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Electrons in double-layer quantum-well systems behave like pseudospin — particles where the
up and down "spin" represent localized states in each of the layers. The magnetically induced
Wigner-crystals in these systems are therefore crystals of these pseudospin — particles. We have
calculated the phase diagram of the bilayer Wigner-crystals using a variational scheme which ex-
plores a continuum of lattice and spin structure. Five stable crystal phases are found. For the
given tunneling strength and layer separation, one typically encounters the following sequence of
transitions as the filling factor is increased from zero (the same sequence also occurs if one in-
creases the "effective" layer separation starting from zero, with the tunneling strength and filling
factor held fixed): (I) (One-component) hexagonal structure ~ (II) centered rectangular structure
—+ (III) centered square structure -+ (IV) centered rhombic structure -+ (V) staggered hexagonal
structure. Crystal I is a ferromagnet in pseudospin space. All other crystals (II—V) have mixed
ferromagnetic and antiferromagnetic orders, which are generated by layer tunneling and interlayer
repulsion, respectively. The relative strength of these two magnetic orders vary continuously with
external parameters (i.e. , the ratio of layer separation to magnetic length, the tunneling gap to
Coulomb interaction, etc). The lattice structures I, III, and V are "rigid" whereas II and IV are
"soft," in the sense that the latter two vary with external parameters and the former three do not.
Another important feature of the phase diagram is the existence a multicritical point and a critical
end point, which allows all crystals (except V) to transform into one another continuously. While
our findings are based on a variational calculation, one can conclude on physical grounds that the
mixed ferromagnetic-antiferromagnetic order as well as the pseudospin-lattice coupling should be
general features of most bilayer Wigner-crystals.

I. INTRODUCTION

Recent experiments have shown that bilayer
quantum-well systems in strong magnetic fields behave
like quantum Hall systems with (pseudo-)spin 1/2, where
the up and down pseudospins correspond to electron
states residing in one or the other of the layers. The
behavior of this quantum Hall system is demonstrated
by the quantum Hall effect at filling factors v = 1/2
and v = 1, which corresponds to each layer being 1/4
filled and 1/2 filled, respectively. Since even denomina-
tor quantum Hall Quids do not exist in fully spin po-
larized single-layer systems, these states can only result
&om the correlations between electrons in different lay-
ers.

One major difference between single-layer and bilayer
systems is their energy scales. In the single-layer case,
if one restricts to the lowest Landau level, the only re-
maining energy scale is the Coulomb interaction between
electrons e2~n, where n is the electron density. [n is
related to the filling factor v as n = v/(2mI2), where

E = (ch/eR) is the magnetic length. ] For bilayer sys-
tems, there are three energy scales: (a) the tunneling en-
ergy b, between the layers (precise definition given later);
(b) the interlayer Coulomb interaction e /D, where D is
the separation between the layers and; (c) the intralayer
Coulomb interaction e ~n, where n = v/(2vrI. ) is the
total electron density of both layers. Because of these

energy scales, the system can fall into different physical
regimes depending on their relative ratios. The impor-
tant physical regimes are as follows:

(i) Two single-layer regime, e2~n && e2/D, E.
(ii) Two-component (or correlation) regime, e2~n

e'/D » A.
(iii) One-component regime, e ~n e2/D ( A.
Regime (i) corresponds to the case of large layer spac-

ing. In this case, the systems reduces to two weakly in-
teracting single-layer systems. Regime (iii) corresponds
to sufBciently small layer spacing, so that the effects of
tunneling becomes important. In this case, the electrons
lie in the "symmetric" state of the quantum well. The
system reduces again to the single-layer case. Regime (ii)
is very different. Despite the weakness of layer tunnel-
ing, electrons are strongly coupled to each other through
the Coulomb interaction. The v = 1/2 and v = 1 quan-
tum Hall states are found in this regime. In particular,
the v = I/m states (m odd) are believed to behave like
quantum ferromagnets. 2 [By one and two component, we
have in mind a pseudospin 1/2 representation of the elec-
tron wave function. We shall discuss this representation
shortly. ]

For single-layer systems, it is well known that the quan-
tum Hall Quids eventually lose their stability at suK-
ciently low filling factors to the Wigner crystals, which
are essentially products of electron Gaussians arranged
on a lattice, properly antisymmetrized to satisfy the Pauli
principle. The emergence of Wigner crystals at low 6ll-
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ing is inevitable, as electron exchange has weakened so
much, that the correlation energy of the Quid falls below
the Madelung energy of the Wigner solid. In the past few
years, many experiments (transport, threshold field, s

magnetophonon, and luminescence ) have indicated the
existence of crystalline characteristics at various Ailing
factors, some are as high as around v = I/5. ' While
there are questions as to whether the insulating states
around v = 1/5 are Wigner crystals or other kinds of
insulators, the general view is that the insulating states
at lower filling factors will be Wigner crystals.

The reasons for the appearance of Wigner crystal men-
tioned above also apply to the bilayer case. However,
because of the additional internal degrees of &eedom, bi-
layer systems have a much greater variety of Wigner-
crystal states. A limited version of this rich variety
can be seen even without calculations, which we present
schematically in Fig. 1. When the layers are far apart

(1b)
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7 7 T 7 7 7
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FIG. l. (a) Staggered hexagonal structure in regime (i); (b)
centered square structure in regime (ii); (c) single-component
hexagonal structure in regime (iii). The electrons are in the
symmetric state of the double quantum well, which are rep-
resented schematically by a "peanut" shape.

[i.e. , regime (i)], the system becomes two single layers,
each one has its own hexagonal Wigner crystal. To re-
duce interlayer repulsion, these two crystals will be "stag-
gered" as in the usual hexagonal close pack (i.e., the lat-
tice points of one lattice lies directly above the centers
of the triangles of the other). As the layer spacing D is
reduced, one enters regime (ii). In this regime, the stag-
gered hexagonal structure in regime (i) cannot survive,
because the large interlayer repulsion will push the elec-
trons to fill up the "vacancies" in the staggered structure.
The simplest staggered crystalline structure without va-
cancies is the staggered square lattice shown in Fig. 1,
where the lattice sites of one lattice sit above the centers
of the other. As D decreases further, one enters regime
(iii). As mentioned before, the bilayer system reduces to
the single-layer case. The crystal structure is, therefore,
hexagonal.

