
PHYSICAL REVIEW B VOLUME 52, NUMBER 16 15 OCTOBER 1995-II

Photoconductance oscillations in a two-dimensional quantum point contact
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We have calculated the photoconductance of a quantum point contact subject to a high-frequency
electromagnetic field. We find very pronounced steplike oscillations of the photoconductance as a
function of gate voltage. The absorption of the electromagnetic field, which is polarized in the
transverse direction, is due to transitions between different modes of the quantum point contact. A
transition between a propagating and a nonpropagating mode results effectively in a backscattering
process, and gives a negative or positive contribution to the current, depending on the gate voltage.
When the number of propagating modes through the point contact exceeds a cutoff value, the
photoconductance disappears. The cutoff value depends on the frequency of the electromagnetic
field. We also find that the oscillation amplitude increases with the number of propagating modes.
As a result of the electron-photon interaction, the total quantized conductance acquires an additional
step structure.

I. INTRODUCTION

Ballistic transport in two-dimensional electron systems
has been very intensely studied during recent years. A
particular system that has received much attention is the
quantum point contact (QPC). This structure is fab-
ricated by putting a split gate on top of a GaAs het-
erostructure, thereby creating a narrow constriction in
the two-dimensional electron gas. Since the electrons
do not experience any collisions, the electron motion
through the point contact is analogous to the propagation
of an electromagnetic field through a waveguide. The
width of the constriction, which is of the same order as
the Fermi wavelength, is controlled by the gate voltage
and governs the number of propagating modes.

The present work investigates the inHuence of a high-
frequency electromagnetic field on the electric current
through a quantum point contact. Despite the fact
that transport properties have been thoroughly inves-
tigated for QPC systems, both experimentally and
theoretically, ' this particular aspect has not so far re-
ceived much attention.

A closely related issue, optical absorption of a high-
frequency field in a quantum point contact, has been
studied by the present authors in an earlier work. It
was found that the optical absorption gives rise to a dis-
tinct spectrum, thus optical point contact spectroscopy
is possible and can be used to characterize the laterally
confining potential. The shape of this potential is still
an open question, which makes a spectroscopy of this
kind interesting. However, in a direct measurement of
the absorption one is restricted by the fact that the vol-
ume of the point contact is much smaller than the total
volume of the electromagnetic resonator. A very high
quality factor of the resonator is therefore of crucial im-
portance for such an experiment. The electric current,
on the other hand, is more favorable to measure since in
this case the observable quantity is located in the same

small region in space where the absorption takes place.
The photoconductance of a double quantum point con-
tact has been investigated by the present authors in an-
other work, where it was shown that interference effects
due to inelastic electron-photon scattering are possible.

It may not be evident that an electromagnetic field
will at all affect the current through a quantum point
contact. Since the photon momentum is much smaller
than the electron momentum the photons cannot in a
direct way backscatter electrons. However, as was shown
in Ref. 7, the absorption of photons in a quantum point
contact indirectly results in backscattering of electrons.

This fact can be explained as follows: In an adiabatic
geometry, which is smooth on the scale of the Fermi wave-
length, the longitudinal and transverse motion of elec-
trons can be separated in the Schrodinger equation. The
transverse energy will then play the role of a potential
for the one-dimensional longitudinal motion. Depending
on whether the total energy of a given electronic state
(mode) is larger or smaller than this potential barrier,
it is a propagating or nonpropagating (reflecting) state.
The absorption of the electromagnetic field, polarized in
the transverse direction, is due to electron transitions
between different modes in the system. If a transition
between a propagating and a reHecting mode takes place
it will effectively result in a backscattering process. This
photon-induced backscattering gives rise to negative or
positive photoconductance depending on the gate con-
trolled width of the point contact. Therefore, the photo-
conductance will oscillate as a function of gate voltage.

