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Resonant tunneling in the presence of a two-level Huctuator: Low-frequency noise

Yu. M. Galperin
Department of Physics, University of Oslo, P. O. Box 10/8 Blindern, N 0816 Oslo 8, Norway

and A. E Io.ge Physico Tec-hnical Institute, 19J1021 St. Petersburg, Russia

K. A. Chao
Division of Physics, Department of Physics and Mathematics, Norwegian Institute of Technology,

The University of Trondheim, N 708$ Trondheim, Norway
(Received 3 January 1995; revised manuscript received 24 July 1995)

We study current noise in a double-barrier resonant-tunneling structure due to dynamic defects
that switch states because of their interaction with a thermal bath. The time Huctuations of the
resonant level result in low-frequency noise, the characteristics of which depend on the relative
strengths of the electron escape rate, the coupling to the defects, and the defect's switching rate.
If the number of defects is sufIiciently large, the noise is of the 1/f type. It is shown that the
temperature dependence of the noise intensity becomes more pronounced as the spacer gets thicker.

I. INTRODUCTION

Since dynamic defects exist even in high quality point
contacts, it is reasonable to expect that they also
appear in double-barrier resonant-tunneling structures
(DBRTS). A dynamic defect has internal degrees of free-
doin and can switch between two (or more) metastable
configurations, due to its interaction with a thermal bath.
Hence, it is often called an elementary fluctuator (EF).
If the quasibound state in the well is coupled to an EF,
the resonant level co will fluctuate in time following the
switches of an EF between its states. The fluctuation of
sp will induce inelastic tunneling, as well as low frequency-
noise (I FN) in the conductance.

In our previous work (from now on referred to as
I), we have studied the effect of EF on the transmis-
sion probability in a DBRTS. It has been shown that the
switching of a two-level EF can produce inelastic tun-
neling with fine structures in the transparency spectrum,
whose shape depends on the properties of the EF. In this
paper, we will continue to investigate the LFN.

We will consider the physical system as shown in
Fig. 1 of I. In the absence of bias, it can be repre-
sented by a one-dimensional model Hamiltonian H
H~ +HEF +Hjnt +HEF ph +Hph The electronic Hamilto-
nian II, = P„„[s„ctcp +(V„cpc„+H.c.)]+spcpcp
describes the electron tunneling in a DBRTS. Due to the
finite matrix elements V„~ and V„„,an electron with mo-
mentum p tunnels from the emitter (v=l) to the collec-
tor (v=r) via the resonant level sp in the well. In a
structure biased by the voltage V, one has to replace
e„~ —+ zz ~

—peV, c„„~c„„+Q.eV, where the values of
p and o. = 1 —p depend on the asymmetry of the bar-
riers. (For convenience, in the following analysis, we set
the zero reference energy at sp. ) Through the interaction
II;„t ——

2 g,. i J;cpcpo, the resonant level is coupled to(i)

N two-level EF's embedded in the surrounding environ-

ment. The Hamiltonian for these EF's is simply HEF ——

i E;o,', where o,' is a Pauli matrix, and F; is the
separation between the two levels of the ith EF, which
couples to the resonant level eo with strength J;. Since
the system of EF's interacts with a phonon thermal bath,
the switching of the EF's is caused by one-phonon tran-
sitions HEF &h =

2 P,. k Mz' o' '
b&+ izbk zy2, where

0(') is a Pauli matrix.
Let us first outline the physical picture of the LFN.

The transmission probability T(e)of a tunn'eling elec-
tron from the emitter with energy c is very sensitive to
the energy difference c-ep. This difference determines
the total phase change of the wave function of the tun-
neling electron, which undergoes multiple reflections in
the well. If e-eo is small, the phase change is close to
2vrk, where k=o, +1,+2, . . . . Since eo depends on the
states of EF's, when EF's switch states due to their in-
teraction with a thermal bath, T(e)fluctuates in'time
and so causes a current noise. It is important to notice
that because the phonon density of states decreases as w

and hence the number of low-kequency phonon modes is
very small, the direct electron-phonon coupling cannot
produce significant LFN. On the other hand, the rela-
tively high-frequency phonons can activate EF's, which
switch states with relatively low characteristic frequency.
Thus, the EF's behave as transformers, such that the
high-frequency phonon fields can generate effectively the
LFN.

Our investigation on the LFN requires the knowledge
of tunneling transparency T(e), which has been studied
in details in I. Starting from T(s), in Sec. II, we will spec-
ify the procedure of calculating the LFN. The character-
istic LFN, due to a single EF, depends on the relative
strengths of the escape rate of an electron from the well,
the coupling between the EF and the resonant level, as
well as the switching rate of the EF. These characteristic
features will be analyzed in Sec. III. Section IV will con-
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sider a large DBRTS system, which contains many EF's.
We will solve this problem with the generating-function
approach. After introducing the general formulation, we

will study in detail the two cases of thick and thin spac-
ers. Both cases exhibit 1/f ty-pe noise in the parameter
region of experimental interest. However, they can be
distinguished &om the temperature dependence of their
noise intensity. Concluding remarks will be followed in
the last Sec. V.

