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Hexagonal crystallization in a two-dimensional electron gas mith disorder
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We develop a theory for the solidification of the two-dimensional electron-gas in the presence
of disorder. Our mean field theory includes the electron-electron interaction in the Hartree-Fock
approximation and the potential of random impurities in the self-consistent Born approximation.
It is shown that the electron solid is stable in a wide range of disorder strengths and that the
impurity interaction leads to a considerable lowering of the ground-state energy. At low disorder we

obtain a Wigner crystal with a gap in the density of states, and at stronger disorder a phase with
a nonvanishing density of states is formed. In the presence of disorder there is still a sharp melting
transition of the electron solid. Depending on the disorder strength it occurs at a significantly lower
temperature. This can explain difFerences in recent experiments.

I. INTB.ODUCTION

There is strong experimental evidence for the solidiG-
cation of a diluted electron gas, as predicted by Wigner,
on the surface of liquid helium and in semiconductor
heterostructures. While in the Grst case the electrons
are close to the classical limit, quantum Buctuations are
important in the second system because of higher elec-
tron densities, a small band mass, and a relatively large
dielectric constant of the semiconductor material. There-
fore, in semiconductor heterostructures, an electron crys-
tal only forms in the presence of a strong magnetic Geld
helping to confine the electrons. A second important dif-
ference between the two systems is the presence of signif-
icant disorder in the heterostructures, which to a great
extent stems &om ionized impurities in the background.

Measurements on liquid helium showed a ratio I' =
e (em) ~ /k~T,

&

= ——137 + 15 between the Coulomb
energy of the classical electron lattice and the melting
temperature T,&= . In a theoretical analysis this was
found to be consistent with a Kosterlitz-Thouless melt-
ing mechanism. ' Experiments on the quantum crys-
tal in the semiconductor system (Refs. 6—8) showed in
the strong magnetic Geld limit a smaller melting tem-
perature which decreases with increasing filling factor.
Above a critical Glling factor of about 0.22 there was no
solid phase detected. Calculations assuming a Kosterlitz-
Thouless type of dislocation mediated melting ' are in
fair agreement with these experiments. However, though
the results of independent measurements —melting tem-
perature versus Glling factor —follow the same tendency,
there is a systematic deviation between them. For ex-
ample, the melting temperatures by Andrei et al. are
consistently smaller by a factor close to 2 than the re-
sults of Goldman et al. in the region of stable electron
solid. To offer an explanation for these deviations and
in view of the expected importance of the impurities in
semiconductor heterostructures, we discuss a quantum
theory of the stability of the Wigner crystal in the pres-
ence of disorder.

We find for low temperatures that the electron solid
is stable in a wide range of disorder strengths and that
the impurity interaction can lead to a considerable low-
ering of the ground-state energy. There are two types of
solid phases: At weak disorder a crystal is formed with
a gap in the density of states at the Fermi level„and at
stronger disorder but still dominant Coulomb interaction
another solid phase results with a nonvanishing density
of states even in the zero-temperature limit. At a critical
disorder strength there is a sharp transition to a disorder-
dominated regime with a laterally homogeneous electron
distribution. In the entire electron solid regime a sharp
thermal melting transition occurs with decreasing melt-
ing temperature when the disorder increases. Though the
absolute value of the melting temperature in mean-field
theory is too high, we note that the variation of the
melting temperature in the electron solid regime is big
enough to potentially account for the difference between
the melting temperatures found in the measurements of
Refs. 6—8.