II. FORMULATION OF THE PROBLEM

Our aim is to calculate the current through the mi-
croconstriction under the inHuence of a high-frequency
electromagnetic field. The model geometry of the micro-
constriction is shown in Fig. 1. The width D(x) varies
smoothly on the scale of the Fermi wavelength, allowing
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a) b) interaction the interaction part of the Hamiltonian can
be expressed as

H;.„t ——) A~pc cp.
aP

(6)

FIG. l. (a) Geometry of the microconstriction. The width
is denoted by D(x), the narrowest width by d, and the effec-
tive length by L. (b) The corresponding transverse energies
of modes n and n + 1, as a function of x. The difFerence
between the peak values is denoted by AE. If the initial
state of the transition, mode n, is a nonpropagating state,
the 6nal-state mode n+ 1 will also be nonpropagating. On
the other hand, if the initial state is propagating, the 6nal
state may be propagating or nonpropagating depending on
the value of the longitudinal energy at x = 0. See text for
detailed explanation.

Here we sum over the states n and P and the operators ct
and c are creation and annihilation operators for elec-
trons in state o.. The matrix element A p is of the form

eE
(nl&sl&)

E = E(t) = —(e' '+ e ' '),

where the time-dependent electromagnetic field E with
&equency ~ is polarized in the y direction, p„ is the y
component of the electron momentum operator, and e
and m* are the electron charge and effective mass.

Evaluation of the time average of the current correction
yields, written in operator form,

us to treat the problem in the adiabatic approximation.
The high-frequency field, polarized in the y direction,
induces transitions between the transverse states. The
longitudinal momentum is conserved in the absorption
process and therefore the photon energy ~, where ~
is the &equency of the field, must be equal to the en-
ergy difference between the transverse states. Since the
electromagnetic field cannot change the direction of the
electron propagation we can treat electrons coming &om
each side independently. In our calculations we will use
the interaction representation. The total current J
through the point contact is calculated as

J' ' = Tr(p(t) J),

J = ) f ((n]AG (E + hu) JG+(E 6 Ru)Ain)

+2Re(nlAG (E-+ ~)AG (E.)Jln)) (9)

where f is the distribution function and E is the total
energy of an electron in the state n. The function G+ (E)
is the single-particle Green's function for an electronic
state of energy E in the microconstriction,

G+(E) =
E —H. ( +id

In the following section we will explicitly calculate the
matrix element A p and the resulting photoconductance.

where p(t) is the density operator and J is the current op-
erator. The equation of motion for the density operator
1S

III. CALCULATION OF THE
PHOTOCONDUCTANCE

h,
P() = [P(t), H(t)],

where the Hamiltonian of our system can be written as
a sum of two parts:

H = H.(+H;„~.

We can express the current correction J to second order
in the electron-photon coupling as

.il~(& —&o) + ~(~ —*o)J]

where po ——p( —oo) and xo is the observation point.
Keeping only the dipole term of the electron-photon

The starting point here is the evaluation of the current
correction J. The calculation is carried out in detail in
Appendices A and B. Taking the applied voltage to be
small, the photoconductance is found to be i

2vre2 8 o
G "= ) [](P~iAin+ )]'b(E —Ep —Ru)- Op

—](n (A(P+ )['b(E —Ep+ Ru)],

where f is the equilibrium electron distribution function
and p is the chemical potential. The voltage is applied
so that the current Qows &om left to right. We have
here introduced an arrow notation in the states ~n~) and
~n~). The arrows refer to propagating and reflecting
modes, respectively, and also indicate that all the states
occurring in the above expression are incident &om the
left.

Before we proceed any further, let us first analyze the
expression (11). The physical meaning is quite straight-
forward. First of all, only transitions between a prop-
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agating and a nonpropagating mode can contribute to
the photoconductance. A transition where both modes
are propagating or nonpropagating does obviously not
change the current. Further, because all states below
the Fermi level are occupied (at zero temperature) only
absorption processes are possible.

The meaning of the two terms in (11), which have dif-
ferent signs, can be explained as follows. When applying
a voltage V, driving the current &om left to right, the
chemical potential is increased by eV/2 at the left side
and decreased by eV/2 at the right side (we assume a
syminetric voltage drop). The change in chemical poten-
tial makes two types of absorption processes A and 8 pos-
sible, which are schematically shown in Fig. 2. Both these
transitions result in a decrease of current, but since tran-
sition B is connected to the left-moving electrons, it gives
a positive contribution to the photoconductance, while
transition A, which is connected to the right-moving elec-
trons, gives a negative contribution.

