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Using the Hartree-Fock approximation, we calculate the energy of diferent Wigner-crystal states
for the two-dimensional electron gas of a double-quantum-well system in a strong magnetic field.
Our calculation takes interlayer hopping, as well as an in-plane magnetic Geld into consideration.
The ground state at small layer separations is a one-component triangular lattice Wigner state.
As the layer separation is increased, the ground state first undergoes a transition to two stacked
square lattices, and then undergoes another transition at an even larger layer separation to a two-
component triangular lattice. The range of the layer separation at which the two-component square
lattice occurs as the ground state shrinks, and eventually disappears, as the interlayer hopping is
increased. An in-plane magnetic field induces another phase transition from a commensurate to an
incommensurate state, similar to that of v = 1 quantum Hall state observed recently. We calculate
the critical value of the in-plane field of the transition and find that the anisotropy of the Wigner
state, i.e., the relative orientation of the crystal and the in-plane magnetic field, has a negligible
eKect on the critical value for low filing fractions. The efFect of this anisotropy on the low-lying
phonon energy is discussed. An experimental geometry is proposed in which the parallel magnetic
field is used to enhance the orientational correlations in the ground state when the crystal is subject
to a random potential.

I. INTRODUCTION

An electron gas is expected to condense into a Wigner
crystall' (WC) below some critical density. This con-
densation occurs when the Coulomb energy, which tends
to localize electrons into individual lattice sites to keep
them as far apart as possible &om each other, dominates
over the kinetic energy, which favors a smooth variation
of electron density. In the absence of a magnetic field,
the kinetic energy of a two-dimensional electron system
(2DES) scales like K = 52/m'a2, while the Coulomb
energy scales like V = e /ea, where a is the mean inter-
electron distance and e is the dielectric constant of the
host material, and m* and e are the electron mass and
charge, respectively. The relevant parameter is the ratio
r, = V/K = a/a~, where a~ = 5 e/m'e is the Bohr ra-
dius. Monte Carlo simulation predicts that a 2DES crys-
tallizes for r, & 35. When a strong magnetic field is ap-
plied perpendicular to the 2DES, the situation is changed
qualitatively, as the kinetic energy is quenched into dis-
creet Landau levels, and the zero-point fluctuations in
the lowest Landau level are confined within a magnetic
length /p = (hc/eB~) i~2, where c is the speed of light and
B~ is the applied magnetic field. Once lo is suKciently
small compared to the typical interparticle distance a,
crystallization occurs. The ratio lp/a can be character-
ized by the Landau level filling factor v = 2~lo2n, where
n is the density of the 2DES. Crystallization will occur
for sufBciently small v for any given density. Theoretical
estimates put the critical filling factor of crystallization
at about v, 1/6. In recent years, especially after the
observation of the reentrant insulating phase around the

v = 1/5 quantum Hall state, there has been an increas-
ing interest in the study of the WC states in a 2DES in a
strong magnetic field. Many experimental results are
found to be in some ways consistent with the assumption
of a pinned WC as the ground state.

Recent advances in material-growth technology allows
the fabrication of high quality double-quantum-well sys-
tem (DQWS), in which two interacting 2DES are sepa-
rated by a distance comparable to the mean interparti-
cle distance within the 2DES. This introduces a degree
of &eedom associated with the third direction. Electron-
electron interactions between the layers have been known
to lead to quantum Hall states. It also leads to in-
creased stability of the WC state or other charge density
wave states. Recent experiments on two layer systems
in wide quantum wells below filling factor v = 1/2 have
shown insulating behavior similar to that seen in single
layer systems below v = 1/5. Because Coulomb interac-
tions can lead to mixing of the electronic states of the
two wells, more complicated structures of WC states be-
come possible in DQWS. The goal of this paper is to
investigate the evolution of the ground state among dif-
ferent possible WC configurations, as the parameters of
the DQWS are changed, at a small Landau level filling
factor, where a WC is expected to be the ground state.
This is accomplished by calculating, in the Hartree-Fock
approximation, the ground state energy of the difFerent
WC states. Our method of calculation is based on the
numerical technique developed in Ref. 14, which is valid
in the strong-field limit. We take into consideration in-
terlayer hopping, as well as an in-plane magnetic field.
We ignore the finite thickness of the quantum wells and
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treat the electron gas as ideally two dimensional. This
zero-thickness approximation is an important simplifica-
tion in the case of a tilted field, since the effect of the
in-plane magnetic Geld can then be included by adding a
phase factor to the wave function of the electrons in one
of the wells.