II. FOB.MALISM

A. Model and general equations

We consider a Hamiltonian for the motion of the elec-
trons containing three parts, the kinetic energy, the dis-
order potential of charged random impurities, and the
electron-electron interaction. The disorder potential we
take in the self-consistent Born approximation (SCBA).
This approach has been succesfully used to describe im-
purity broadening of the Landau levels in the absence of
the solidiGcation of the electron gas. As will be shown,
this covers the limit of strong disorder. The electron-
electron interaction we take in the Hartree-Pock approx-
imation (HFA). As was demonstrated in Ref. 14, this
approach gives very good results in the limit of vanishing
disorder. Our model is thus able to interpolate between
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which describes the two-dimensional motion of a free elec-
tron in the x-y plane. The perpendicular magnetic field.

is taken in the Landau gauge, A = (O, Bx). As is well
known, the eigenstates are then given by

@~,x(r) = 2 ~'V~14 (*—Xl

(x —X)2 .yXx exp — exp
2l2 (2)

where l = (eB/mc)~)'2 is the magnetic length, H~ is
a Hermite polynomial, and Ly is the length of the sys-
tem in the y direction. The Landau-level index % de-
termines the eigenenergies e~ = Ru, (N + 1/2) with
the cyclotron frequency u = eB/(mc). The condition

L /2 (—X ( I /2 and the periodic boundary condi-
tions in the y direction, X = m27r/I„with integer m,
lead to Landau levels with a degeneracy of 1/2ml2 ne-
glecting spin. In the finite temperature Matsubara for-
malism the undisturbed Green's function is given by

the established results for vanishing and for strong dis-
order.

We treat as the undisturbed problem the Hamiltonian
of the kinetic energy

B. Method of solution

To solve Dyson's equation we use a representation

G(r, r', z) = ) G~(X, X', z)4~x(r)4~x, (r') (7)
N, X,X'

.k kyl2)) GN (k, z) exp
~

ik X —i

@»(r)@rv(x a„t')—("')

of the Green's function. The Green's function is as-
sumed diagonal in the Landau-level index. As a con-
siderable numerical advantage G~(k, z) depends only on
one space argument, k, which in addition is restricted to
the hexagonal lattice. We choose the basis k = mkq+nk2
with k] = Qou& and k2 ——Qo/2(~3u —u„), where
tL& jy are the unit vectors in the Cartesian directions and

Qo ——4vr/(~3a) with the nearest-neighbor distance a.
We begin to recast the general equations of the pre-

ceding subsection in the representation of Eq. (7) with
the undisturbed Green's function for which we obtain

Using Eq. (6) we obtain for the Fourier component

n(k) = f d r exp (—ikr)n(r) of the electron density

@~x(r)@N x(r')
Go(r, r', ur„) = .

'

(
' ),

N, X Zhld~ — e~ —
)M

G(i,i, ~„) = Go (r, p, ~„)+ f dr" dr "'G, (i, r", ~„)

x K(r", r"', w„)G(r"', r', u„). (4)

Evaluating standard diagrams in the finite temperature
Matsubara formalism we obtain the self-energies of the
impurity interaction in the SCBA and the Coulomb in-
teraction in the HFA,

where w = (2n+ 1)vr/(Ph) are the fermionic Matsubara
frequencies with P = 1/(k~T). To determine the Green's
function we solve Dyson's equation,

n(k) =
p & 4). -„P)

x lim exp(ice g)G~( —k, & ),
g —+0+

(—y') . (y21
u(k) = ~l. exp

I I ) LN
I

—
I C~(—k)

4 f E2) (10)

where

1
p~(k) = —— den~(e)lm G~(—k, e —p+ ig), (11)

where %1, = L L&/(2vrl ) is the number of states in a
Landau level, I~ is a Laguerre polynomial, and y = ~k~l.

Performing a standard Matsubara frequency summation
yields

Z(r, r', ~„)= G(i, r', (u„)(Vg;,(r)Vg;, (r'))

+b(v p) fdpi'(r")—
6 1—) lim exp (i(d )7)G(r, r', u„).

p
~

g~o+

Here () is the disorder average of the correlation function
of the disorder potential Vg;, (r) . As usual the electron
density is given by

1 1
D(e) = —— ) Im Grv(k = O, e —p y ig)x 2xl2

N
(12)

with the Fermi distribution function
n~(e) = (exp [(e —y, )p] + 1) . As usual the analytic
continuation i~ ~ z is made and the integration over
e is along the real axis where the imaginary part of the
Green's function has a cut. The function p~(k) is the
electron density projected onto the Nth Landau level in
units of Nl, . From Eqs. (10) and (11) we obtain the
density of states

n(r) = — lim ) exp (i~ g) G(r, r, u ).
p g~o+

~n
(6)

which is in agreement with Ando's results without
Coulomb interaction.