The purpose of this paper is to discuss how these crys-
tals transform into one another as the energy parame-
ters and the Ailing factors of the system are varied. We
have performed a variational calculation, which examines
a large class of lattice and pseudospin structures. The
resulting phase diagram is surprisingly rich. It contains
more crystalline phases than the ones mentioned above.
It also contains a multicritical point and a critical end
point. A key feature of these crystal phases is that their
spin structure vary over most parts of the phase diagram,
even in those regions where the lattice structure remains
fixed. . In fact, as we shall see, the simple-minded stag-
gered square structure inentioned above (which has fixed
spin structure in the pseudospin language) is not the op-
timal structure in general. Another common feature is
that all bilayer crystals acquire a net magnetization in the
psuedospin space, except for the case of strictly zero tun-
neling. The existence of this magnetization has impor-
tant implications on the macroscopic properties of these
electron solids, which we shall discuss elsewhere.

The rest of this paper is organized as follows. In Sec.
II, we describe our model and our variational wave func-
tion. The result of our calculation, i.e., the Wigner-
crystal phase diagram, is presented in Sec. III. In Sec.
IV, we describe in detail our calculational scheme. Al-
though our variational scheme is conceptually straight-
forward, its actually implementation is not. The reason
is that in evaluating the energy of a crystal structure,
one has to evaluate many lattice sums, which are very
slowly converging. Moreover, one has to repeat the en-
ergy calculation thousands of times in the minimization
scheme. It is, therefore, necessary to develop tricks to
speed up the evaluations of the lattice sums to the point
that makes the minimization process feasible. When all
the tricks are put together, the calculation is quite in-
volved. To make the presentation as clear as possible,
we erst describe the computational strategy in detail in
Sec. IV. The details of evaluating the relevant expres-
sions are given in the Appendixes. At the end of Sec.
IV, we also compare our results with the recent work of
some others on the same subject. In Sec. V, we summa-
rize our results, and emphasize those important features
of bilayer Wigner crystals, which we believe should be
model independent.
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II. THE W'IGNER CRYSTALS
IN BILAYER QUANTUM HALL SYSTEMS

I fhO e
H(t(r) =

2m' qi Br 2c

(2n)
V(z)

)'L

The model and the pseudospin representation. Con-
sider the double-layer quantum well shown in Fig. 2. We
shall adopt the coordinate system shown in Figs. 2(a)
and (b). The origin of coordinate system is placed at
the center of the well. The layers are parallel to the x-
y plane. The position of an electron will be denoted as
x = (r, z), where r = (x, y) denotes a two-dimensional
(2D) vector. We shall consider magnetic fields H nor-
mal the layers, i.e., along z. The Hamiltonian of a sys-
tem with N electrons is H = Ho + V —B, where Hp
is the single particle Hamiltonian, V is the electron-
electron interaction, and R is the (divergent) classical
contribution in V (which we shall define later). Explic-
itly, Ho = P; i[H~~(r;) + H~(z, )], where H~~ describes
the cyclotron motion in the xy plane, and H~ describes
the motion along z,

d
H~(z) = — + U(z),

2

V=
-. /x; —x,

/

(2)

Since the electrons are localized around z = kD/2, a sys-
tem with total electron density n will contain a "classi-
cal" contribution B, which is the Coulomb energy of two
infinitely thin layers located at +D/2, each with density
n 2

m' is the eff'ective mass, and U(z) is a double well poten-
tial, as shown in Fig. 2. We shall consider the case where
the ground state and first excited state of U(z) (denoted
as f+ and f, respectively) consist of maxima at D/2
and D/2—. (See Fig. 2.) The separation D between the
maxima will be referred to as the "separation" between
the layers.

The electron-electron interaction V is given by

Z

. D
2 e s s in'(y)nb(y )yd y

Iy —y'I

—Y0

I

I 2

ns(r, z) = —[b(z —D/2) + h(z + D/2)] .
2

(4)

(2c)
)5 +

I

D/2

Z

(2cI)

—D/2

D/2

The ground state f+ and the first excited state f are
symmetric and antisymmetric about the center of the
well. Their energies will be denoted by e+ and e . For
later discussions, we de6ne

(2e)

X
A

)I ~x
~ X)

which we shall refer to as the "tunneling gap. " The
ground state of H~

~

is the lowest Landau level with energy
2Ru, u = eH/m*c, with wave functions

—X

Z
I

D(2

X3

~ X)

I

—D/2
I

D/2

X~

)
([*+&y]/&)

(2~2 m!P)'I'

For large magnetic fields and a suKciently narrow well,
it is sufBcient to consider the lowest Landau level
(u (x, y)) and the "pseudospin I/2" space spanned by
f+ and f . Although f+ and f are eigenstates of H~,
sometimes it is more convenient to use the "localized"
basis f~ and f~,

FIG. 2. A simple model of the double-layer quantum well
and the pseudospin representation for the lowest doublet. The
coordinate system and the quantum well potential are shown
in (a) and (b). The ground state f+ and the first excited state
f are shown in (c) and (d). They are represented by spinors

(i) and ( i), respectively, which have spin vectors along +xi
and xi. (e) and (f—) represent the sum and difference of these
states, which are localized on the right and left well, respec-
tively. These states are denoted as ft and fi, and correspond
to the spinors (o) and (i). The corresponding spin vectors are
3c3 and —x3 .

1 (f++ f-)
2

(f+ —f )(7)-1

which are states localized in the upper and lower layers,
respectively (see Fig. 2). If we define spinors

f(z) ~

ft( )
f„(z) )

a general linear combination of f+ and f can be written
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as (using the fact that f is real)

P
&~'(&) (»)

which is completely specified by the spinor (.
In defining the spinor f in Eq. (8), we have, in fact,

implicitly chosen a coordinate system (xi, x2, xs) ill the
pseudospin space, so that ft and fg are eigenstates of
os ——0 xs, and f+ and f are eigenstates of cri ——cr xi,
respectively,

where [r]:—(ri, r2, ..., r~), A is an antisymmetrizer for
the electron coordinates (rj), and P denotes a permuta-
tion of N objects with signature (—1)

Bilayer coherent states are simply single-layer ones
augmented by a pseudospin structure,

ft~l o I)

(1)f+~
~2

(io)

There are no relations between (xi, x2, xs) and the real
space directions x, y, and r~. In general, a spinor can
be written as

recalling that x = (r, z), r = (x, y). The analog of the
Wigner crystal of the single-layer case can be obtained
by antisymmetrizing the product of a set of N coherent
states, distributed on a regular array of N points (R, , i =
1, . . .N) in the x-y plane. Each point R; is associated
with a spinor ((R;) describing the wave function of this
coherent state along r~. As in the single-layer case, we
write

cos —e

where 8 and P are the polar angles of its spin vector S,

S = ( o~( = cos8xs + sln8 (cosp xi + sing x2) . (12)