At small layer separations, where the electron-electron
correlations between the wells are almost as important
as the correlations within each individual well, electrons
will occupy the symmetric state of a DQWS to minimize
Coulomb energy and to take advantage of hopping en-
ergy. In this situation, the DQWS behaves essentially
like a single layer system. The WC at small filling factor
is, therefore, a triangular lattice. As the layer separation
increases, the 2DES will seek a state where intralayer cor-
relations are favored over the interlayer correlation. This
leads to a transition to a truly two-component system
when the intralayer Coulomb energy is more important
than the hopping and interlayer interaction energy com-
bined. Under this condition, each individual well forms
a WC separately with a lattice constant, which is appro-
priate for the electron density in its own layer. The two
lattices are shifted relative to one another to lower the
interlayer static Coulomb energy (Hartree energy). We
find that, in the absence of interlayer hopping, the one-
component WC is first transformed to a two-component
square lattice WC state, and then transformed to a two-
component triangular lattice, as the layer separation is
increased. The existence of a square lattice WC at inter-
mediate separations can be understood by noticing that
the square lattice configurations have lower interlayer in-
teraction energy than that of the triangular lattices. This
gain may exceed the difference in intralayer Coulomb en-
ergies between a square lattice and a triangular lattice,
which is known to be small. The range of the layer sep-
aration at which the two-component square lattice ex-
ists shrinks, and eventually disappears, as the interlayer
hopping is increased, as a result of the expansion of the
one-component triangular phase. Our result is consistent
with that of Chan and MacDonald, where they treat
electrons classically, and with the recent calculation of
Narasimhan and Ho.

A DQWS in a tilted magnetic field has been studied
recently. A phase transition, driven by the in-plane com-
ponent of the Beld, was observed for v = 1 quantum Hall
state, and was explained using an easy-plane itinerant
quantum ferromagnetism description. This phase tran-
sition happens as a result of the competition between the
hopping energy and Coulomb interaction energy. The in-
plane magnetic field twists the interlayer phase coherence
of the wave functions of electrons in symmetric state.
The result is an increase in interlayer Coulomb energy.
At small in-plane Geld, the increase in interlayer Coulomb
energy is small compared to the hopping energy, so the
electrons will stay in the state dictated by the tunnel-
ing part of the Hamiltonian in order to take advantage
of the hopping energy. As the in-plane Beld becomes
stronger, the hopping energy is reduced, while the cost
in Coulomb energy continues to rise. When the in-plane
field is raised beyond a critical value, the DQWS system
will undergo a transition to a state in which electrons

give up the hopping energy in order to restore the inter-
layer correlations. The same physics occurs for either a
v = 1 quantum Hall state or a one-component WC state,
since for both cases, there is strong interlayer coherence
before the application of an in-plane field. Since a WC
breaks the rotational symmetry of the system, the phase
transition should, in principle, depend quantitatively on
the angle between the direction of the in-plane Geld and
the crystal axes. We have calculated the critical value of
the in-plane field and found that this dependence is very
weak, practically unobservable at small filling factors.

Nevertheless, a parallel magnetic field can have impor-
tant consequences, particularly for the long-wavelength
physics of the system. The broken orientational symme-
try of the ground state, due to a parallel magnetic Beld,
implies that there is a restoring force on the crystal if
it is misoriented with the field. This efFect can be very
important if the system is subject to a weak random po-
tential, which destroys long-range orientational order in
this system. We propose an experimental geometry, in
which the 2DEG is cooled through its freezing transition
in the presence of a parallel magnetic field. The force
that tends to align the crystal axes perpendicular to the
parallel Beld should enhance the orientational order in
the ground state. It has been shown recently that the
depinning electric field of a disordered WC is sensitive
to the orientational correlations in the system, and tends
to be reduced as orientational order increases. Thus, an
increase in orientational order can, in principle, be de-
tected experimentally through the transport properties
of the system.

This paper is organized as follows. In Sec. II, we de-
scribe the Hartree-Fock approximation for the interacting
2DES in a DQWS in a strong magnetic field. In Sec. III,
we present and discuss the numerical results. Sec. IV
discusses the effect of a parallel magnetic Beld on some
of the crystal properties. A brief summary in Sec. V
concludes this paper.