II. GENERAL EXPRESSIONS

e(v) = tt fdede', F( e, vve~ )v. (6)

If the temperature is much less than all the energy scales
in our problem, then s(v) = p F(sv t o~~7). As a result,
the noise in difI'erential conductance is determined by the
correlation function F.

According to the definition (4), we have

+(«'I&) —= (T(&I&)T(&'10)) —(T(&10)) (T(&'10)) (5)

where () means the average over the random process in
EF's. We obtain

According to the Buttiker-Landauer formula, the cur-
rent I through a DBRTS can be expressed in terms of
the inelastic tunneling transparency T(s, s') of an elec-
tron with incoming energy e and outgoing energy c',

S(e, e'~~v) = ~terat f dt, dqed~td~t evt*'lt -t*"=t
xM((i, (» rht rl217 ) t

where rp(s, s'~(, ri) = s(+ s'g, and

where

I = — ds ds'T(~, s')Q(s, ~'), ~((i,6 ni n2lr) = (G(Ci C2]0)G(ni @~I&))g
—(G(~i ~2))g (G(&i »))y

Q(c, s') = n~(s —peV) [1 —n~(s' + o.eV)]
np (s+ n—eV)[1 —n~(s' —peV)], (2)

n~ is the Fermi function. We restrict ourselves to the
noise of the digerentiat conductance G = BI/BV at high
bias, eV )& k~T, that corresponds to a typical experi-
mental situation. In this case, the dimensionless differ-
ential conductance g = (2e2/h)G can be expressed as

d = t P')tv (")v—:—f &(e) de (&)

T(e~t): ptp f dttdvG( et~t)e'*t'v (4)

in terms of the two-particle Green's function G(v, rI~t)
defined by Eq. (6) of I.

To calculate the time averaged (T(s~t))d, as demon-
strated in I, instead of averaging over t, one can aver-
age T(s~t) over the random processes in EF's and obtain
(T(s~t)) y

= (T(s~t))z. According to (3), the pair correla-
tion function of di8'erential conductance

s(r): (g(~)g(0)) f

Here, T(s) = jds'T(c, s') is the total tunneling trans-
parency. If the temperature is much less than the typical
width of the function T(s), we have g(V) = pT(ev),
where e~ = e~ + peV, e~ is the Fermi level.

In this paper, we will set h = 1 so that energy and
frequency are equivalent. In the absence of EF's, T(e)is'
time independent. Since EF's produce a nonstationary
efFective field acting on the electrons in a DBRTS, T(s)'
becomes time dependent. This time dependence is just
the source of LFN, which we are interested in. Within the
wide band approximation, the tunneling transparency
can be expressed as

is the four-time correlation function. We should mention
that the above averaged. Green's functions are time inde-
pendent, since we need the Fourier transform E(s, s'~u)
of I"(s, s'~7 ), with respect to the variable v.

We will calculate the correlation function with an adi-
abatic approximation, which takes into account the in8u-
ence of the Huctuations on the phase of the wave func-
tion, but neglects the interlevel transition caused by the
switching of EF's between their states (see I and the
references therein). According to this approximation,
EF's are treated as a source of random fiuctuations of
the levels' positions, the correlation properties of the
Huctuations being determined by the EF-phonon inter-
action HKF ~h. The same approximation was used in I
to calculate the average transparency. The prescription
for the adiabatic approximation is first to replace eo by
so + e(t), where e(t) is the random fiuctuation of the
level's position, and then using (4) to calculate the prod-
uct T(s]t)T(e']0). The so-obtained quantity should be
averaged over the random process e(t), and the proce-
dure is denoted as ()y.

After specifying the procedure for calculating the cor-
relation functions, we will investigate the LFN under dif-
ferent situations. If the spatial dimensions of a DBRTS
is small, there are few EF's in the vicinity of the DBRTS
and so the noise is an overlap of few random telegraph
processes. Consequently, the noise spectrum is a super-
position of few Lorentzian tails. For a relatively large
DBRTS surrounded by many EF's, the noise spectrum
is governed by the overlap of contributions of different
defects, and is strongly dependent on both their spatial
distribution and the distribution of their switching rates.
As will be shown later, we then arrive at a spectrum of
1/J' type.