The index i now stands for both the 2D lattice site K;
and the spinor ((R,), where the boldface j denotes the
three-dimensional coordinate x~ of the jth electron. In
this notation, Wigner-crystal wave functions are still of
the form Eq. (16). More explicitly, they are

1
Hp ————LSi,

2

N

Si ——S xi ——) Si;, (13)

where we have ignored the constant N(bur, /2).
Bilayer Wigner-crystal variational states: In the

single-layer case, Wigner crystals can be constructed us-

ing coherent states. A coherent state at K is defined
as

1 r2 (z + iy) (R —iRy)
282

R
482 )

(14)

A simple variational state for the Wigner crystal can
be obtained by antisymmetrizing a product of coherent
states distributed on a lattice (R,.). To simplify the no-
tation, we write

The Wigner-crystal wave function is then

N N

lPi)

The spin vectors of f+, f, ft, and f~ are xi, —xi, xs,
and xs, respectively. (See Fig. 2.) In this representation,
the energy of N noninteracting electrons in the lowest
Landau level and in the pseudospin space is Since these crystals are completely specified by the two-

dimensional array (R;) and the spinors (((R;)), it is
to useful to represent them as "two-dimensional" crys-
tals of "spin 1/2" particles. In this representation, the
hexagonal structure in regiine (iii) [i.e. , Fig. 1(c)] cor-
responds to the ferromagnetic state shown in Fig. 3(a),
with magnetization along xi, representing the symmetric
state along r~. The centered square [Fig. 1(b)] and stag-
gered hexagonal [Fig. 1(c)] structures mentioned in Sec.
I correspond to the antiferromagnetic structures shown
in. Figs. 3(b) and 3(c). The spins along +xs or —xs
in these figures correspond to electrons in the upper or
lower layer.

Ideally, one would like to do a variational calculation
taking the set (R;) and the spinors (g(R;)) as variables.
Such a parameter space is too large to be practical. To
anticipate the eKects of tunneling on the lattice and the
spin structure we have discussed, we restrict ourselves to
the following configurations: We shall consider systems
with an even number of electrons (N even). The array
(R;) consists of two lattices A and B, which are identi-
cal except shifted relative to one another by a vector c.
Spinors on the same lattice are identical, but need not be
the same on diferent lattices. In other words, if aj and
a2 are basis vectors of A, then

R = niai + n2a2 and ((R) = (~ if R E A,
R = miai + mqa2 + c and ((R) = (~ if R E B, (21)

where (n, , m, ) are integers.
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Our variational calculation is performed at fixed elec-
tron density n and fixed magnetic Geld. The variational
parameters are the spinors g~ and g~, the displacement
vector c, and the basis vectors a~, a2. The latter are sub-
ject to the constant area constraint lai x a2] = 2/n. The
energy function to be minimized is

E e2—= —8 (v),N

where E' is a dimensionless function of v. In the bilayer
case, because of the three energy scales e2~n, e2/D, A,
the energy per particle is of the form

(22)

In the single-layer case, since there is only one energy
scale, e /f. , the energy per particle is of the form

(24)

The labor of our calculation is to minimize the en-
ergy Eq. (22) within the variational space (I'
((~, (~, c, ai, az)). The phase diagram of the system is
given by the optimal configuration I', as a function of
the experimental parameters (D/I. , E/(e2//), v). In the
next section, we shall present the Wigner-crystal phase
diagram according to our calculation. The details of our
calculation will be given in Sec. IV.

f
P P III. PHASE DIAGRAM
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Our variational calculation reveals an unexpected
Wigner-crystal phase diagram. Because of its richness,
we shall display it in two difFerent ways. We first show
the phase diagram in the plane of b, /(e /a) and D/a for
various filhng factors v [see Figs. 4(a), 4(b), and 4(c)],
where

JL 4L1F 4L1P JL

a = 2/n = 4z./v

(3c)

o~o~o+
(3c')

mgceQo+~

FIG. 3. The pseudospin representation of the crystals
shown in Fig. 1. The one-component hexagonal crystal in
Fig. 1(c) is represented by the ferromagnet hexagonal crystal
in (a), with the magnetization along xi. The centered square
structure in Fig. 1(b) is represented by an antiferromagnet
crystal in (b), with sublattice magnetization along +xe and
—x3, which are represented by solid and empty circles, respec-
tively. This structure only exists at zero tunneling, A = 0.
When A g 0, both up and down spina will tilt toward xi
as shown in (bt). An arrow with a solid or (empty) circle
attached to the base denotes a spin with positive (negative)
xe component. The staggered hexagonal structure in (a) is
represented by the antiferromagnetic structure in (c). Like
(b), (c) only exists at zero tunneling. Nonzero tunneling will
make the spina point along xi as shown in (ci). For later use,
the structures in (a), (b/), and (ci) are denoted as I, II, and
III, respectively. [See Figs. 4(a) to 4(c).]

is the area of the unit cell of lattice A. Since the layer
spacing D and the tunneling gap L are fixed in ac-
tual experiments, variations in b, /(e2/a) and D/a corre-
spond to varying the electron density n (say, by varying
the gate voltages). Figures 4(a), 4(b), and 4(c) are for
v = 1/3, 1/5, and 0, respectively. Of course, at v = 1/3
and 1/5, the system is a quantum Hall fluid. The reason
that we still choose to display the Wigner-crystal phase
diagram at these fillings is because it is essentially un-
changed at nearby fillings, where the system is no longer
a quantum Hall fiuid. In fact, when plotted in terms of
the variables b, /(ez/a) and D/a, the phase boundaries
show only relatively small shifts over a large range of fill-

ing factors. On the other hand, if the phase diagram is
displayed in terms of the variable 4:—A/(e2//) and v
for different values of D/f [Figs. 5(a) to 5(d)], the move-
ments of the phase boundaries become much more pro-
nounced. Figures 5(a)—5(d) will be useful for experiments
where electron densities are fixed, so that variations in
the magnetic field cause variations in 4 and v.