II. HARTREE-FOCK APPROXIMATION

In the absence of an in-plane magnetic Geld, the
Hartree-Fock approximation for a DQWS has been
clearly presented in detail in Ref. 14. We need only
to extend it to the case of a tilted magnetic Beld. In
a Hartree-Fock approximation, one treats the interact-
ing Hamiltonian as that of &ee electrons in the mean-
Geld potential determined by a given electronic state
and then self-consistently solves for the state. In our
present case, the electronic state being sought is a WC.
The characteristic of a WC is a periodically modu-
lated charge density. We, therefore, choose the Fourier
transformed electron density at corresponding reciprocal-
lattice vectors (RLV), as the order parameters of the
WC states. Following this idea, we define p,z(g)
(e 0~4/g) f d2re '+'vjt(r)@~(r), where i,, j = 1, 2, label-

ing the two layers, @t (Qz(r)) is electron creation (anni-
2 $2hilation) operator, and the prefactor e i i0~4g is singled

out for the purpose of convenient notation. One obtains,
in the lowest Landau level with the Landau gauge,



12 284 LIAN ZHENG AND H. A. FERTIG 52

p'i(q) = —) e ' * + lp ~+~ C,~C~p~
np

(p' (q)) = G *(q 'r = O ) (2)

where n and P are the single-particle states of the low-
est Landau level. In the above expression, g = 0/2vrlp2
is the Landau level degeneracy, where 0 is the area of
the DEWS. The order parameters have, by definition,
the property that (p,~. (q)) = (p~;(—q))*. We restrict
ourselves to seek only the WC states, where the charge
distribution in one layer is the same as that of the other
layer, except that one is rigidly shifted by a displacement
of a relative to the other, i.e. , (p22(q)) = e'~' (pii(q)).
This leaves us with only two independent sets of the or-
der parameters to be obtained. The order parameters are
related to Green's function as

H = —) pC,. C; —te "&"/ ) (Ci C2
ia CX

+C.. ~.Ci-)t

y —) ) V; (o., n', P, P')C; C pC p C;
ij na'pp'

where p is the chemical potential to be fixed at the
end of calculation for a given electron density, and
V~ (n, n', P, P') is the matrix element of Coulomb poten-
tial. The hopping parameter t is suppressed in the pres-

—I'l' 4ence of an in-plane field by a factor e "& 0/, which comes
from the matrix element (1n~t~2o. ') =- te "~lo/4b

Physically, this means that the electrons tunnel along
the direction of the total magnetic field. Performing
the Hartree-Fock pairing CiC2C2 Ci = (CiCi )C2C2-t t t t

(CitC2 )C2tCi on Eq. (7), one obtains

where G;~(q, 7.) = el o/ /g J'd re ' 'G;z(r, r, w) and

G;~(r, r', w) = —(T g;(r, w)@ (r')). In. the lowest Lan-
dau level, the Green's functions become

H = —g ) PP" (O) —gt[P»(k&) + P»( —k&)]

2

+g- ) ) ~&.-, (q) p, '(q),
q ij

where k~ ——k~y and

with

G'i (n, P, ~) = (T C; (r—)C,p)

The Green's functions are to be obtained by self-
consistently solving the equation of motion,

Ull(q) = [V.(q) —Vb(q)](P»( —q)) + V (q) (P22( —q)),
U»(q) = -V~(q)(p»( —q)) (9)

with U2i and U22 obtained by interchanging the indices
1 and 2. In the above expressions, V, Vg, V, and Vg
are the direct and exchange terms for the interlayer and
intralayer Coulomb interactions,

G,, (n, P, ~)+h(~)h, ,h ~+ (T.[H, C; (~)]C,'z) = O. .
t9

V (q) = e ~ 'o/ (1 —h~ ),
ql0

Vb(Q) = —q lo/4I ( 2l2/4)

)
iny —(a —calo) /2lo

Qlpgvr0

42-(r)= e'" "&i-(r). (6)

The Hamiltonian of the DEWS contains kinetic energy
(which is a trivial constant for the lowest Landau level),
interlayer hopping energy, and the Coulomb interaction
energy.

The next step is to approximate the equations of mo-
tion in the Hartree-Fock approach. We will treat a tilted
magnetic field &om the beginning. The result for a per-
pendicular field is recovered by simply setting the in-
plane component of the field B~I

——0. Under the zero well-
thickness approximation, the only effect of the in-plane
magnetic field is to add a phase factor to the electronic
wave function of one of the layers. Let k~ = d/l~~, with d

the separation between the wells, and l~~
= (hc/eB~~)

If one chooses the direction of B~~ as the x axis, the single-
particle eigenstates become

V.(g) = '"V-(~)

V, (q) = d*J.(~gl p) e *'/' *"/", --
0

(1o)