We wish to point out that the photoconductance in
Eq. (11) contains only transitions &om a propagating to
a nonpropagating state, not the opposite case. The rea-
son is that the transition &om a nonpropagating to a
propagating state is forbidden in the absorption case. It
follows &om the conservation of energy and longitudinal
momentum as explained below.

Consider Fig. 1(b), where the transverse energies of
modes n and n+ 1 are shown as a function of x. The dif-
ference between the peak values E and E' +q is denoted
by LE'. Suppose now that the initial state, mode n, is
a nonpropagating state. This can be expressed through
the condition E ( E', where E is the total energy of
the state. The total energy of the final state, mode n+ 1,
is then

in a similar way that if the initial state is propagating,
the final state will be nonpropagating if the longitudinal
energy at x = 0 is smaller than Lf —~. The latter
is the only type of transition that will change the cur-
rent, and it is this type that occurs in Eq. (11) for the
photo conductance.

To obtain the photoconductance we must calculate the
matrix element A p. The state ~o.) can quite generally
be characterized by the mode number n, the longitudinal
electron momentum p far away from the microconstric-
tion, and a sign index 0 as follows:

h~ 2n+ 1
ts (*) (14)

where D(x) is the width of the microconstriction. The
longitudinal wave functions for propagating and reflect-
ing modes, respectively, are taken as

x

(x) = "
exp

~

—„dx'p„(x') ~,

Here the sign index 0 denotes which side of the microcon-
striction the electron originates &om. In the calculation
of the matrix element we will only deal with states orig-
inating from the left side (see above), i.e., o = +1. The
adiabatic microconstriction geometry allows us to sepa-
rate the electron wave function into one longitudinal and
one transverse part. Taking the laterally confining po-
tential to be of the parabolic type, the transverse wave
function can be expressed in terms of Hermite polynomi-
als and the corresponding transverse energy of mode n
1s

E„+i ——E„+hu) ( t„+Ru = f„+i —(At —fur). (12)

Since we always have that At ) Ru (otherwise there
cannot be a transition between the modes being consid-
ered) we find that E„+i ( t„+i, which means that also
the final state is nonpropagating. It can easily be shown

propagating state, (15)

@p (x) = " sin
~

— dx'p (x') ~,
p (—oo) . 61

re8ecting state, (16)

Left
side

Right
S1de

B

FIG. 2. When applying a voltage V across the irradiated
point contact, driving the current froxn left to right, two types
of transitions A and B become possible. Transition A at the
left side, which involves right-moving states, gives a negative
contribution to the photoconductance while transition B at
the right side, which involves left-moving states, gives a pos-
itive contribution. These two contributions result in steplike
oscillations of the photoconductance. The quantum numbers
n and P label the states appearing in Eq. (11) for the photo-
conductance.

p„(x) = /2m*[E —E„(x)j,

where x is the turning point for the reflecting state.
When evaluating the x integral in the matrix elements
appearing in (ll) we use the stationary phase approxi-
mation. This is not a trivial calculation, however. The
difficulties arise because the wave functions (15) and (16)
are rapidly oscillating functions of x. A detailed analysis
of this problem was made by Landau, who reduced the
calculation of the x integral to the evaluation of a contour
integral in the complex plane. There are several contri-
butians ta this centaur integral. The dominant contri-
butions come &om the stationary phase points x*, which
are located on the real axis at points where the contour
crosses the real axis. These are points where the transi-
tion between different electron states occurs in such a way
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that the longitudinal momentum is conserved. Hence

S -(x*) = p-(x*).

Other contributions come from points where the efFec-
tive potential E (x) is singular in the complex plane.
These contributions correspond to processes where the
momentum is not exactly conserved due to the adiabatic
variation of the potential energy. It is easy to show that
for transitions between propagating and nonpropagating
modes these contributions are proportional to exp L,/d-,
where L and d are the length and width of the micro-
constriction, and hence exponentially small. Therefore,
only the stationary points give non-negligible contribu-
tions to the photon induced matrix elements. According
to Landau there are no contributions &om the classical
turning points to the quasiclassical matrix elements.