We have found altogether five stable Wigner-crystal
states. We shall label them together with their region of
stability as I, II, III, IV, V. Roughly speaking, the two
single-layer regime [i.e. , regime (i)] mentioned in Sec. I is
contained in region V. The correlation regime (ii) is con-
tained in region II, III, IV. The one-component regime
(iii) is contained in region I. The optimal spin configura-
tion turns out to be
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SA(~) = singxi + (—)cosgxs. (26)

The spin structure of crystal I is ferromagnetic (i.e.,
g = 90', SA = S~ = xi). All other crystals have
mixed ferromagnetic and antiferromagnetic order, with
0 & 8 & 90 . This system has a uniform magnetization
2sin0xq and a staggered magnetization 2cos0x3. The

pure antiferromagnetic case 0 = 0 only occurs at zero
tunneling. The five classes of stable Wigner-crystals are
as follows.

Region I: One com-ponent ferromagnet hexagonal
crystals. The lattices A and B of these crystals are stag-
gered in such a way so that their union is a hexagonal
lattice [ai a2 ——0, a2/ai ——~3, ai~3/2 = I/n, c =

1.2 1.2 s i
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FIG. 4. (a), (b), and (c) show the Wigner-crystal phase diagram in the the plane of b, /(e /a) and D/a, at filling factors
v = 1/3, 1/5, and 0, where a is the area of the unit cell in lattice A. Although the system is a quantum Hall fiuid at
these fillings, the signer-crystal phase diagram remains essentially the same at nearby fillings, where the system is no longer a
quantum Hall fiuid. The solid and dashed lines are first and second order lines, respectively. The label (F) means ferromagnetic
order, (M) means mixed ferromagnetic and antiferromagnetic order. Both spin and lattice structure undergo discontinuous
change across the first order line. The lattice structure in I, III, and V are "rigid, " in the sense that they are unchanged in the
entire I, III, and V region. In region II and IV, the lattice structure (i.e., ai, a2, and c) varies with A/(e /a) and D/a The.
spin structure is only "rigid" in region I, where it points along xi. In all other regions, the spin angle varies with A/(e /a)
and D/a. See Sec. III, for the determination of the spin angle 8.
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(aq + a2)/2]. In the entire region I, S~ ——S~ = xq, i.e.,
all electrons are in the symmetric state in the r~ direc-
tion. This structure is "rigid. " Both its lattice and spin
structures are 6xed in the entire region I.

Region II: Mixed ferromagnetic and antiferromagnetic
centered rectangular crystals. Both sublattices A. and B
are rectangular lattices, with B sitting at the center of
the unit cell of A: [aq . a2 ——O, aqa2 ——2/n, c = (aq +
a2) /2]. Unlike the "rigid" hexagonal structure in region I,
these structures are "soft" in the sense that both the spin
angle 0 and the lattice parameter a2/aq vary continuously

throughout the entire region II [see Fig. 6(a)]. These
crystals are separated &om the hexagonal ones in region
I by a Grst order line, which changes into a second order
line at a multicritical point. It is also separated &om
crystal III mentioned below by a second order line, which
intersects the I—II 6rst order line at a critical end point.

Region III: Mixed ferromagnetic and antiferromagnetic
centered square crystals. Both sublattices A and H are
square lattices. They stagger in the same way as those in
region II. The lattice structure of these crystals are rigid,
with [az . a2 ——0, az ——a2 ——g2/n, c = (az + a2)/2].

O. 25
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0.0

I I I I I I I

II
I I I I I I ll I I I I

0.1 0.2 0.3 0.4 0.5

0.005

0.000
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FIG. 5. (a) —(d) show the Wigner-crystal phase diagram as a function of b, —:b, /(e //) and v for D/t' = 3, 2, I, I/2. When
plotted in these variables, the phase boundaries show more changes when compared with those in Figs. 4(a)—4(c). In (a), both
phase II and the multicritical point are uot shown, for they appear at very small b, and v. They are shown in (b), (c), and (d).
The spin angle 8 along the vertical and the horizontal line are shown in Figs. 7 and 8.
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However, the spin structure is soft. The spin angle 8
changes continuously within this region. These crystals
are separated &om crystal I by a 6rst order line, and
crystal II by a second order line.

Region IV: Mixed ferromagnetic and antifenomagnetic
centered rhombic crystals. Both A. and B are rhombic
lattices. They stagger in the same way as crystal I and
II. [ai ——az, ai sina. = 2/n, c = (ai + a2)/2]. Like
crystal II, this structure is soft. The spin angle 0, and
the lattice angle n between ai and az vary throughout
the entire region IV [see Fig. 6(b)]. These crystals are
separated &om crystal III by a second order line, and
crystal V mentioned below by a 6rst order line.

Region V: Mixed ferromagnetic and antiferromagnetic
staggered hexagonal crystals. Both A and B are hexag-
onal lattices. A is sitting above the center of triangle
of B. The lattice structure is rigid, with [ai ——a2, cx =
60', aiv 3/2 = 2/n, c = (ai + a2)/3]. However, its spin
structure is soft. The angle 0 varies over the entire region
V.

Figures 7 and 8 show the variations of the spin angle
along the horizontal and vertical line in Fig. 5(a). There

1 00

80

60
v = 0 4P.

40
IV

*

I I I I I I I I I I I i I i [ I I I I I I I I I

0.00 0.04 0.08 0.12 0. 16 0.20

FIG. 7. The spin angle 8 along the vertical line in Fig.
5(a). There is s close to 20' discontinuity across the I—III
6rst order line, whereas there is a very small discontinuity
(almost invisible on this scale) across the IV—V first order
line.

is a large change in spin angle (about 20') across the first
order line separating the one-component hexagonal and
centered square structure. However, the change across
the centered rhombic and staggered hexagonal 6rst order
line is small (about 2'). As we shall explain in the next
section, the spin angle for all cases is given by

sing = 1 iffy& L
4/p if') b, ,

100 I I I
I

I I I I
i

I f I I

[
I I I I

80

60
0.04

40

I------- III
IV
V

0
0.1

I I I I I I i I I I I I I I I I i I

0.5

FIG. 6. (a) and (b) show the centered rectangular and
centered rhoxnbic structure (i.e., crystal II and IV) in Figs.
4(a)—4(c). The meaning of the arrows is identical to that in
the caption of Fig. 3. The crystal (a) reduces to that in Fig.
3(a), when ag/ai = ~3, snd 8 = 90'.