III. LFN DUE TO A SINGLE EF

can be expressed through the pair correlation function of
transparency,

If the DBRTS is coupled to only one EF, one can put
e(t) = J((t), where $(t) represents the random switch-
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ing process of the EF. The procedure of averaging ( ) y
is simply the average ()& over the random process ((t)
according to the statistics determined by the interaction
HEF pQ In terms of the functions

where

8(x, t) —= 8(t —x) —0(t),
P(x, y, r, t) —= 8(x, t) + 6(y, t —r),~:—Ci —C2, y—:nl —n2

The four-time correlation function M can be expressed
as

~((1 (2 gl 92l r) e [ (Cl C2 nl 92 &)
—4((„(2)4 (ii„g2)], (11)

I' (( p) J . (i2)

where p = (pi + p, )/2. The function = describes the
average of the product of the Green's functions over the
random processes in EF's, while 4 describes the average
of a single Green's function. The appearance of the mod-
ulation functions P and i) in the expressions for = and
C is due to the fact that the creation and the annihila-
tion operators co~ and t"o have the time-reversed behavior

cp oc exp ( —i je(t)dt) and cpt oc exp (i je(t)dt). Con-
sequently, one should take into account the phase fluc-
tuations for both direct and time-reversed waves. These
functions have the form of a set of rectangular pulses,
which can overlap with each other. The existence of such
phase fluctuations in = and C' produces in (7) the change
of the resonant-tunneling spectra for the averaged prod-
uct of the Green's functions and for the averaged Green's
function, respectively.

There are three quantities with the dimension of &e-
quency: the escape rate 2p, the shift J of the energy
level, and the characteristic EF's switching rate I'. I' de-
pends on the interaction strength between the EF and
the phonon field, the energy separation of the two EF
states, and the temperature. The explicit expression of I'
is given in I. %'ith decreasing temperature, I' approaches
zero. Consequently, if the barriers are thin enough and
the temperature is sufBciently low) we have

the distance between the EF and the well that determines
the interaction strength J. Here, we have used the same
classification of limiting cases in I. In the following, we

will discuss the VSF case and the general situation that
covers both the SF case and the FF case.

In order to calculate the LFN quantitatively, we need
to specify the random process ((t). We assume that the
EF switches randomly in time between the two states
with ( = +1, with switching rate I'„ from the upper
state and I'g from the lower state. Such random process
is often called the kangaroo process. For the symmetric
case I'„= I'g, it is called the random telegraph process.
In the following, we will use the kangaroo process for the
VSF, and the random telegraph process for both the SF
and the FF.

A. Very slow Buctuator

If the EF is frozen in one state, the transparency T(e')
is time independent and the noise vanishes. Since the
time 1/I' between two switches is much longer than the
time 1/p required to form the resonant state in the well,
each switch of the EF leads to a rigid shift of the en-
tire transparency spectrum by an amount of energy J.
Consequently, the noise of T(sit) has a random telegraph
character. This feature is very pronounced if J )) p,
because the energy shift of the spectrum is much larger
than the width of the spectrum.

The quantitative results for a VSF can be obtained
rather simple. Indeed, an EF resides in its states during
the time much longer than p, the latter being the typi-
cal time to form a resonant-tunneling wave function. As a
result, one can assume that the transparency is T (e+J),
during the period when ((t) = +1, and T (e —J) when

((t) = —1. Here,

~p ( )
Yl'7r

p2 + p2

is the unperturbed transparency. Giving a single-event
probability Pi(() and a double-event joint probability
P2((, ( l~) for the random quantities ( = ((t) and (
((t + 7 ), we readily obtain &om (5)

P)c, c')v) = f d(d( K((, f iv)

xT (e —J()T (e' —J( ),

This case is referred to as very slou) ftuctuator (VSF). At
higher temperatures, we may have either the case of 8lozo
fluctuator (SF) with

where

&(( (-l~) = P2(& &-lr) —Pi(&)Pi(&-) . (17)

(13)

or the case of fast fluctuator (FF) with

p(( J ((I'. (14)

The interplay between the conditions (12), (13), and (14)
depends on the temperature, the barrier thickness, and

Thus, the problem of LFN reduces to the calculation of
Pi(() and P2((,(~lw) for a given random process ((t).
The procedure outlined above can be justified rigorously
from the general analysis basic steps that are outlined
later.