A;~(q, ~) = — ) U;b(p —q)e' / Gl„ (p, w), (11)
E 0 kp

where q A p = q~p„—q„p~. The effect of the in-plane
field is contained explicitly in Hz, the hopping term in

where J0 and I0 are the zeroth order Bessel function and
modified Bessel function, respectively. It is worthwhile
to notice that since Coulomb scattering is not expected
to move electrons &om one well to the other, the matrix
element V~ (n, a', P, P') is unchanged by the presence of
an in-plane field, i.e. , Eq. (9) and Eq. (10) are exactly
the same as the expressions for B~~

——0. This means
that the commutator [H„C; ], where H, is the Coulomb
interactions part of the Hartree-Fock Hamiltonian of Eq.
(8), is unchanged by the presence of the in-plane field.
Letting A;z(n, P) = (T [H, C; ](7)C.—&), we have
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Eq. (8). Denoting E~(n, P) = —(T [Hq, C; ](7)C &)., one
obtains

Ell(q, ~) = te "~"~ e *" " G2l(q —k~, 7.),

El2(q+ k&, z) = te "~ '~ e ' o " G22(q 7-),

Fql(q —kg, ~) = te ~ o~ e'o~ " ~ Gll(q, z),

+22(q T) = te "& o e' o " ~2Gl2(q+. k~, z). (12)

One can see, &om the above expressions, that in the
presence of an in-plane Geld the hopping Harniltonian
attempts to shift the positions of the nonvanishing inter-
layer order parameters (pl2) and (p2l) in reciprocal space
&om q = C to q = C + k~. This is merely a reHection
of the fact that the charge distributions in the two layers
will be relatively shifted, because the electrons intend to

I

tunnel along the direction of the total magnetic field. If
the electrons of the DEWS are in the symmetric state for
B~~

——0, where electron distributions in the two layers are
directly on top of each other, the inclusion of an in-plane
field damages the original interlayer correlations and re-
sults in an increase in the interlayer Coulomb energy. In
a pseudospin description of the DEWS, the tunneling
behaves like a tumbling magnetic field, which twists the
interlayer phase coherence of the symmetric states. In an
attempt to minimize the total energy, a DEWS is forced
to choose between the hopping energy and the Coulomb
energy. The electrons can only take advantage of the
hopping energy at the cost of increasing the interlayer
Coulomb interaction.

Putting Eq. (11) and Eq. (12) into Eq. (5), one ob-
tains the desired equations of motion for Gii and G2i in
Matsubara frequencies,

2 ) [e' o ~ Ull(q —q')Gll(q', iur„) + e' ' ~ U2l(q —q' )G2l(q', i~„)]
E p ql

+(i~~ + p)Gll(q, i~~) + te " " 'e "'" 'G2l(q —kgb) i~„) = M~ o,

e ) [e'' U2l(q' —q )Gll(q', iu)„) + e'' Ull(q —q')G2l(q', i(u )]
E p ql

+(ikey„+ p)G2l(q, i~„) + te "&'0~ e'0 "~ Gl, (q + k~, iur„) = 0, (13)

where we have adopted the following notations:

U; (q) = ' ' ~ U;, (q),

GV(q) = e ""Gv(q)
(pV(q)) = e ""(pV(q))
q+ = qkkg or q. (14)

Equation (13) and Eq. (14) are intended to be appli-
cable to di8'erent possible WC states. We need to set
correct conditions for each situation. For the case of a
perpendicular magnetic 6eld, one has k~ ——0, q+ = q,
and a as the relative shift of the charge distributions be-
tween the layers. As mentioned earlier, there are two
possible phases in the presence of an in-plane field, elec-
trons can choose either to take advantage of the hopping
energy at the cost of increased Coulomb energy, or to
maintain good correlations for reducing the Coulomb en-
ergy at the cost of giving up the hopping energy. For the
former case, one has q+ = q 6 k~, and a = k~lpx. For
the latter case, one has q+ = q and can electively set
t = 0 [see Eq. (8)].

Equation (14) can be rearranged into following com-
pact matrix form, which is convenient for numerical eval-
uation:

[(ibad)„+ p, ) —D]G = M3,

where

B = [1,0, 0, 0, 0, . . .],
G = [Gll ('ql) G21(ql ), Gll(q2) G21(q2 ) .], (16)

with (ql, q2, qs, ...) arranged in the order of increasing
magnitude. The nonzero elements of the Hermitian ma-
trix D are

2

D., l,2, l ——
t
e""' ' 'Ull(q. - —q ),

~lp
2D„,2,. = e'0~* ~' ~'U2, (q, —q ) + 8;,t,

2 e""'"U»(q. —q; )+~et'
~o

2 ' ' U»(q' —q.-)
alp

where t = te "~~0~ e ' 0~ "—~~ . Equation (15) can be
solved by diagonalizing the matrix D. If Vg and uA, are,
respectively, the kth eigenvector and eigenvalue of D, we
obtain