Inserting the transformation &om Eq. (7) into Dyson's
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equation yields

G~(k, z) = G~(k, z) + G~(z) ) Z~(k —g7, z) G~(g7, z) with

Z(k, z) N ——WN (k)p~(k)

lx cos —(k x p),2

p

Z~'(k, z) = —G~(k, z)F~(k),

with

F (K)=I'L
i

—
i pi ——i,

2 2 &y'& ( y'l
E 2)

where I' = 4nl V()2/2n l and nl is the number of scatterers
per area. For the self-energy of the Hartree-Fock term it
follows that

For the self-energy we obtain a representation Z~(k, z)
like for the Green's function, with Z~(k, z) = Z(k, z)~'+
Z(k, z)H~F. We note that Eq. (13) has the form of a sim-
ple matrix equation in the space of the reciprocal lattice
vectors and can thus be solved with standard numeri-
cal techniques. In practice the Green's function has to
be evaluated only along the real axis of the complex z
plane. For the self-energy of the impurity interaction we
can directly adopt the general results of Ref. 15. There
it has been shown that we can write for an ensemble
of b scatterers with individual scattering potentials of
v(r) = Vob(r)

e2 ( u2) ('u'5
W~(k) = — du exp

~

——
~ L~

~

—
~ Jo(uy)

l 2) (2)
1 fy''l, ('y2&

+-exX
I

——ILK I

—1(1 —
~l-, o)2 J

(17)

e2 f y2) 1
Wo(k) = —exp

(

——
[

—(1 —hz 0)

(y' )
IO

I

—
I (18)

Here Io is the modi6ed Bessel function of the 6rst kind.

C. Creund-state energy

To determine the ground-state energy &om the solu-
tion of Eq. (7) we start &om the general expression for
interacting fermions, ~

Here the Grst factor comes &om the Fock term and the
second factor contains the contribution of the Hartree
term as well as the interaction with a homogeneous pos-
itive background. In this paper we consider the case in
which only the lowest Landau level is occupied. Then we
can restrict ourselves to the solution of Dyson's equation
for only the lowest Landau level for which we have

1. . . 1 e

2P f dr lim ) exp(i(d„)7) ihu — g7+ —A + U(r) + p, G(r", r, u ),r~ ~r" 2m c
fL

~h~~~ U(r ) is the single particle potential of the random impurities and the spin degree of &eedom has been neglected.
Making use of the relation

2
+ pV+ —2 —U(r)+ y, G(i r, w j = b(i —r ) i f d,;,ZHF(p, pg)G(i2, r, w„)2m c (20)

valid in the Hartree-Fock approximation, we can express
the ground-state energy in terms of the self-energy and
the Green functions for which we use the numerical re-
sults &om the solution of the Dyson equation [Eq. (13)].
After further manipulation we obtain

ep ——— dEnp (E)D(E)E
1

—2„).Wo(k)(p(-k))(p(k)).

Here eo is the ground-state energy per particle.