To go further, we will assume the kangaroo process
for the random switching ((t). If we define pt as the
stationary occupation of the state ((t), then p+l ——I'~/I'
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Combining Eqs. (6), (15), (16), and (18), we obtain the
noise intensity

(i9)

where

c(urll') =—1 I'

N(V, T) =
2

4&~V V&

(g2 y JR y ~2)2 4J2~2 )

(20)

Consequently, the noise has a Lorentzian spectrum. The
envelope function N(V, T) can be expressed in analytical
form

and p i ——I' /I', where I' = I'„+ I'~. In terms of pf,
K((,( Iw) can be expressed as7 (see also Appendix A in
I)

with m(t') = P(. . . , t') or 0(. . . , t') .The procedure to
evaluate such functions has been discussed in detail in I.
As in I, we analyze the stochastic difFerential equation for
@(t) equivalent to Eq. (24) from I, with the same bound-
ary conditions. This procedure is also carried out by the
transfer matrix method. The straightforward but rather
tedious calculations, which we do not present here for
brevity, allow us to find the correlation function E(s, s'Iw)
for an arbitrary relationship between the quantities p, J,
and I'. If the inequalities (12) hold, one arrives at the
results of the previous section. Outside this region, we
have analyzed the correlation function E(s, s'Iw) at 7 = 0
and Iwl -+ oo (the first quantity is proportional to the in-
tegrated over the frequency noise intensity). It is shown
thai ai ~ && J, I',

(s s'le) 'oc exp( I7'I/7o)

where wo
——max(l, I'/12). This behavior is easy to

understand, having in mind the analysis of the average
transparency in I.

N(V, T) = 4p~p p&v

[(s )2 + J2 + ~2]2 4J2s2

- 2

(22)

for very low temperatures k~T && p, and

NVT=,23
1 sinh (s~/k~T) sinh (J/k~T)

cosh * + cosh2k~ T 2IC~ T

for high temperature k~T &) p. One should remind the
reader that our zero reference energy is set at the reso-
nant level co. It is then clear that, contrary to the average
transparency which has been calculated in I, the noise
spectrum remains symmetric in e~ even if the switch-
ing rates I'„and I'g &om the upper and the lower state
are different. This is illustrated in Fig. 1 where the zero
temperature envelope function N(sv, 0) as well as the
average transparency spectrum are plotted for both sym-
metric and asymmetric cases.
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B. General case 0.5

Next we brieHy discuss the general situation that cov-
ers the limiting cases of SF and FF. Since it is much
more complicated than the VSF case, we will restrict
ourselves to the random telegraph process when the oc-
cupation probabilities of the upper and the lower states
are equal. Although this simplified model is valid at
high enough temperatures, it nevertheless reproduces the
main results with relatively simple formulas.

In general case, one cannot neglect the time depen-
dence of the random quantity ((t), while calculating the
integrals over time iii Eq. (9). However, the functions =
and C' (9) have the form 4'(oo), where

0
-10 10

FIG. l. Average transparency (T(s/p) )f (solid curves)
and the zero temperature envelope function N(e/p, T = 0)
(dashed curves), as functions of dimensionless energy t:/p
for J = 3p. Panel (a) is for the symmetric case
P„/I' = Pz/I' = 0.5, and panel (b) is for the asymmetric
case P /I' = 0.9 and Pz/I' = 0.1. The zero reference energy
for e is set at the resonant level Go.
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p (( min(I', J'/I') . (24)

With the key steps of calculations outlined above, up
to the leading term p/I', the final result of the integrated
spectrum of noise is obtained as

The average transparency (T(s))y is analyzed in detail in
I, its width being min(I', J /I') under the conditions (24).
At very low temperatures, k~T (( p, the integral noise
in difFerential conductance is determined by e = c' = e~,

+(sv, svI0) = (&(s))y
'Yl + Qr

(+( v)) f . (26)

At k~T )) p, the LFN noise becomes very small, because
the integral of P(s, c'~0) over s or s' vanishes. In this
case, the correlation should be analyzed including terms
of higher order in p/I'.

IV. THE CASE OF MANY FLUCTUATORS:
1/ f NOISE

For a large enough double-barrier resonant-tunneling
structure, there will be many EF's, each of them will
couple to the resonant level independently. Therefore, all
random processes (('l(t) are independent of each other.
In this paper, we are interested in the noise in DBRTS
with not very thick barriers. For such DBRTS, we have
I'; « p, and so we are dealing with the case of VSF's.

To study the correlation functions (7) and (8), we need
to calculate the one-event probability and the two-event
joint probability similar to those in (16) and (17). To
perform such calculation it is convenient to introduce the
generating function,

To simplify the analysis of the integrated intensity of
LFN given by E(s, s'~0), we assume the condition

A. General forznulation

Let us outline the characteristic features of an EF,
which depend on the equilibrium probabilities @+1 and
p 1 to find the EF in its upper and lower states, the
switching rate I' = I'„+I'g, and the interaction strength
J between the EF and the thermal bath. In general, @~1
depend on the energy separation E between the upper
and the lower level as

ePE j2k~T

2 cosh(E/2k~T)

Since both the density of states of the thermal bath and
J are energy dependent, the switching rate I' is also a
function of E. Finally, J also depends on the distance r
between the tunneling system and the EF.