&max

(pll(q;)) = ) Vp(2i —1)VI,(1),

Icmax

(pl2(q
—

)) ) Vj (2;)VA,, (1) (18)

where k „is determined by fixing the chemical potential
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(p»(o)) = ~/2. (»)
With the order parameters known, we can obtain the

ground state energy per electron, which will be shown in
the next section, from Eq. (8),

=--'t -"'-' ~(".(k»+(".(-k»~
2—,I ).(&~(& )l(P»(q ))I'

g

+ [&.(V) —&~(V) + &.(V)cos(q. a)] l(p»(&)) I'). (2o)

III. NUMERICAL RESULTS AND DISCUSSIONS

We now discuss our numerical results for the difI'erent
WC states. For this discussion, we compare the energy of
the difI'erent WC states and then find the phase diagrams
as the sample parameters are changed. The order param-
eters (p,z(q)) are obtained from a numerical analysis on
Eq. (15), in which well convergent results are obtained
by keeping 16 (24) shells in reciprocal-lattice vectors for
triangular (square) WC states. In the following, we will
first discuss the situation with a perpendicular field and
then the situation with a tilted field.

There are several possible configurations for a WC in a
strong perpendicular field for different layer separations
and hopping strength. At small layer separations, the
electronic states of the difI'erent wells mix to form sym-
metric and antisymmetric states. In the ideal case of
d = 0, all electrons reside in the symmetric state for any
value of hopping. A DQWS under this condition behaves
as a single layer system. A WC in the symmetric state
has a lattice constant ao, such that (~3/2)ao = 27rto/v.
The order parameters at corresponding RLV's are

0

(D

—O. P5 ~-

—0.30

mary lattice vectors. A shifted two-component square
(TCS) lattice WC state with a = (1/2)(ao + bo), where
ao and bo are the primary lattice constant of the square
WC, has lower interlayer Coulomb energy than the above
TCT WC state, since the lateral distance between a elec-
tron in one layer and its nearest electron in the other layer
in a shifted TCS lattice structure is larger than that in a
shifted TCT lattice structure. For an intermediate range
of layer separations, this TCS lattice structure may be-
come the ground state of a DQWS.

In Fig. 1, we show the energies of the three difFerent
WC structures discussed above as functions of layer sep-
aration d for diferent value of hopping t. The lowest
energy states are the OCT WC at small d, the TCS WC
at intermediate d, and the TCT WC at large d. The
range of layer separations at which the TCS WC exists
as the ground state shrinks when t is increased, as a result
of the expansion of the OCT WC phase. The important
conclusion &om Fig. 1 is that for weak interlayer hop-
ping, (at least) two structural phase transitions should
be expected when the layer separation is increased: first
from a OCT WC to a TCS WC, then &om a TCS WC

(p;. (G))= —(p„(C)) for i, j = 1, 2,
1

(21)
(b) v= 1/4 t=0.02

where C, ( )
= (1/~2)(Cq + C2). The above expression

also shows that the charge distributions for the two lay-
ers are directly on top of each other, i.e. , a = 0. At
finite, but small, layer separations, the WC state of a
DQWS is essentially the above one-component triangu-
lar (OCT) lattice. For large enough layer separations,
the symmetric state is no longer energetically favored, as
the system begins to seek a state where electrons within
the same layer are more strongly correlated than elec-
trons in different layers. In the large d limit, a DQWS
becomes two independent single layers for t = 0. Elec-
trons in each well form their own triangular WC. These
two-component triangular (TCT) lattices have a lattice
constant (~3/2) a2o ——2vrlo2/(v/2), larger by a factor of ~2
than that of the OCT lattice discussed above. To mini-
mize static interlayer Coulomb energy, the two WC's are
relatively shifted so that the lattice sites of one WC are
at the centers of the triangles of the other WC lattice,
i.e. , a = (1/3)(ao + bo), where ao and bo are the pri-

—0.30

FIG. 1. Energy per particle for a one-component triangular
lattice (OCT), a two-component square lattice (TCS), and a
two-component triangular lattice (TCT) Wigner crystal, as
functions of layer separation d for v = 1/4 at difFerent values
of hopping t. (a) t=0.002. (b) t = 0.02(e /halo).
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FIG. 2. Re[(pi&(0))]/(pii(0)) versus layer separation d for
t = 0.002 and t = 0.02 (e /sip) at v = I/4.

