribed in this paper.

We cannot at this time account for the differences be-
tween room-temperature measurements for K/Al(111) vs
K/Al(100). All evidence points to a similar structural
transformation in the K overlayers for both K/Al(ill)
and K/Al(100) from adsorption on top of the surface at
low temperatures to substitutional adsorption at room
temperature, either for adsorption at room temperature
or postannealing the low-temperature overlayer. We
therefore expected more similar changes in the satellite
structure.

V. CONCLUSIONS

Alkali-metal-induced satellite peaks associated with
the K 3p and Al 2p core levels have been measured with
photoemission for K/Al(111) and K/Al(100) under both
low- and room-temperature preparation conditions. For
low-temperature deposition we observe loss peaks in good
agreement with EELS studies of analogous systems which
we assign to the excitation of collective plasmonlike
modes in the alkali-metal overlayer. For room-
temperature preparation conditions, we observe
significant changes in the satellite loss structure which we
attribute to a decrease or loss of metallic behavior in the
alkali-metal layer in this bonding configuration. Many of
our results can be explained by differences in adsorption
site or growth mode for K on these surfaces under vari-
ous conditions.

Note added in proof Arece. nt EELS study of
K,Cs/Al(111) by Kondoh and Nozoye [Surf. Sci. 329, 32
(1995)] yields results which are consistent with those
presented in this paper.
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