For N = 1, one can solve (27) directly to obtain

Qr(x, y]r) = cos J(++ y)+i[p+, —p i]sin J(++y)
+4@+1@ 1 1 —e ~ ~ sin Jx sin Jy,

(29)

and then proceed to derive the results in Sec. IIIA. For
N & 1, one has to calculate the product of indepen-
dent generating functions for difFerent EF's. In the limit
N » 1, this product can be approximately calculated
with the help of the Holtsmark method, which is com-
monly used in the theory of optical spectra. This method
starts with the identity Q,. i a; = exp(g,-l na). Then
the sum P, ln a; is replaced by N(ln a), where () is the
average over the distribution of a, . In the limit N )) 1,
the average (lna) can be well approximated as (a) —1.
Therefore, for the quantity Qiv(x, y~r), we obtain

Q~(x, y]r) = exp [—1V(l —Qr(&, y~r))z~], (3o)

where ()@p represents the average over the three param-
eters E, I', and J of the EF's To go. further from (30),
one needs to specify the distribution function 'P(E, I', J).

ICee(e, g)e) = (e
' ~" 'e~-

)i=1 Diat' ibution function

for a system of N EF's, where (('l = ((*l(t) and ( '

((')(t + r). The one-event probability Pi (c) and the
two-event joint probability P2 (e, e ]r) are then derived
as the Fourier transforms of K~(x, y~r), with respect to
z and to (z, y), respectively. However, for N EF's w'ith
random coupling strength J~'~, the suitable generating
function to work with is

w'here e~'l = J&'l$~'l and c
' = J('l$('l are the electron

energy shifts. We will first analyze the general properties
of Q~(x, y~r), and then apply the results to important
llmltlng cases.

Since the switching of an EF is caused by the thermal
bath, only the EF's with E & k~T are active. Conse-
quently, at low enough temperature, the distribution of
E should be a smooth function. As discussed in I, this
conclusion is valid for the EF's produced by either atomic
or electronic disorder. To simplify our calculation, we will
use a constant distribution of E with the value Po, the
value of which will be determined later.

However, for a given E, the switching rate I'(E) has a
wide range of distribution. To clarify this point, let us
consider an EF as a two-level tunneling system, such as
a particle (or a group of particles) moving in an effec-
tive two-well potential. If in the absence of tunneling the
difFerence between the two levels is D and the tunnel-
ing coupling between the states is A, then the interlevel
separation is
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E = QA2+ A~.

In the same system, the matrix element for the interwell
transition caused by the interaction with thermal bath
is proportional to A/E. Hence, the transition rate I'(E)
is proportional to (A/E) . Since the tunneling splitting
A is an exponential function of the barrier's parameters,
the rate I'(E) is distributed in an exponentially wide re-
gion, even for a smooth distribution of the barrier's pa-
rameters. To model this physical picture, in I we have
introduced the energy-dependent rate,

(3V 11——
l
PpLk~T.

(4~A Jp j (32)

For the convenience of our future analysis, we will write
the model distribution function in the form

tribution function should be normalized with respect
to the temperature-dependent effective number of EF's,
N, ff(T), which was defined in I as

I'(E) = rq(E/k~T), q(z) = z~coth —.
2

(31) (33)

The prefactor I' is a temperature-dependent random
quantity distributed between some minimal rate I'~ and
the maximal rate I'o. The rate I'0 corresponds to 8ym-
metric EF s, with 4 = 0. Since I' is distributed in
an exponentially wide region, the ratio rp/r& )) 1.
To allow for this exponentially wide distribution, here
we assume P(E, I', J) oc 1/I', and hence the integral

j&
' P(E, I', J) dI' is proportional to L = ln(I'p/I ~) )) 1.

Both rp and the exponent p in (31) vary with the envi-
ronment to which the EF's are coupled. For the problem
considered in this paper, the EF's are coupled to phonons
and so p=3 and I p

——(k~T) s/E2, where the character-
istic energy E is a function of the EF-phonon coupling
constant Mz appeared in HEF ~h. It is worthwhile to
mention that in systems where the EF-electron coupling
dominates, p=1 and I 0

——yk~T, with y being the di-
mensionless EF-electron coupling constant.

The above estimates are for low temperature, such
that the EF's move in the two-well potential by quan-
tum tunneling. At higher temperatures thermal activa-
tion becomes increasingly important, and the relaxation
rate has a more complicated. form. However, the expo-
nential dependence of I'(E) on the barrier's parameters
remains valid, and the model (31) leads to qualitatively
correct results.

To derive the distribution of J, we assume a uniform
spatial distribution of the EF's. At the resonant level
separated from an EF by a distance r, the EF pro-
duces a dipole elastic or electric field. Since the dipole
Beld also depends on the orientation n of the dipole mo-
ment, the coupling strength can be expressed as a(n) J,
where J = A/r and (la(n) l) = 1. Consequently,
P(E, I', J) oc 47rr

l &&l oc A/J . The minimal value of
the coupling strength is J~ = A/rs „=4vrA/3V, where
V is the volume of the system. The maximal value Jp
of the coupling strength depends on the geometry of the
DBRTS, and will be discussed. later.