FIG; 8. The spin angle 8 along the horizontal line in Fig.
5(a). The discontinuities of the spin angle across the I—III
and IV—V 6rst order lines are similar to that in Fig. 7.
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where E = E/(e /E), and p is a function of the lattice
structure (aq, a2, c), v, and D/f. . For crystals I, III, V
where the lattice structure is rigid (see descriptions I, III,
V above), p reduces to p~, p~~r, pv which are functions of
v and D/I. only. We have plotted these three curves in
Figs. 9(a) —9(d). Readers who are interested in the spin
angle 8 in regions I, III, V for given D/f can extract their
values from Eq. (27) using these curves. The determina-
tion of 0 in regions II and IV is less straightforward, for
the lattice structures are soft in these regions. One has to
first determine the lattice structure by numerical mini-
mization, and then evaluate p following the prescriptions
in Sec. IV and Appendixes C and D.

IV. VARIATIONAL CALCULATION

In this section, we shall describe in detail our varia-
tional calculation. Our goal is to minimize the energy
per particle at fixed densities with respect to the varia-
tional Wigner-crystal wave functions of Eq. (20),

8 = (H)/N = [(Ho) + (V) —B] /N —= ~o + V —~ (2&)

where (0) = (@,(0[@,)/(@,)@,). To simplify the
notation, we shall &om now on measure lengths in units
of magnetic length /. , and energy in units of e2/E In t.hese
units, the tunneling energy is
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FIG. 9. (a) —(d) showy', p ",p as a function of v for D/f. =3, 2, 1, 1/2. Using Eq. (48), these curves allow one to determine
the spin angle 8 for the crystals I, III, and V in Figs. 5(a) —5(d).
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~p = —-&(si" + si )4
X = ~/("/e). (29)

Separating the background interaction (B) into contri-
butions due to each layer, we have

d2y n d y8= — +-
y 4 gy2+D2

2K

Ga2
G-+0

AD

G

(3o)

where a2 = 2/n = 4vr/v is the unit cell area. Although
bilayer Wigner crystals are more complex than the single-
layer ones, they are identical in form when represented
as in Eqs. (16) and (20). The evaluation of (V) can,
therefore, proceed identically as in Maki and Zotos.
The result is an expansion in a set of n-body potentials,

(V) = ) V(ij)+ } V(ijk)+

where

((ijl —(jul) v(lij) —
I j&))

2(1 —I('lj) I')

Recalling that i stands for R and (, (R), we have

(32)

2 &1 —ls('j)l')
X q X ) X — ) X z X )

= f&'» K(»)d'e(") (33)

~(*~) = f ~'» f~'»', l4*(»)4'(»') l'
Ix —x'I

The integrals in Eq. (33) include both direct and ex-
change terms, which are proportional to Ig;(x)P~(x')I
and P;. (x)Pz (x)P*(x')P, (x'), respectively. As in the
single-layer case, the exchange terms as well as the n-
body term for n & 3 are smaller than the direct terms
by a factor of exp[—B /2E ], where R = IR; —R~ I

is the
distance between two coherent states. This factor is less
than 10 s for v & 1/2. Thus, if we focus on Wigner crys-
tals at filling factors less than 1/2, the exchange terms in
Eq. (33) and the n-body terms in Eq. (31) for n & 3 can
be neglected. V(ij) then takes the Hartree form,

W(q) = f d»d»' e '" "
' ~ft(»). ((K)~e

x If'(n') . &(R') I'. (37)

Recall that fg (r~) and fg (r~) are localized around
r~ = D/2 and D/—2. Typically, these functions de-
cay away &om the layers within a decay length 1/K [i.e. ,

f~~~l(r~) exp( —rlr~ —(+)D/2I)]. In Appendix A, we
show that as long as the products KD and Kg are moder-
ately larger than 1 (referred the "moderate" condition),
the spinor products in Eq. (37) can be replaced by

V(ij) = U+(R) + U (R)ss(i)ss(j) = Vs ( ) s ( l(R),
(39)

OO

U+(R)= — dq e ~ (1 + e ~
) Jp(qR),

2 0
(4o)

where R = R; —Ri, Ss(i)—:Ss(R,).
Note that the ine8'ectiveness of the exchange in

Eqs. (33) and (37) does not mean that the problem is
classical. Quantum mechanical effects are manifested
through (a) the smearing of the (classical) b'-function den-
sity to a Gaussian in the lowest Landau level (thereby
affecting the interaction of two electrons at distances of
the order of E), and (b) layer tunneling [i.e. , the tunnel-
ing gap b, in Eq. (29)]. [Note that the insignificance of
layer exchange in Eq. (37) under the "moderate" condi-
tion does not mean that the tunneling gap in Eq. (29)
can also be ignored. The reason is that 4 is of the or-
der of Isle "~, Iel = Ie+ + e I/2. Even though e " is
small when eD is moderately larger than 1, L can still
be comparable with with other energies in the system
for suKciently attractive quantum well, which makes e

sufficiently large. ]
To evaluate V, we separate the contributions from dif-

ferent lattices A and B. Denoting S3 and S3 as S and
S', respectively, we have

1 1
& = —) [Vs,s(R) + Vs, s (R)]+ —) Vs,s (R+ c)

'R~p R

If'(u) . &I' = lkl'~(n —D/2) + Ital'~(n+ D/2). (38)

These "moderate" conditions are certainly feasible in ex-
periments. Within the approximation Eq. (38), Eq. (36)
reduces to the simple form

for v & 1/2.

Next, using

CL 2'
e e'q (r—r') —q~&~ —~~

~

x —x'I (2~)2 q

Eq. (34) can be written as

V(ij) = dq e ~ Jp(qB)W(q),
0

(34)

(35)

(36)

~ ps,"—sg&' ~ is&+sg&'
4 IE

'
2

'
il 4 li

'
2 ')

) U+(R) + ) U+(R+ c)
Rgo R

) U (H.) —) U (R+ c)

%=2 ) U (R)+) U (R+c)
RQO

(41)

(42)

(43)

(44)
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All the spin dependence in the energy are contained in
Eq. (42) and Eq. (29), which contains (Sz+, Sg) and (S~++
Si ), respectively. Since both S and S are vectors of
Axed length, it is easy to see that the energy is minimized
when S~+ = S2 ——0. Direct plotting shows that U (R)
is a positive, monotonic decreasing function of B. This
means A is strictly positive. p may be positive or negative
depending on whether c is smaller or larger than the
shortest vector in A. In either case, it is straightforward
to show that the optimum spin structure is

S3 ———S3 ——cos8, S1 = S2 = sine (46)

1 2 1—
8 = (+ —csin 8 ——casino,

2

1(=q ——~ —8. (47)
4

Thus, the total correlation energy per electron [Eq. (28)]
1S

On the other hand, an essentially exact evaluation is
possible if one notes the following: (i) The asymptotic
forms of F;(R),i = 1, 2 consist only of powers in 1/R or
I/v R2 + D2 (see Appendix B), (ii) all sums of the form

R ~ "+ ~ and+ 1/(R +D ) + ~ (wherenisa
positive integer) can be either evaluated analytically or
transformed into a rapidly convergent series convenient
for numerical calculation. (See Appendix C.) We, there-
fore, adopt the following strategy.