to a TCT WC.
In Fig. 2, Re[(pi2(0))], which represents the differences

between the electron occupations in the symmetric and
in the antisymmetric states, is shown as a function of
d. This quantity characterizes the relative strength of
interlayer correlations, with respect to intralayer correla-
tions. Re[(pi2(0))] is at its maximum value in the one-
component regime, where the interlayer and intralayer
correlations are treated indiscriminately. It decreases in
the two-component regimes as d is increased, due to the
fact that the intralayer correlations are more and more
favored over the interlayer correlations, but Re[(pr2(0))]
remains 6nite for any 6nite tunneling even in the limit
d -+ oo. In a pseudospin description, Re[(pi2(0))] is the
spin magnetization in the direction favored by the tun-
neling Hamiltonian. The one-component state is the fer-
romagnetic state with a spontaneously broken symmetry.
The finite value of Re[(pr2(0))] at large d results &om the
compromise between the tunneling energy and Coulomb
interaction energy. We note that, in general, for t g 0,
(pr2) g 0, so that physically there is some penetration
of electrons in each layer into the interstitial sites of the
other layer.

Next, we consider the inQuence &om an in-plane mag-
netic field. Our discussion will concentrate on the situa-
tion where the system was in the symmetric state prior
to the application of the in-plane field, since the effects of
an in-plane 6eld are the largest in the symmetric state,
due to the existence of strong interlayer coherence. As
a result of the competition between hopping energy and
Coulomb energy, a DQWS in a tilted field can be in ei-
ther of the two different ground states, depending on the
value of the in-plane Geld. One is the symmetric state
WC (SSWC) described by Eq. (21), where a = 0 and
the electrons feel no effect of the hopping and B~~ has no
effect. The other, which is generally relevant at a small
in-plane Geld, is the state in which electrons form linear
combinations of the states in the two wells that are dis-
placed by the total magnetic field. We call this state a
twisted symmetric state. Defining

1(., ( )
= —[Ci +C2 g ],2

(22)

the order parameters for a twisted symmetric state WC
(TSSWC) are

(g..(c,)) = -) .-'~-( +p)/2s, ., (cJ.c. ) g o.
cxP

(p»(C —k )) = -e' " "(~-(C))
2

(P ( + ))=2'*""(~-( )). (24)

Prom the above expression, one can see the obvious
effects of the in-plane 6eld: it shifts the charge dis-
tributions of the two layers relatively by an amount
a = k~lox = d(B~~~/B~)x. The positions of the nonzero
interlayer order parameters (pi2(2i)(q)) in the reciprocal
vector space are shifted &om C to G + = C 6k~. The re-
sult is an increase in interlayer Coulomb energy. At small
values of in-plane field, the increase in the Coulomb en-
ergy is small and can be compensated by the hopping
energy, so the TSSWC is favored over the SSWC. As the
in-plane field increases, the cost in Coulomb energy in-
creases, while the hopping energy decreases. When the
gain in the hopping energy can no longer compensate the
cost in Coulomb energy for a strong enough in-plane Geld,
the DQWS undergoes a transition from the TSSWC to
the SSWC, where the total energy of the system is low-
ered by giving up the hopping energy to restore the orig-
inal interlayer coherence. In Fig. 3, we show the energies
of the TSSWC and SSWC as functions of the in-plane
Geld for different values of hopping energy. It is clear,
&om the figure, that the TSSWC is the energetically fa-
vored ground state at a small in-plane Geld, while the
SSWC is the energetically favored ground state at large
in-plane 6elds. The critical value of the in-plane field for
this phase transition as a function of the hopping energy
is shown in Fig. 4, larger critical values of B~~/B~ for
larger values of hopping t.

Since a WC breaks the rotational symmetry of the sys-
tem, the properties of a DQWS, in principle, depend on
the angle between the in-plane field and the crystal axes.
As the WC is pinned by the presence of weak disorder,
the angle can be changed by simply sweeping the direc-
tion of the in-plane Geld. This provides a potential op-
portunity to probe the orientational order of a WC and to
6nd a unambiguous signature of the existence of a WC.
In Fig. 3, we show, for t = 0.02, t = 0.08, and t = 0.4, the
energies of the TSSWC for both the cases where the in-
plane field is perpendicular to (the solid lines), or parallel

The order parameters in layer representation (p;~ (C))
for this TSSWC can be obtained &om the above expres-
sion by making use of the operator relation of Eq. (22),

1

(P-(C)) = 2" " "(~-(G))
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—0.35

—0.40

B,/B,
FIG. 3. Energies per particle of a twisted symmetric state

Wigner crystal (TSSWC) and a symmetric state Wigner crys-
tal (SSWC) as functions of in-plane field at v = 1/4 and
d = lo for diferent value of hopping. The dash-dot line is
for the SSWC. The solid lines are for the TSSWC with the
in-plane filed perpendicular to one crystal axis. The dot-lines
at t = 0.02, 0.08, 0.4 (e /sip) are for the TSSWC with the
in-plane field parallel with one crystal axis.

we may have a measurable difference in the anisotropy of
the speci6c heat at low enough temperatures, say, T ( 70
mK.