Here we wish to point out that the quasiclassical ma-
trix elements discussed above were calculated in Ref. 14,
where the photoconductance of an adiabatic point con-
tact was considered. A numerical calculation based on
uncontrollable approximations brings the authors to the
incorrect conclusion that photon-assisted transport pro-
cesses occur mainly near the classical turning points. As
a result the photoconduct;ance calculation based on this
assumption seems to be incorrect. Our result for the ma-
trix element is

Expression (20) for the photoconductance is valid for a
general microconstriction geometry. In the next section
we will consider a specific model geometry and analyze
the resulting features of the photoconductance and the
total conductance.

IV. RESULTS AND DISCUSSION

For a detailed numerical analysis we use a model ge-
ometry of the microconstriction where the width D(x) of
the narrow part has an exponential x dependence

D(x) = dexp(x2/2I ). (22)

Here d is the narrowest width and I is the effective
length of the microconstriction [see Fig. 1(a)]. However,
the results are not sensible to the particular choice of
geometry, as long as it is adiabatically smooth on the
scale of the Fermi wavelength. The geometrical factor

(x*)/D'(x*)
I

is then

the maximum difFerence between the transverse energy
levels

2
Q2 d2

k„(—oo) k (—oo)
2' k„(x*)

D(x*)
D'(x*)

D(x') L
D'(**) gin(2/nk' d2)

x(gn+ ia „+,—~no (19)

We are now ready to write down the final expression for
the photoconductance. Replacing the derivative of the
Ferini function in Eq. (11) by a h function, which is rea-
sonable for suFiciently low temperatures, and introducing
the dimensionless frequency 0 = her/E~ where E~ is the
Fermi energy we obt;ain

2e2 (eE ) vr

~
O[1 —O(n + 1/2)] D(x*)

~(n+ 1/2) lD (x )

x (nO[(2n + 1) —kid ] 8 [kid'(1 —0)
—(2n —1)] —(n+ 1)O[k d —(2n+ 1)]
xO[2n+ 3 —k~d (1+ 0)]). (20)

The step function 8[1 —O(n+ 1/2)] expresses the con-
dition that the stationary point x* must be in the classi-
cally allowed region for the electrons, a condition imposed
by the existence of turning points. The step functions
within the curly brackets express the conditions for the
modes being propagating or nonpropagating. Depend-
ing on the narrowest width d of the microconstriction,
one, both, or none of these step functions give a contri-
bution, which results in steplike oscillations of the pho-
toconductance as a function of d. These oscillations will
be analyzed in detail in the next section.

In order to have any absorption at all, we also have the
condition that the photon energy must be smaller than

The condition (21) that the photon energy must be
smaller than the maximum difFerence between the trans-
verse energy levels, prevents the denominator of the ge-
ometry factor to be zero.

Our expression for the photoconductance depends on
a number of parameters. In all calculations we use the
Fermi temperature T~ ——200 K and the length of the mi-
croconstriction L = 1 pm. The photoconductance and
total conductance are studied as a function of microcon-
striction width d for different choices of electromagnetic
field amplitude E and frequency u.

In Fig. 3 the photoconductance is shown as a function
of microconstriction width for two different amplitudes
and &equencies of the electromagnetic field: (a) E = 80
V/cm, 0 = 0.19 (which corresponds to ~ = 7.8 x 10
s ) and (b) E = 140 V/cm, 0 = 0.35 (which corresponds
to u = 1.4 x 10i2 s ). The photoconductance exhibits
very pronounced steplike oscillations up to a cutofF value
of the microstructure width. The cutofF value depends on
frequency, and it is seen in Fig. 3(a) that five propagat-
ing modes give a contribution while in Fig. 3(b) there is
a contribution &om three propagating modes only. The
oscillations are a result of the condition that the initial
state of the transition must be propagating and the final
state nonpropagating. Depending on the width of the mi-
crostructure, the photoconductance in Eq. (20) is given
by one, both, or none of the two terms with opposite
sign.