(a) For any desired accuracy (which we choose to be
10 ), we choose a cutofF A and a set of asymptotic func-
tions (F; '(R), i = 1, 2) which are obtained by retaining
a few terms of the asymptotic expansions of F;(R), such
that (F, '(R)) reduce to (F,(R)) within the desired ac-
curacy for all R ) A. (See Appendix B.) Next, we rewrite
the lattice sums Q; and Q; as

The optimum spin angle is, therefore, given by

sin0 = 1 ifp&A
4/p if') 4,

Q'=Q +Q.",
(48)

where

Q;=Q; +Q, , (54)

and the corresponding energies are
q =) F (R),

R+0
q."= ):F."(IR+.I) (55)

R

( —4 /(4p) if p ) A.
(49)

Fi(R)—: dq e ' Jp(qR),
0

F2(R)—: dq e ~ e 'i Jp(qR),
0

(50)

and the lattice sums

q'= ).F'(IRI) q; =).F'(la+el) i =1 2 (»)
Rgo R

The functions g and p (hence $ and p), can now be ex-
pressed as

q —8= — Q, +Q, +Q2+Q, —8,
—v = (Qi —Qi) —(Q2 —Q2).

(52)

(53)

The evaluation of q —8 and p (or ( and p) reduces to
the evaluation of the four sums (Q, , Q;, i = 1, 2). The
reason that we consider the particular combination g —8
is because (as we shall see) each Q term has a divergent
(classical) contribution, so that their total contribution is
8. As a result, the combination g —8 is finite. Likewise,
the differences (Q; —Q;), i = 1, 2 are all finite, because
their divergent contributions cancel each other.

A straightforward forward evaluation of these sums
proves highly impractical as they converge very slowly.

Thus, the determination of the correlation energy and
the optimum spin structure for a given lattice reduces to
the evaluation ( and p. To evaluate these quantities, it
is useful to introduce the following sums. Let us de6ne
the functions

q;. = ) [F,(R) —F,.-(R)]e(A —R),
Rgo

q,"=) IF, (IR+ cl) —F,.-(IR+ cl)] 8(A —R). (56)

2KQi'= + Ti& Q2Ga2 a-+0
2' —as+Ti, Q2

—as

Ga2 G'-+0

2K

Ga2 G'-+0

2Ã

Ga G—+0

2vrD + T2a2
2vrD + T2)a2

where the (T;, T;) are the finite parts of (Q, Q, }.Us-

ing Eqs. (52) and (53), ( and p in Eq. (47) are now ex-

pressed in terms of the finite quantities (T;,T, , Q, Q; ):
1

C=(~ 8)--~, -
4

rl —8= ) — Q +Q, +T;+T;
i=1,2

—~ = [(Q —Q, ) —(Q —Q. )+(T.-T.)
—(T2 —T2)l. (58)

The superscipt sr means "short range, " and 8(x) = 1
or 0 if x & or & 0. It is clear that all the short range
contributions (Q, Q, ) are finite.

(b) The sums (Q,. ', Q, , i = 1, 2) are evaluated an-
alytically by generalizing the method of Bonshall and
Maradudin, or transforming the sum into a very rapidly
convergent series. These are done in detail in Appendixes
C and D. As we shall see in Appendix C, all four asymp-
totic sums contain a divergent piece typical of Madelung
sums. Separating out this divergent piece, they can all
be written as
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—1.8 a/(e'/a) =0.1
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p'=1/3

(S/(e'/a) =0.1:,'
/

, '/

/'/

://
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,::/
j/

i/
/:/

/

/

I: 1 Comp. Hexagonal
II: Centered Rect.angular
III: Cent. ered Square
V: Staggered Hexagonal

The explicit expressions of T; and T; are given in Ap-
pendix C.

(c) The short range sums Qi' and Qi' can be evaluated
directly. This is because the asymptotic function Fi'(R),
is a simple sum of inverse powers of R, and Fi(R) is pro-
portional to the zeroth order Bessel function with imagi-
nary argument, which is available in most math libraries.
The evaluation of (Q2', Q2 ) is less straightforward as the
integral F2(R) is not a tabulated special function. Al-

though this function can be evaluated to high accuracy
by numerical integration, incorporating this integration

in the minimization process is too time consuming to be
practical. However, this bottleneck can be eliminated by
the following trick. We first evaluate F2(R) by numerical
integration on a fine mesh within the short range region
R & A. The values of F2(R) at any point not on the mesh
can be obtained (to a desired accuracy) &om the nearby
mesh points by using the "cubic spline" interpolation.
This allows us to replace all necessary numerical integra-
tions in our minimization process by the spline interpo-
lates, which is enormously faster. With the short range
contributions given by (c), and the asymptotic contribu-
tions given in Appendix C and D, our evaluation of the
functions ( and I is complete.

The accuracy of the present calculation. The most seri-
ous approximation in our calculation is that the exchange
terms are ignored in Eq. (33). As mentioned at the be-
ginning of this section, the exchange terms are smaller

—R 2Ethan the direct terms by a factor of e + //, which is
10 around i/ = 1/2 and drops dramatically at loweriiig
611ings (10 s around i/ = 1/3 and 10 around v = 1/5).
Once the exchange terms are dropped, the rest of our
variational calculation is essentially exact. The numeri-
cal scheme that we have mentioned can easily achieve an
accuracy of one part in 109 (and can be improved system-
atically). To demonstrate further the accuracy of our cal-
culation, we show in Figs. 10(a) and10(b) the energies of
various crystal states at v = 1/3. The exchange energy is
invisible on the scale of both figures. One can clearly see
in Fig. 10 that the energy differences between difFerent
crystals range from 10 (far froin the phase boundary)
to 10 2 (close to the phase boundary), except for those
between crystal I and II, and between II and III. The
latter is shown on an expanded scale in Fig. 10(b), from
which one can see that the energy difference of these crys-
tals is typically of the order to 10 . Thus, the energy
di8'erences between all crystals are much greater than the
exchanged energy 10 . Furthermore, the exchange en-
ergy appears as a systematic correction to all crystals. In
comparing the energies between crystals of similar crys-
tal structures, they are to a large extent cancelled out
so that the actual exchange contributions to the energy
di fference are at least an order of magnitude smaller
than 10 . The only place where our calculation may be-
gin to produce a few percent error bar is close to v = 1/2.
At lower billings, all numerical evidence indicate that our
evaluations of crystal energies are accurate to the order
of e /" (which is the ratio between exchange and di-
rect terms), and that the energy difference has an even
higher accuracy (10 e / ), because of the aforemen-
tioned systematic correction.