Finally, we add a few general comments about the lim-
itations of the model studied in this work. We have ig-
nored both 6nite thickness corrections, as well as Landau
level mixing in our calculations. It is well known that
such effects will lead to small corrections in the energies
of the states of the systein (see, for example, Ref. 3), and
obviously will introduce small changes in the precise val-
ues of the parameters at which the ground state changes
character. Nevertheless, the general picture of the vari-
ous possible states of system should not be changed by
such perturbations. We have also not included disorder
to this point. In the presence of disorder, one cannot
expect to have true long-range order characteristic of a
crystalline ground state. Nevertheless, unless the disor-
der is extremely large, one expects the ground state to
have a Bnite correlation length, within which the system
locally looks like a crystal. The type of crystal structure
on short length scales should be the same as expected
for a pure system. Thus, we expect that as a function
of system parameters (i.e., tunneling, layer separation,
etc.), one should still see transitions among the difFerent
states discussed above within the correlation length.

with (the dot-lines), one of the crystal axes. We can see
that the differences are small. The change in the value
of critical in-plane field &om the different orientations of
the Beld is practically indistinguishable. This is mainly
because the phase transition occurs at an in-plane field,
where ~a~ is small compared to the lattice constant for
reasonable sample parameters. However, we should not
rule out the possibility that some other quantities may
have a measurable dependence on the anisotropy of the
WC. For example, the energy difference of the TSSWC
for the two different orientations of the in-plane field right
before the phase transition is Ae 7 x 10 4(e2/elo) for
t = 0.08(e2/e4), which is on the order of 70 mK for
e2/elo 100 K. If the same order of anisotropy exists
in the low-lying phonon modes (see the next section),

I

1/4 d/1 1

IV. CRY'STAL PROPERTIES
IN A PARALLEL MAGNETIC FIELD

In this section, we discuss some consequences of im-
mersing the double well system in a parallel magnetic
Beld, when the electron system is in the TSSWC i.e., a
lattice of particles in symmetric states of the two wells,
with the position of the single-particle orbits in one well
displaced in the direction of the total applied magnetic
Beld. As was discussed in the previous section, and as
shown in Fig. 3, the energy per particle in the electron
lattice depends (weakly) on the orientation of the crys-
tal axes relative to the parallel magnetic 6eld. One may
think of this effect as an energy cost for having the bond
angles of the lattice deviate &om some preferred direc-
tion. While the energy cost per particle may be small,
long-wavelength Buctuations of the lattice where many
bond angles deviate &om the preferred direction —will be
strongly affected by this energy cost. This will have im-
portant effects on the long-wavelength collective modes
of the system, as well as the state of the crystal in the
presence of a slowly varying random potential (which typ-
ically arises in real heterostructure environments).

To model the bond-angle energy, we use a continuum
elasticity theory approach. The energy of a two dimen-
sional lattice deformed &om a perfect crystal con6gura-
tion. by a displacement field u(r) may be written as

1.0
0.00 0.04 0.06

t, (e'/e&. )

0.08

FIG. 4. The critical value of H~~/H~, as a function of the
hopping for v = 1/4 and d = lo.

Zp = —
2 (2ptL + Avi I ),

1 d T

0

where p and A are Lame coeKcients, ao is the lattice con-
stant, u;~ = 0;u~+B~u; is the strain tensor, and repeated
indices are summed over. The bond-angle 6eld may be
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written in terms of the displacements in the form

8(T) = —(82, 'ail —By'ii~),
1

so that it is natural to write the energy of a configuration
in the presence of parallel magnetic Geld in the form E =
Eo+ Eg, with

1
Es =— —ep d r0(r),

2

where eo is a phenomenological parameter describing the
energy cost to misalign the crystal with the parallel mag-
netic Geld. 23

This model has been studied in the context of a two-
dimensional crystal adsorbed on a periodic substrate,
where it was noted that the extra term tends to increase
the stability of the crystal, with respect to Gnite tempera-
ture. It is also interesting to note that such a bond-angle
term increases the stability of the crystal, with respect
to quenched disorder. To see this, consider a weak ran-
d.om potential acting on the WC, which has a long ori-
entational correlation length ( (or even quasilong-range
orientational order ). The energy cost to misalign a cor-
related region with the magnetic field scales as (2, due
to Eg, whereas the energy gained by aligning with the
random potential scales only as gN, (, where N, is
the average number of electrons in a correlated region.
Thus, for weak enough disorder, where ( is large, one ex-
pects the correlated regions to align with the preferred
orientational axis.