The contributions from the positive and negative term
on a single step with step number n are shown schemati-
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cally in the inset of Fig. 3. The amplitudes of both terms
are in this simpliGed picture taken to be equal and nor-
malized to unity. The width of the step is also unity here.
The widths of the negative and positive contributions are
denoted by 4 and L+, respectively, and they depend
on step number and &equency as

(24)

(25)

10&
2(n+ 1)

(26)

For low step numbers the overlap region is large, but
as n increases the overlap region decreases and finally
becomes zero. Since the two terms have slightly difFerent

1.5—
b)

Note that on a single step with number n the mode with
number n gives the contributjon L, and the mode with
number n+ 1 gives the contribution L+. We see that the
widths L and A+ decrease with increasing step number
and Gnally become zero. This leads to the cutofF and also
explains why the photoconductance "peaks" get narrower
as the step number increases.

The two contributions L and L+ overlap each other
when

amplitudes, because of the factor I/ky gl —B(n + 1/2)
[see Eq. (20)], they do not overlap completely.

The amplitude of the oscillations increases with mi-
croconstriction width. The largest amplitude is found
for the highest mode numbers, since the denominators in
Eq. (20) decrease with increasing mode numbers.

In Fig. 4 the total conductance is shown as a function
of microstructure width. The dimensionless &equency is
0 = 0.19 and the amplitude of the electromagnetic Geld is
E= 80 V/cm, the same values as in Fig. 3(a) (solid line).
The dotted line shows the conductance in the absence
of an electromagnetic Geld. It is seen that the electron-
photon interaction leads to an additional step structure of
the conductance, becoming more pronounced for higher
steps. The narrowing of the photoconductance oscillation
"peaks" with increasing step number is a striking feature,
which is in contrast to what one could expect for these
systems. Normally a smearing of the Gne structure occurs
as the width of the microconstriction increases.

We wish to point out that all the above considera-
tions are based on the single-photon approximation; i.e.,
resonance efFects such as Rabi oscillations are not taken
into account. The single-photon approximation is valid
if the time to spent by an electron at resonance is less
than the characteristic time of resonant photon-assisted
intermode transitions. The latter is equal to the inverse
of the so-called Rabi frequency u~ = A p/5, which de-
termines the dynamics of a two-level system in a reso-
nant Geld. The time spent at resonance can be deter-
mined &om the uncertainty principle; since the electron
spends a Gnite time to near resonance its energy is un-
certain to within b'E = 5/to. On the other hand, the
energy difFerence between the two resonating states o;

and P changes with time as the electron moves. Durin. g

p
a)

M W M M W —With E-field

- - -Without E-field

(k„d)
I

~I W

FIG. 3. Photoconductance as a function of the dimension-
less parameter (A;~d) where d is the narrowest microstructure
width. The two graphs —vertically offset for clarity —cor-
respond to two different amplitudes and frequencies of the
electromagnetic field: (a) Z= 80 V/cm, u = 7.8 x 10 s
and (b) R= 140 V/cm, ~ = 1.4 x 10 s . The photocon-
ductance exhibits very pronounced steplike oscillations up to
a cutoff value of the number of propagating modes. The cut-
off value depends on the frequency u. In case (a) there is
a contribution from five propagating modes while in case (b)
three propagating modes contribute. The inset shows the nor-
malized contributions from the positive and negative terms of
the photoconductance, shown on a single step. The widths
of the negative and positive contributions are denoted by A
and A+, respectively, and they depend on step number n and
dimensionless frequency 0 (see text).

0
0

(k„d)'
10

FIG. 4. Conductance as a function of the dimensionless
parameter (k~d) . The amplitude and frequency of the elec-
tromagnetic field are the same as in Fig. 3(a), E = 80 V/cm
and cu = 7.8 x 10 s (solid line). The dotted line is the
conductance in the absence of an electromagnetic field. It
is seen that the electron-photon interaction leads to an ad-
ditional step structure of the conductance, becoming more
pronounced for higher steps.



52 PHOTOCONDUCTANCE OSCILLATIONS IN A TWO-. . . 12 173

the time tp, the energy difference shifts &om the value
E p

= ~ corresponding to an exact resonance by an
amount b,E p = fE [x' —v(x')tp] —E [x' —v(x')tp]).
[Here v(x*) is the electron velocity at the resonance
point. ] The time tp can now be determined by equating
hE and bE p. We find that tp ——[v(x*)E'&(x*)/h]
The single-photon approximation is therefore valid pro-

vided A p(x')/ 5E' p(x*)v(x*) (( l.
Using the definition of E„(x), we find that this crite-

rion coincides with the criterion for the photon-induced
step heights to be smaller than the conductance quantum
2e2/h. Using the above result the following restrictions
on the amplitude of the electromagnetic Geld apply to
the cases being considered above; (a) E ( 170 V/cm,
0 = 0.19; (b) E ( 190 V/cm, 0 = 0.35.