Summarizing the above analysis, our model dis-
tribution function P (E, I', J) is then proportional to
POI' J, where Po is an intrinsic property of the sys-
tem and is temperature independent. Because the value
of the constant Po is so far undetermined, the propor-
tional constant can be absorbed in Po, which will be
fixed &om the normalization condition. We should point
out that at a given temperature T, only those EF's
with E & k~T are dynamically active. Hence the dis-

where the normalization constant vg is determined Rom
Eq. (32). For certain systems to be investigated later,
we have Jo ~ oo. In this case, if we define P

[3LV/4vrN, ff(T)] ~ as the average distance between the
EF's, then we have

Vg =
r (34)

2. Gener ating function,

Now we are ready to analyze the generating function
QN (2:,yl7 ) defined by (30), which has both the real and
the imaginary parts. The effect of the imaginary part is
to produce a temperature-dependent shift of the resonant
level eo. Let us define u~ ——x + y to rewrite the real
part as

—»&N(* yl~) = (1 —& )&(u+)+@ &(u-) (35)

where

1 dz 'dI' 1 —e rq()l I

2L 0 cosh —' z, I' 2
(36)

and

0 dJ
f(u~) = 2' (1 —cos[a(n) Ju~]) . (37)

JI n

Using the definition of q(z) given by (31), the integra-
tions in (36) can be performed analytically in the limiting
cases to yield

'
( /L)r I I

@.= ~ (1/2L) ln(ro l~l) r &) l~l )& r, (38)

which measures the coupling strength at the mean dis-
tance between the EF's. We emphasize once again that
v&f oc N ff(T) oc T, but the quantity Pp is temperature in-
dependent. It is also important to notice that the results
of our calculation should be averaged over the direction
of the dipole moment ()
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where c 12, if p = 3 and c 2.5 at p = 1. It is clear
that @ depends on two-dimensionless parameters 1 pirl
and I'~lrl. In a very wide range

where e~ = z(e + E ), 0'p = o+(0), o' = o+(oo)
«/~2, and

exp( —e'/2o')

Jp —A/(d+ db) = A/d (39)

Another relevant physical system to which our theo-
retical model also applies is a 2D electron gas, with two
sets of split gates. The resulting potential for the tunnel-
ing electrons is of the double-barrier type. Between the
2D electron gas and the underlying doped region, there
is a layer of undoped region that acts as a spacer. If the
thickness of the undoped layer is d, then we simply have
Jp ——A/ds. In the following, we will study the DBRTS
with either thin spacer or thick spacer.

the r dependence of @ is logarithmic. Because of such
dependence, we will show later that in the frequency in-
terval of experimental interest, the noise spectrum is close
to 1/u. This conclusion holds regardless of the sample
geometry of the DBRTS discussed below.

The fact that an exponentially wide distribution of re-
laxation rates produce 1/f noise in conductance is well
known. The specific feature of the problem under dis-
cussion is that the distribution of J is also important—
depending on this distribution, different dependences of
the noise vs bias can be observed.

To calculate the function f (u~), we need to specify the
upper limit Jp of the integral in (37), which depends on
the geometry of the DBRTS. The EF's are located in the
doped regions, each of which is separated from a barrier
by a spacer. The width of the spacer d is much thicker
than the barrier width dg. Hence, we can set

~(....lr) = g(2. l2o (r)). (44)

For l7.
l
« 1, the r dependence of the above conditional

probability has a simple qualitative interpretation. Un-
der this condition, since rr oc I'pirl, we arrive at the
diffusion law for the level's position variation, with the
diffusion coefFicient Jp Ngl p.

Now we will calculate the noise. The correlation func-
tion (7) can be expressed in a similar form as (16)

r" (e, e'~7') = J dade lc(e, e ~7')

xT (s —e)T (s' —e ), (45)

with

is a Gaussian distribution of width o. The limiting cases
can be checked easily by using the asymptotic prop-
erties of @ giving in (38). For large lrl such that
I'~lrl )) 1, Pz (e, e ) = P~ (e)P& (e ) and so the
correlation vanishes. At the other limit I'pirl « 1, we

get @ ~ 0 and P~ (e, e l0) = b(e —e )P~ (e) as
expected. Between these two limits, in the wide range
I'& )) lrl )) 1 p, Q is much less than 1. Then, the joint

probability P~ (e, e lr) can be expressed as the product(w)

of the one-event probability P~ (e) and the conditional
probability

B. DBRTS with thick spacers
&(e, e lr) = g(e+lo+(r)) g(2e l2o (r))

g(el«—)g(e-I«) . (46)