III. RESULTS

A. Density ef states

The changes in the ground state of the system in de-
pendence of the impurity strength are illustrated in Fig.
1. We plot the density of states in the two-dimensional
electron system at varying disorder strengths. In the
limit of strong impurity interaction the formation of a
charge density wave is suppressed and we obtain an av-
erage density distribution that is laterally homogeneous.
In this limit the results of Ando for the density of states
of an electron gas without Coulomb interaction are recov-
ered. A trivial shift of the energy zero to lower values is
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caused by the q = 0 term of the Fock term in the Coulomb
interaction [Eq. (18)]. With decreasing disorder a local
minimum of the density of states at the Fermi energy
develops and turns into an energy gap separating occu-
pied and unoccupied states. This energy gap reflects the
formation of an insulating Wigner crystal. With further
decreasing disorder the energy bands become narrower
without a significant shift of the positions of their center
and the energy gap widens. At very small disorder the
upper band splits in three subbands yielding a total of
four energy bands to be expected at v = I/4. ~s

B. Disorder melting of the Wigner crystal

To gain a more quantitative insight into how the
Wigner crystal interacts with the impurity potential we
plot as an order parameter the Fourier component of
the electron density belonging to one erst-shell lattice
vector of the reciprocal lattice [Fig. 2(a)]. Because of
long-wavelength fluctuations, either of thermal origin
or in the impurity potential, we cannot expect true
long-range order. We thus interpret the order parameter
as describing domains of short-range order in the disor-
dered system. From our results, we can distinguish two
regions: For weak disorder, in the electron solid regime,
the order parameter is well approximated by the strong-
magnetic-field limit

p(I:~) = v exp( —lk~ll'/4). (22)

There is only a weak dependence of the order parame-
ter on the impurity potential. At stronger disorder there
is an abrupt transition to the regime of dominant disor-
der where the order parameter vanishes. It occurs at a
value of I' that is close to the correlation energy e~& of

e [e'/I]

FIG. 1. Density of states vs energy for v = 1/4 and
P = 0.02e /L. Solid line, I' = 0.4e /l; dashed line,
I' = 0.34e /I; and dotted line, I' = O. le //. The dash-dotted
line is the result of a calculation taking into account impurity
broadening only by a very small Lorentz line broadening of
b = 10 e /l. At smaller h the highest subband splits into
two bands leading to a total of four energy bands.

the Wigner crystal (WC) without impurities. Using the
interpolation formula

ewc[e /l] = —0.782 133v + 0.2823v

+0.18v / —1.41 exp (—2.07/v) (23)

Rom Ref. 14 we obtain for v = 1/4, ewe ———0.3505
and for v = 1/7, ewe ———0.2794. Figure 2(b) shows
the ground-state energy as a function of the impurity
strength. At both filling factors there is a discontinuity
in the derivative of the energy with respect to I" where the
order parameter goes to zero. This discontinuity and the
jump in the order parameter we interpret as a crossover
&om a system with a short-range electron solid order to a
system with completely suppressed charge density wave
order. This crossover can well be identified as a phase
transition experimentally.

In addition to the discontinuity of the derivative with
respect to I' there is a small dip in the ground-state
energy which occurs at I 0.24e2/l for v = 1/7 and
I' = 0.32e /I for v = 1/4. It turns out that above these
values of I' the energy gap is zero and below these val-
ues the width of the gap increases with decreasing disor-
der. Therefore there is a range of disorder strength, for
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FIG. 2. (a) The order parameter p(Ieq) at P = 0 02e /l.
Solid lines, v = 1/4; dashed lines, v = 1/7. The circles at
I' = 0 represent the result of Eq. (22). (b) Ground-state
energy per particle, line code like in (a). Here the full circles
are the result of Eq. (23).



12 124 ULRICH WULF 52

v = 1/4 it is 0.32e /l & I' ( 0.35e //, in which there is
no gap in the density of states but a considerable lateral
modulation of the electron density. It can be expected
that the absence of an energy gap has a qualitative im-
pact on the transport properties of the electron solid.