Another restriction on the amplitude of the electro-
magnetic field comes &om the necessity to avoid heat-
ing of the electron gas in the source and drain regions.
Heating results in a smearing of the photon-induced step
structure in the conductance and gives rise to a bolomet-
ric effect rather than to photon-assisted transport. Here
the thermal properties of the actual experimental device
come into play and no general criterion can be given.

In conclusion we have calculated the photoconductance
of a quantum point contact. It is found that the absorp-
tion of a high-&equency electromagnetic Geld, polarized
in the transverse direction, results in steplike oscillations
of the photoconductance as a function of gate voltage.
The absorption is due to transitions between different
transverse energy states (or modes) of the quantum point
contact. The modes can be either propagating or non-
propagating, and we Gnd that a transition between a
propagating and a nonpropagating mode results effec-
tively in a backseat tering process. This backseat tering
will decrease or increase the current, depending on the
width of the microconstriction. Therefore the photocon-
ductance oscillates as a function of gate voltage.

As a result of these oscillations the total quantized con-
ductance acquires an additional step structure. The os-
cillations survive up to a cutoff value of the number of
propagating modes. The cutoff value depends on the
&equency of the electromagnetic Geld, and decreases as
the &equency increases. We also Gnd that the oscilla-
tion peaks become narrower and higher as the number
of propagating modes increases. Our estimates of the
electromagnetic Geld strength and frequency needed to
observe this effect indicate that experimental verifica-
tion of our predictions should be possible with present
technology.

APPENDIX A

When calculating the current response to an electro-
magnetic field, the electronic state In) occurring in our
expression (9) is for the case of zero field. It is conve-
nient for our purposes to express this state in terms of
the transition matrix T. The transition matrix will thus
be used to describe the scattering produced by the mi-
croconstriction, since we can view the electronic motion
as a scattering problem. The microconstriction of vary-
ing width plays the role of a scatterer, which acts as a
perturbation to a channel of constant width.

For the adiabatically smooth geometry considered
here, Fig. 1(a), we can separate the longitudinal and
transverse electronic motion in the Schrodinger equation.
We are then left with an x-dependent transverse energy
E (x) of the form (14) which acts as a scattering po-
tential for the one-dimensional longitudinal motion. Far
away &om the microconstriction the width is constant
and we denote the Hamiltonian in this region by Hp.
The scattering potential V(x) can then be expressed as
V(x) = E (x) —E„(oo). In other words, the Hamilto-
nian H, i [see Eq. (3)], which describes the electrons in
the absence of an electromagnetic Geld, can be split into
two parts:

H.r ——Ho+ V (A1)

The above equation defines our scattering problem. In
the calculations we will make use of the functions Go
and G+, which are electron Green's functions connected
to the Hamiltonians Ho and H, ~, respectively, and are
defined as follows,

1
)E —Hp Rib

G+(E) =
E —H, i +ib

&o(E) = (A2)

(A3)

and can be expressed as a series expansion in the scat-
tering potential V:

T+ = V+ VGO+V+ VG0+VG0+V+ (A5)

Now, by using the transition matrix T+, the electron
state in the microconstriction, I4'+ ), can be expressed
in terms of the unperturbed state 4 „as

As usual, the transition matrix T+ is defined by the re-
lationship

&+(E) = Go (E) + &o (E)T+(E)&o (E) (A4)
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n=0, 1, 2, ..., o. = +1. (A7)

Each state is here characterized by the discrete mode
number n, the continuous momentum p far away &om the
microconstriction, and the sign index 0., which denotes
whether the electron originates from the left (o = +1)
or right (a = —1) side of the microconstriction. The
total energy is here denoted by E, and is the sum of the
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longitudinal and transverse energy:

= p'E = + E„(oo). (A8)

(A9)

The summation over the state o. corresponds to a sum-
mation over mode number n, sign 0, and an integration
over momentum p:

The unperturbed state IO „)describes an electron
moving in a channel of constant width, with Hamiltonian
Ho. The + sign in the superscript of the scattered state

) denotes the retarded and advanced solution, re-
spectively, so the "physical" state ln) in our expression
(9) corresponds to the state with the + sign,

(A10)

J= J~+J„
J, =) y. (DIAG g.)JG+(S.)AI~),

J2 ——2) f Re(DIAG (e )AG (E )Jl~),

(A11)

(A12)

(A13)

where we have introduced the energy E' = E
First, let us consider the term Ji. Using Eq. (A4) we can
rewrite the matrix element in Jq as

Now we are ready to treat Eq. (9). The current cor-
rection J consists of two terms that we denote Jq and
J2:

(DIAG (8 )JG+(8 )Aln) = (@+,
I
A[1+ G, (E' )T ] G, (8 )JGo+(8 ) [1+T+G~+(E )]A IC+„), (A14)

where we have introduced the operators A+ and A . Now we will use the fact that the Green's functions Go+(8 ) and
Go (8 ) appearing immediately to the right and left of the current operator can be expressed as projection operators.
This is possible only if the current operator J does not overlap with the operators A+ and A (which can also be

A A A A

expressed as JA+=A+ J=O) and is shown in detail in Appendix B. The condition of no overlap is fulfilled in our case
if we take the electromagnetic Geld to be nonzero only in the vicinity of the microconstriction while the current is to
be calculated at a point zo far away from the microconstriction. The Green s function Go (8 ) can then be written as

Go (E ) = ~2iri) b +i, IC) )(O)„

p'(Z ) = /2m'[8' —Ei(oo)],

(A15)

(A16)

where E~ is the transverse energy of mode l. Inserting Eq. (A15) into Eq. (A14) and using the Lippmann-Schwinger
equation in closed form

(A17)

the operator in the matrix element (A14) is found to be

Q 2

AG (~ )JG (~ )A = 4~ ).).4,+i4-,+i, ~ „~ AI@),„, )(@'~,p, IJI@,p, -)(@.p. (A18)

p"(t ) = /2m*[8 —E„(oo)].

The matrix element of the current operator in the above expression can now be evaluated as

1 ep'(Z )

(A19)

(A20)

Now we can obtain the following expression for Jq.

(A21)

It is convenient to separate Jq into two parts:

).) ~-,+ ~-i.+i.(f- —f= ) , I(@.+,~,.IAI@&, .&I'

l,a'

).) .4 +'4 +'f ~ (I(@+.. .— (i'. l@i ', &I + I(@+. . I+I@i ', )I ) .

l,cr'

(A22)

(A23)

(A24)
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Here we have introduced the state n in the distribution function f -T. he difFerence between the states In) and la) is
that they have opposite signs of the index o',

n = (n, p, o),
n = (n, p, —o).

{A25)
(A26)

Therefore, h +if is the distribution function for electrons coming from the left side of the microconstriction and
h +if is-the distribution function for electrons coming from the right side. We see that the term Ji contains only
states originating from the left side, while the term Jz~ contains states originating from both sides.

Now let us turn our attention to J2. The situation is somewhat different, since the matrix element does not have
the same symmetry as in the case of Jz. However, we can treat the right part of the matrix element in the same way
as we did for Jq, with the result

AG (E )Jlc+„)=2~i) h +i, AI4', „, , ){o&„ IJI@+„) (A27)

The next step is to evaluate the matrix element for the current operator in the above expression,

(A28)

Inserting Eq. (A28) into Eq. (A27) and taking into account the following relationship:i"

(+,,„,.I+.',.,.) = h~-h- h(p —p') —2 'h IE~(p') —E-(p)l (C ~,',- IT+I~-. -) (A29)

we can express J2 as

J, = Re q „)) h, +if dJ'(0„+„
I
AG (E )AI@,, )(C, „, , l@„+„)&.

8
(A30)

Now let us separate our expression for J2 into two parts, in the same way as we did for Jq.

J JM + JM (A31)

(A32)

In analogy with Jz, the term J2 contains only states originating from the left side, while the term J2~ contains states
originating from both sides.