Since Jp is very small for suKciently large d, we can
expand Eq. (37) in powers of Jpu~. Taking into account
that Jp && J~, we obtain

For sufFiciently large Ng, that is, for d )) r such that
p « o, the transparency T (e) in the integrand of (45)
is a sharp function. Consequently, we have

f (u~) = ~~Jp(a(n)')-u'+ (40) Z(s, s'lr) = X(s, s'lr)T, ', . (47)

Consequently, we have

—ln Q~(x, ylr) = —o.+(7-)u+ + —o' (r)u',
2 + + (41)

where Tt t = J' deT (c). At low temperature we can set
e = e' = e~, and then the pair correlation function is
expressed as

where

o.~(r) = QvgJp(a (n))„[1+ (1 —2@ )].
+(sv, svlr) = T... g(svlo+(r)) —g («I«) (48)

2o (r) Q2a

We can rewrite the product vgJp as JAN/ where Ng =
(d/r) measures the effective number of EF's, which
broaden the tunneling spectrum. Therefore, the width of
the resonant-tunneling spectrum is of the order Jpg~g.

Knowing the generating function Q~(x, ylr), by taking
the Fourier transforms with respect to x and to (x, y), we
obtain the probabilities (cf. with Ref. 9),

P'"'(e) = g(el«) (42)

P~ (e, e lr) = g(e+lo+(r))g(2e l2o (7.)), (43)

Since g(evlo) =
&
— at sv = sp ——0, substituting (48)

into (6), we obtain

T287=G!7)
where f~(r) is the dimensionless function,

1

2Qg (1 —g )
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Using the expressions in (38) and taking the Fourier
transform f~(w) of fG(w), the noise spectrum for s'~ =
sp ——0 is then calculated. The function f~(w) is shown
in Fig. 2 as the solid curve for I'p/I I = 10 . In the region
rI « ~ «r„ f~(~) ~ ~-'".

C. DBRTS with thin spacers

—»iv(* yl~) = v+(7)IT+ yl+v —(~)l* —yl (51)

where

v~(~) = —vg [1+ (1 —2g~)]
2

(52)

and v—:v~(oo) = mv&/2. By taking proper Fourier
transforms of (51), the one-event probability and two-
event joint probability are derived as

P,' '(.) =r(.I2v ) =Z(.l~v, ),
P2 (e, e I7) = C(e+Iv+(w))l:(2e I2v (7)),

(53)

(54)

where E(elv) is a Lorentzian of the variable e and the
width v, as defined by (20). Again, in the interval I'p

lrl « I'I, we can express the joint probability as the

product of Pi (e) and the conditional probability,

When d is small, the product Ju~ in (37) can no longer
be treated as a small parameter for expansion in the
range between J~ and Jo. Instead, the upper limit of the
integration Jo can be well approximated by infinity. Then
we obtain the simple result f (u~) = ave (a(n))„ lull =
vrvglu~l and The physical reason of such a correlation at I'II7

I )) 1
has been discussed by Laikhtman in connection to the
spectral diffusion in glasses. It has been shown that the
correlation diminishes if the positions of EF's are fixed.
However, for the problem considered here, the spatial
distribution of EF s influences both e and e in the sim-
ilar manner. On the other hand, in conventional experi-
ments for large enough systems, the observed quantity is
(F(e, e lw))EF. Consequently, the proper expression for
the noise should be

)C(e e 17) = ~(e+Iv+(w))C(2e —12v (7))
(.+Iv )Z(2. I2v ) . (56)

At low temperature k~T && p && vd, we can set e =
= sv. in Eq. (56). From the resulting formula, we

derive the pair correlation

Tt'.t "&(«lv+(&))E 8'~, E'~ 7) =
vr v (v-)

2 (si larva/2)
7r vg/2

We should mention that this conditional probability has
been analyzed for the case of small lwl and for the gen-
eral case in connection with the spectral diffusion of
two-level systems in glasses. Under the condition l~l && 1,
we have the relation v oc I'pl7 I, corresponding to the re-
lation cr2 oc I'p lel in a DBRTS with thick spacers. Conse-
quently, in a DBRTS with thin spacers, the characteristic
value of le —el for the Lorentzian diffusion is propor-
tional to lwl, rather than to QI7'I as in a DBRTS with
thick spacers.

In the limit 1 II~I )) 1, one can show from (53) and
(54) that

P2(e, e~loo) g Pi(e)P2(e~) .

W(e~, el~) = E(2e I2v (7)) .

3 ~3

CO

O
-5

3

CO

(55)

T2
S7 =

2 LT (58)

(57)

By comparing (48) and (57), we see that the pair cor-
relation function depends on cr (7) if the spacers are
thick, but on v (7) if the spacers are thin. In the re-
gion I'I )) l~l )) I'p, v (7.) depends on temperature
only weakly, while o (r) has significant temperature de-
pendence. Therefore, when the spacer thickness varies, a
change of the temperature dependence of noise intensity
will be detected.