We note that the energy decrease of the electron solid
due to the interaction with the impurities can be ln tile
order of about 5% of the correlation energy. For example,
at v = 1/7 we obtain [eo(F = 0.25) —eo(I' = 0.05)I/eo(I' =
0.05) = 5.6 x 10 . This is conceivable compared. to the
difFerence in the ground-state energies of the correlated
Wigner crystal e~& without disorder and the Laughlin
liquid eL, . For v = 1/7 we compare el, = —0.2810e2/l of
Ref. 20 with ewc ———0.2816e /l (Ref. 14 ) and obtain
(ewc eL)/ewc = 2.1 x 10
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C. Thermal melting of the disordered Wigner crystal

FIG. 4. Melting temperature vs impurity strength I for
v = 1/4 (solid line) and v = 1/7 (dashed line). The full
circles mark the results of the approximation in Eq. (24).

In Fig. 3 we show the temperature dependence of the
order parameter at difFerent values of disorder strength.
In all cases there is a rather sharp transition at which
the order parameter goes to zero allowing us to define
a melting temperature. With increasing I' the melting
temperature T decreases strongly (see also Fig. 4). For
example, at v = 1/4 we obtain at I' = 0.355e2/l a melting
temperature of about 0.02e2/I which is about a factor 5
smaller than T = O. lie /I at low disorder (I' = O. le /I).
Our melting temperatures in the low disorder limit are
in agreement with the results of Refs. 21—23 which can
well be approximated by

at low temperatures (below about 0.02e2/t) whereas
when the impurity potential is stronger (I' = 0.36,
I' = 0.35) the order parameter grows continually with
decreasing temperature in the range of numerically ac-
cessible temperatures. Also, at strong disorder the order
parameter vanishes more abruptly with increasing tem-
peratures when the crystal melts. That these are two

0.35

0.3

k~T = 0.557v(1 —v)e /l. (24)
0.25

From Eq. (24) we obtain k~T = 0.1044e /l for v = 1/4
and k~T = 0.068e /l for v = 1/7. Though the absolute
temperature of the melting transition is too big in mean-
field theory its variation with varying disorder strength
can account for the deviations by a factor of about 2 in
the independent measurements.

We distinguish two different domains: At small disor-
der (I' = 0.1, 0.2) the order parameter is nearly constant
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FIG. 3. Temperature dependence of the order parameter
for v = 1/4. Solid line, I' = 0.36e /l; short-dashed line,
I' = 0 35e /I; long. -dashed line, I' = 0.3e /l; dotted line,
I' = 0.2e /l; and dash-dotted line, I' = O. le /l.

FIG. 5. (a) Width of the energy gap vs temperature at
I' = O. l and v = 1/4; dashed line, thermal energy k~7
(b) Density of states at the Fermi energy vs temperature for
I' = 0.35 and v = 1/4. The full circles mark the position at
which the jump in p(kI ) takes place.
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qualitatively difFerent domains is demonstrated in Fig.
5. At small disorder there is an energy gap at the Fermi
level when the charge density wave is formed. This en-
ergy gap can be associated with a crystalline phase. At
small temperatures the thermal energy is much smaller
than the width of the gap and the order parameter, thus
becomes independent of the temperature. With increas-
ing temperature the gap becomes smaller and the crystal
melts when it becomes smaller than the thermal energy.
At strong disorder even in the limit of zero temperature
there is no energy gap. Though there is a nonzero or-
der parameter, the density of states at the Fermi level
remains finite. This is consistent with the formation of a
phase in which due to the impurity interaction the elec-
trons are not rigidly pinned to their position in the hexag-
onal lattice. A significant hopping transport therefore
should be possible. However, the dominant Coulomb in-
teraction is expected to influence the hopping transport

strongly, which will be analyzed in a later study.
In conclusion we present a theory of the Wigner crys-

tal in disorder. Our results show that the electron solid
is stable in a wide range of impurity strengths and that
the ground-state energy can be lowered significantly in
the disorder potential. Also, we obtain a pronounced de-
crease of the melting temperature in the presence of dis-
order. This can explain the deviations in the experimen-
tal melting curves of di8'erent experiments. At strong
disorder not a Wigner crystal but a phase with a nonva-
nishing density of states at the Fermi level is formed.
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