When summing up the terms in Eq. (A31) and Eq. (A22) to obtain the total current, we find that JP and JP cancel
each other. The remaining terms JP and JP are proportional to (f —f ), the differ-ence between the distribution
functions at the right and left side of the microconstriction, as is expected for the current.

The cancellation of the terms J~~ and J2~ is a consequence of the assumed geometrical symxnetry of our microcon-
striction. A special case of an asymmetric geometry has been studied by Fedichkin, Ryzhii, and V yurkov, leading
to a photovoltaic effect.

In our adiabatic geometry the term J2 can be rewritten as

(A34)
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~ ) .h-, +i(f —f=) It-l(@.+,p,.l&h(E —H + ~)&l@.+,,,.) (A35)

(A36)

Here we have used the relations

(4, „, , IC+„)=t„bi„b ~ b(p' —p) (A37)

where t is the transmission amplitude for mode n. %e have also introduced the state

(A38)

where the summation over P is defined as

(A40)

Now let us rewrite the term J&~ as

) ) h, +i&,+i(f —f )I (@+-„ IXI '', „, , ) I'b(E —Ep + Aced)

a P

where we have used the relation

(A41)

(A42)

The total current correction J is thus

1 = J + 1 = ) ) h +i(f —f )h(E —Ep 6 Ru)
cx P

x +, 4+„A 4, „, , —t„C+„A%i+„, (A43)

Every state I4') in the above expression is either a propagating or refiecting state. We can now make a separation
into propagating and reflecting states, and make use of the following relations:

h-, +ih, +il(@.+,p,.l&1@1„.) I' = h-, +ih-, +il(@.+,„,.I&1@1+„.) I' if (t p' ~') is a p»pagating state (A44)

b,+ib,+il(@„„ IXI@&„, , ) I
= b,+ib, +i I(@„„ IAI@& „, ) I

if (t, p', 0 ) is a refiecting state.

We also note that

(A45)

h~, +id~, +i(@+&~l&I@1+„, , ) = 0 for propagating states,

b~,+ih~, +i(4'+z IAIDO'&, , ) = 0 for refiecting states.

Introducing the notations

Io.~) = b~+il@+„) propagating state,

In~) = h~+il@+„) refiecting state

(A46)

(A47)

(A48)

(A49)

and analogous for the state P, we can finally express the current correction J as

i )-)-(i- f~)~(~ ~~+(' )(l(P+~I l~-~)l —l(~ +(~I@~)l*)- (A50)
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Here, all states originate from the left side of the microconstriction and the arrows denote whether the states are
propagating or reBecting states.

For a small applied voltage V we can make the approximation

f —f =-e&
|9p

(A51)

where f is the equilibrium electron distribution function and p is the chemical potential.

APPENDIX B

In this section we will show how the Green's function Go (E) can be expressed as a projection operator. This is
possible only if the Green's function is situated between two operators that do not overlap each other in space. Let
us denote the two operators by A and J.

As a starting point, let us rewrite the expression A Go (E)J in x representation,

(x~~1& Go (E)Jl»m) = ).).(»~l& l~xs) (~»IGo (E) lrx4) (rx41 JI»m)
XgX4

) ) A )(x] xs)6$ Go (x3 x4 E)J, p(x4, x2).
lV g &4

The Green's function can be expressed as

exp(~s(» —x,)) ' m* ( 'g2m*E
Go (xs —x4, E) = dp

" . = — exp — lxs —x412~5 E —p2 2m' —ih A, 2E

This can now be inserted into Eq. (Bl). Since the two operators A and J do not overlap in space, we always have
that x4 & xs and can therefore split the expression into two independent integrals. Introducing the wave vector
r = / 2mE„/h we get

A A m' dx3 dx4
(xznlA Go (E)Jlx2m) = ) 2~i A &(xz, xs)b&„exp(ie„x3) exp( —ie x4)J„(x4,x2)

2~@ "' ' " "
+2~@

) (x1~1& l~xs) (~»
I
«.)(«-1»4) (rx41 Jl»m).

lv Xg eC4

Finally, we can write

G;(E)J = 2~i) -i IrK„)(r~„IJ, -
„p-(E)

where the state Irlc ) represents a positive momentum plane wave in the rth mode.
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