An interesting possible method to demonstrate this
would be to anneal a WC in the double well system in
the presence of a parallel magnetic Geld. It has been
shown recently that a WC in the presence of a slowly
varying random potential &eezes into a state with at best
power-law (i.e. , quasilong-range) orientational order. By
cooling the system in the presence of the parallel Geld,
a preferred. orientational axis is picked out for the crys-
tal, leading to the possibility that one could obtain a
system with true long-range orientational order. Observ-
ing that phenomenon will be possible if the orientational
correlation length is large enough at the &eezing tran-
sition that the Eg term overcomes thermal fIuctuations
in the orientation of a correlated region of the lattice;
i.e. , eoN ) TM, where T~ is the melting temperature of
the crystal. Experimentally, one could probe this efFect
by measuring the depinning electric Geld of the lattice,
which has been shown to be sensitive to orientational cor-
relations of the crystal; one expects to see a decrease
in the pinning Geld if the orientational correlations are
increased. The possibility of creating a WC with long-
range order using parallel magnetic fields in a double well
system is currently under investigation.

It is also interesting to consider the efFect of the bond-
bending term on the collective mode spectrum of the
WC. It is well known that in a perpendicular mag-
netic Geld, the WC supports a phonon mode dispersing
as ~(q) oc q ~2, and there have been attempts to measure
this directly using rf absorption. Since the bond-angle
term Eg represents a restoring force on long-wavelength

fIuctuations, we expect the phonon energy to change in
the present condition. For this purpose, we write down
the appropriate form for the energy of a crystal defor-
mation in terms of a dynamical matrix that yields the
energy E = Eo + Eg in the long-wavelength limit. The
low f'requency collective mode f'requencies are given by
A /u„where A are the eigenvalues of the matrix cr&D,
o„ is the Pauli spin matrix, and. D = D + D is the to-
tal dynamical matrix. D, the dynamical matrix in the
absence of a parallel magnetic Geld, has been shown to
be

0 qiqD '= b '+ ) Aij npqnqp)
aP

where b and A;~ p are constants. The dynamical matrix
associated with Eg is easily obtained,

e o 2 eD = q„, D„„= q,4m 4m

e eD „= D „= — q qy.4m

By noticing the similarity between D and the second
term in D, it is easy to show that under the present
condition, the low-lying phone mode still disperses like
ur(q) = Cq ~, but the coefhcient C is increased, with a
contribution &om the dynamic matrix D .

V. CONCLUSION

Working in the Hartree-Fock approximation, we cal-
culated the energy of difFerent Wigner states of the two-
dimensional electron gas for a double-quantum-well sys-
tem in a strong magnetic Geld. We found the phase di-
agram for the evolution of the WC states in a strong
perpendicular magnetic field when layer separation and
hopping are changed. In the absence of interlayer hop-
ping, the ground state at small layer separations is a
one-component triangular lattice Wigner state, which
possesses interlayer coherence. As the layer separation
is increased, the ground state first undergoes a transi-
tion to a two-component square lattice Wigner state, and
then undergoes another transition at an even larger layer
separation to a two-component triangular lattice Wigner
state. The range of the layer separations at which the
two-component square lattice occurs, as the ground. state
shrinks, and eventually disappears, as the interlayer hop-
ping is increased. We also studied. the in-plane magnetic
field induced phase transition in the Wigner state, which
has so far only been studied experimentally for v = 1
quantum Hall state. We calculated the critical value of
the in-plane Geld for the transition. We find that the
anisotropy of the Wigner state, i.e., the orientation of
the crystal with respect to the direction of the in-plane
magnetic Geld, has a negligible efFect on the value of the
critical in-plane magnetic field for small filling factors.
The efFect of this anisotropy on the low-lying phonon en-
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ergy is discussed. A possible experimental arrangement
for observing the in-plane field enhancement of the ori-
entational order in the crystal in the presence of a weak
disorder potential is also discussed.

We recently became aware of a study by Narasimhan
and Ho (Ref. 17), which uses a Hartree approximation
to examine various possible states of this system. While
their approach is conceptually simpler than that used
here, it has the disadvantage of leaving out exchange ef-
fects. However, for small filing factors, such corrections
are likely to be small, and indeed where our work over-

laps our results are in quantitative agreement. E8'ects of
parallel magnetic fields are not discussed in Ref. 17.
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