—2. 10
0.10 0.15 0.20

/

I I/ I I I I I I I I I I I I

0.25
V. CONCLUDING REMARKS

PIG. 10. (a) shows the energies of the crystal states I to V
at u = 1/3 and A/(e /a) = 0.1 as a function of layer separa-
tion D/a. (b) shows the transition region I—II and II—III in
(a) on an expanded scale. The energy difference depicted is
typically of the order of 10

We have seen that Wigner crystals in bilayer quantum
Hall systems come in diferent "magnetic" and structural
varieties. Among the crystal phases we have found that
crystals I, III, and V occupy large areas of the parame-
ter space, whereas crystals II and IV (especially II) oc-
cupy smaller regions. As we have seen in the previous
paragraph, the energy differences between II and neigh-
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boring crystals I and III are quite small ( O. le2 ja). It
is, therefore, not clear whether they will survive Landau
level mixing or will exist at finite temperature. Moreover,
additional uncertainty can be added to the stability of II
and IV, as the energy of the trial wave function can be
improved by including correlation effects (such as those
considered by Lam and Girvin and by Zhu and Louiexs).
It remains to be seen whether II and IV will be rescued
or destroyed by these efI'ects.

Despite the uncertainty of the fate of crystal II and
IV, our results serve as a useful starting point for analyz-
ing real data, as they provide a guide to look for various
signer-crystal phases, and illustrate the richness of the
bilayer crystal varieties. There are, however, two key fea-
tures of the bilayer crystals revealed by our calculations
that; are immune to the factors mentioned in the previ-
ous paragraph (higher Landau level mixing, improvement
of calculational scheme, etc). These features are direct
consequences of the competition between layer tunneling
and interlayer Coulomb repulsion and must exist in real
systems. They are the coexistence of antiferromagnetic
and ferromagnetic order, and the coupling between lat-
tice and spin structure. The antiferromagnetism in pseu-
dospin space is to minimize the interlayer Coulomb re-
pulsion, whereas the ferromagnetism is to take advantage
of the tunneling energy. The coupling between lattice
and spin configurations simply refiects the competition
of these two energies. In xnany ways, Wigner crystals in
bilayer systems are like He solids, which also have difFer-
ent phases with different lattice and magnetic structures.
The magnetic structures in He solids are known to give
rise to many remarkable nuclear magnetic resonances. It
will not be surprising if bilayer % igner crystals also have
many interesting "magnetic" properties.
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APPENDIX A: CONDITIONS FOR EQ. (38)

to Eq. (37) can then be written as

Is(q) = f ds f ds'e s~ e "'~g(s) g(s') (A2)

ds(q) = f ds f ds'e s~ s' ' 'g(s)g(s+ D)g(s')s. (Ag)

Since g(s) e "!g!,the exponential factor in Eqs. (A2)
and (A3) can be replaced by e x!~+' ' & if eD is mod-
erately larger than 1. On the other hand, the Gaussian
factor in Eq. (36) limits q to the range q & 1/E. Hence,
if eE is moderately larger than one so that e &' decays
much slower that e "', the functions g(s)2 and g(s')2 in
Eq. (A2) will act like h functions. The same approxima-
tions applies to I2. However, because of the product, I2
is smaller than I~ by a factor of e "+. It can, therefore,
be ignored if KD is moderately larger than l. Applying
the analysis to other products of f's, we have Eq. (38).

APPENDIX B: ASYMPTOTIC EXPANSION
OF Ex(R) AND E2(R)

Note that

Fx(R) = dqe ~ Jo(qR) = Io(R j8),
0 2

where 10(x) = e Io(x), and Io is the Bessel function
with imaginary argument. For B && 1, Eq has an asymp-
totic expansion

Eg(R) m Ex (R) = ) —,V' "—1 2„1
n=O. [(2n —I)!!]2

R2qg+1 '

n=O

For R ) A = 35 (i.e. , A =- 351 in the original uxut), only
three terms in the asymptotic series,

Fx '(R) = 1 + V' + —V
1 4 1

are enough to reproduce Ex(R) to the accuracy of 10
In the case of I"2(R), we note that it has the asymptotic

expansion,

The integrand in Eq. (37) contains terms like
ft(u)2f~(u')2, ft(u)fg(u)f~(u') , ft(u)2f~(u')2, etc. We
shall discuss the contributions of the first two terms, &om
which the contributions of the rest can be similarly in-
ferred. To simplify these expressions, we shift the origins
of u and u', so that the maxima of fg and fg are at the
origin, QR2+ D' (B5)

( ] )
dqg2qq ]

EP(R) + E2 (R) =), (B4)
n=O

(2n)! 1
(R2 + D2) +x(2

n=G

f1(u) = g(u-Dj2) = A(-u). (A1)

The contribution of fg(u) fg(u') and ft(u) f~(u) fg(u')
H„(x) are the Legendre polynoxnials. As in the case of
Eq, for B & A = 35, only three terms in the above series,
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d 1 d 1
D 2dD /R +D (B6)

are enough to reproduce Fi(R) to the accuracy of 10
P„(x) are the Legendre polynomials. The functions
Fi'(R) and F2'(R) are the asymptotic functions that
we have used in our numerical calculation.