Knowing the pair correlation (57), the fiuctuation of
Ohinic conductance is readily obtained from (6). At

= 0, we have C(ev Io) = 1/pro. , and then the
conductance fluctuation can be expressed as

-9 I I I I I I I I I

3

log 0 I l&

where dimensionless function fl, (7 ) is defined as

v~ (1 —2g )2

v-(l~l) v+(l~l) 4&-(1 —@-)
(59)

FIG. 2. Dimensipnless functions fo (cu) (solid line) and
fz, (~) (dashed line), which are proportional to the noise spec-
tra of DBRTS with thick and thin spacers, respectively. The
parameter used for this figure is I'II/I'I = 10, and the fre-
quency is measured in units I'&

Again, by taking the Fourier transform of fL, (r), we de-
rive the noise spectrum fr. (w) for sv = sp = 0. The result
is shown in Fig. 2 as the dashed curve for I'p/I I = 10P.
In the region I'I « w « I'p, fl, (cu) oc w



12 134 YU. M. GAI.PERIN AND K. A. CHAO 52

V. DISCUSSION AND CONCLUSION

In the present paper as well as in I, we have demon-
strated that the inHuence of an EF on the resonant tun-
neling depends strongly on the relative strength between
the switching rate I', the shift J of the resonant level
due to the switching states of an EF, and the electronic
escape rate p from the well. If p ) J, then the broaden-
ing of the resonant level due to the tunneling escape is
larger than the separation between the two possible levels
eo + J and eo —J. Hence, the interesting case is J ) p.
In this case, the physical phenomena depend largely on
the switching rate I'. If I' « p ( J, during the time
interval that is proportional to p+q (or p q), the electron
tunnels through a static level ep + J (or e'p —J). This
will result in two well resolved resonant-tunneling peaks
separated by J, and the peak width is of the order p. On
the other hand, if I' )) J ) p, during the time interval
between two consecutive switching states of an EF, the
response of the tunneling system is too slow to form the
two resonant levels co + J. Then there will be only one
resonant-tunneling peak. The width of this peak is the
larger one of J2/1 and p.

It is very difBcult to control the switching rate I' and
the coupling strength J. In any disordered material,
there exists an exponentially wide distribution of relax-
ation rates. The value of J depends on the microscopic
structure of the defect and its spatial location. On the
other hand, the value of p depends on the barrier width
of a DBRTS, and can be well controlled. Therefore, by
varying the barrier width of a small-area DBRTS, the ef-
fect of an EF on resonant tunneling can be investigated
experimentally.

We have shown in our analysis that the correlation
time is inversely proportional to I' if I « J, while it
is proportional to I' if I' )) J. Since J is temperature
independent, but I' increases with raising temperature,
it will be interesting to detect the crossover temperature
at which there is a characteristic change of the behav-
ior of correlation time. However, the exact temperature
dependence of I' varies with the mechanism of switch-
ing. For quantum tunneling, I oc T if the EF inter-

acts with phonons, and I' (x. T if the EF interacts with
electrons. For the entirely different situation of activa-
tion, l oc exp( —E /k~T). Therefore, in order to achieve
this goal, we need a suitable microscopic model to de-
scribe the EF, which is not clear at the moment. If we
adopt the model in Ref. 10, the estimated crossover tem-
perature is about 10—20 K, and the estimated activation
energy is about 100—300 meV.

Besides the temperature crossover, there is also a
crossover from the telegraph noise due to a single EF to
the f noise, due to many EF's. To observe this crossover,
it is necessary to know the density of EF's, which depends
crucially on the sample preparation procedure.

It is shown that the —noise in resonant-tunneling sys-f
tems is strongly dependent of bias voltage V. The ex-
plicit form of this dependence is determined by a spatial
arrangement of EF's in the vicinity of the DBRTS. In
the presence of thick enough undoped layer (spacer) near
a DBRTS, we predict a Gaussian-like V dependence of
noise, while a thin spacer leads to a Lorentzian one [com-
pare Eqs. (48) and (57)j.

In connection to the experimental observation, one
should be aware of the existing low-frequency random
Huctuations of the gate voltage in a DBRTS, which can
lead to a similar low-frequency noise. To study the in-
trinsic LFN due the EF, such extrinsic LFN must be
deducted. Finally, we should mention another kind of
nonequilibrium noise, i.e. , the shot one, which is im-
portant at high enough frequencies. There have been
experimental and theoretical studies of shot noise in a
DBRTS in the absence of EF's. ' However, it will be
very interesting to investigate the shot noise when the
tunneling current is inHuenced by dynamic defects.
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