APPENDIX C: EXPLICIT DETERMINATION
OF THE ASYMPTOTIC LATTICE SUMS

(Q;.', Q, , i = 1,2)

Consider the following generating functions:

1
h(c) = )

1—(IR+.I'+ D')'~' (c1)

where R 9 A. Using the asymptotic functions
(Fi '(R), F2'(R)) defined in Appendix B, it is easy to
see that

qi'= Limb~p 1+ Vb + —Vb
l

h(b) ——l,. E
—as
Qi =

—as
Q2 =

1+ V', ~ —V' h(c),
2d1d( li'-dD +

dD l'(-'D)-D
l

1
dD2 dD4 (C2)

h(c) =
GmO

1+-[-2+L(/ )]a

+- ):[L(IR+ cl/a)
RQO

+L(R/a)cos(2~lR x cl/a )],
2K

(c, D) =
GmO

1 ) cos(2~lR x cl/a )
RQO

(c4)

We shall Grst give the expressions of h, and g. Their
derivations are given in Appendix D. These expressions
are

(c6)

With these identities, using the definitions in Eq. (57),
and Eq. (C2) it is straightforward to work out the fi-
nite parts (T;,T;, i = 1, 2) of the asymptotic sums

27r
Limb p [h(b) —1/b]—:

GmO

+ T1CL )

Limb p V~~ [h(b) —1/b]:—Tip,
1—Limi, ~p Vb [h(b) —1/b]—:Ti„
2
Tl = Tla + Tlb + Tlcy (C7)

where

T, = — —4+ 2 ) I (R/a)a
RQO

Tip = ——+ ) L2(R/a) —4m (R/a) L(R/a)
RQO

1 64m
Ti, —— — + ) [L4(R/a)

Rgo

+16' (R/a) I(R/a)] (C8)

It may seem that only Eq. (C4) is necessary because
h(c) is a limiting case of g(c, D) The latter is true but
impractical. The reason is that the number of terms
needed to be included in the sum in Eq. (C4) to achieve
a specified accuracy grows as 1/D as D ~ 0. The series
in Eq. (C4) is, therefore, useless in the small D limit. We
are, however, lucky for two reasons. I"irst of all, the typ-
ical value of D in real experiments is of order unity. The
series expansion Eq. (C4) is highly convergent for these
D values. As for h(c) [which corresponds to the special
case g(c, D = 0)], an analytic expression [Eq. (C3)] can
be obtained by a straightforward generalization of the
method of Bonshall-Maradudin (BM). s (See Appendix
D.) This method produces a super convergent series for
h (a cutofF of just four lattice constants in the sum is
usually sufIicient to produce an accuracy of 10 i2).

Next, we note that the gradients in Eq. (C2) can be
conveniently evaluated using the following identities:

V2L(r):—L2(r) = L(r) + pi(~r2)e

pi(x) = 4m+ 2,

V4L(r) = L4(r) = 9I (r) + pg(vrr2)e " r4.

p2(x) = 16m' —Sx' + 12m + 18.

where a2 is the unit cell area of lattice A (a2 = 2/n =
4~82/v) and h(c) —= + Tla&

Similarly, for Qi, we have

V' h(c) —= Tip,
1-I (x) = — 1 —P(i/~x)x

u

P(y) = du e
7r Q

(c5)

G —+0

2
—V, h(c) —= Ti„
Tl = Tla + +lb + Tlcy (C9)

The function P is the error function. where
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1
Ti —— L(c/a) + ).[L(lR + cl/a)

RQO

+L(R/a) cos(2mlR x cl/a )]

1
L2 (c/a) + ).[L2 (IR + cI/a)

RQO

~
—2mRD ja

T2 = —) cos(2vr[R x cl/a ),
RQO

1 - 2 —2 DRT2b = ——) 4m (R/a) e cos(2vr
l
R x c l/a ),

RQO

T2 ——) 16vr (R/a) e / cos(2vrlR x cl/a ).2a5
RQO

47r (—R/a) L(R/a) cos(2vrlR x cl/a )]

T"=, . L4(c/a)+ ).[L4(IR+cl/a)
RQO

+16m (R/a) L(R/a) cos(2m lR x cl/a )] . (C10)

A final note —to obtain an overall accuracy in the corre-
lation energy to eight significant digits, suitable cutoffs
(Ab and Ag) for the lattice sums in Eqs. (C3) and (C4)
are Ab = 5a and A~ = 20a /7rD [so that e
10 ii in Eq. (C4)].

APPENDIX D:
DERIVATION OF h(c) AND g(c, D)

Next, for Qz', we have

[g(O, D) —1/D] —=

E~" G O

d2—
„D,[g(o ) —1/D] =—T.b,

1 d4
[g(0, D) —1/D] = T2„

T2 = T2a+ T2b+ T2cy

2~DE)
2 I +T2a)a2

(C11)

The series for h(c) in Eq. (C3) can be derived by a
straightforward generalization of the BM method. We
Grst write

tO OO)

h(c) = ) I
+

I
dp e p'I + I' —(i) + (ii),

~sr (,
(Dl)

where iU = ~7r/a. After rescaling the integration vari-
able, the second term (ii) can be written as

where

—2n RD/a".=.
( /.)').-.

1
T2b- a3

2! —2 DR
(D/a)'

+ ):4-'(R/-) -'- "/.
,

(ii) = —) I(lR+ cl/a),
1

R
(D2)

where I (R) is defined in Eq. (C5). To evaluate the first
term (i), we first convert the real space lattice sum into
a sum in the reciprocal space [using the standard rela-
tion gR ~(R) = pG~(C)/a, where ~ is the Fourier
transform of w],

1
T2c 2a5 + ) 167r (R/a) e 2wDR/a'

(D/a)' (i) ) dP e
—G /4P +iG, c

C 0 a2P2

Changing P -+ m/P, we have

(D3)

Finally, for Qz, we have

(2~
g(c, D)—: I + T2a)a2

(i) ) dp
—(Gp/2w) +i@.c ) I (D4)

Q 1

The C = 0 term is connected to the 1/R divergence of
the sum and has to be treated separately:

g(c, D)—:T2b,dD2

1 d4

2 dD4 g(c, D)—:T2„
27r

Ga2
A —+0

dp
—(GP/2m) +i& c

0

(D5)

where

T2 = T2a+ T2b+ T2c) (C13) For the C g 0 terms, we note that reciprocal lattice
vectors G. and real space lattice vectors K are related as
G = 2mz x R/a . We can then write
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) dP e mR—0 la +iz mlR. xclla
g

Ggo Rgo

= —) I(B/a) cos(2rr~R x c~/a ).
Rgo

Using the relation

) e'~ = ) (2rr) b(q —G)/a, (DS)

Substituting Eqs. (D2), (D5), and (D6) into Eq. (Dl),
we have Eq. (C3).

The derivation of Eq. (C4) for g(c, D) is as follows. We
write g(c, D) as

we find

iG c—GDg(c, D) =),e'~
G

d2
( D) ) ~ '0 + ig (R+c) qD—

R (2rr)' q
which is Eq. (C4), if we treat the G = 0 term separately,
and write C = 2mz x R/a .
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