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Spin-split cyclotron resonance and spatial distribution of interacting electrons

C. M. Hu, T. Friedrich, and E. Batke
Physikalisches Insitut der Universitat 8'si'rzburg, Am Hubland, D-97074 Wsi rzburg, Germany

K. Kohler and P. Ganser
Fraunhofer Inst-itut fur Angetoandte Festkorperphysik, Tullastrasse 72, D 79I0-8 Freiburg, Germany

(Received 6 July 1995)

The interaction coupling of cyclotron transitions with diferent spin orientation was investigated as a
function of density for electron inversion layers in GaAs in the magnetic quantum limit. The spatial
electron distribution strongly influences the coupling of the electrical dipole transitions, resulting in de-
viations from the interaction strength for ideally two-dimensional electrons. At the higher densities the
coupling is essentially reduced due to the finite thickness of the inversion layer, whereas at sufficiently
low densities the coupling rejects the inhuence of disorder.

Kohn' discovered that cyclotron resonance (CR) in a
translational-invariant system is independent on the
electron-electron interaction. However, if translational
invariance is broken by disorder or nonparabolicity of the
bands, electron-electron interactions can have a dom-
inant inhuence on cyclotron resonance. In GaAs, a rein-
troduction of electron-electron interactions can be ex-
pected due to the energy dependence of the electron
effective mass originating from band-coupling phenome-
na and coupling to longitudinal-optical phonons. A ma-
jor breakthrough to the understanding of interaction phe-
nomena in cyclotron resonances was achieved recently by
Cooper and Chalker who demonstrated that for ideally
two-dimensional (2D) electron systems in the magnetic
quantum limit, electron-electron interactions couple the
electrical dipole transitions with different spin orienta-
tions. Under such conditions, the frequencies and the in-
tensities for the two spin transitions can no longer be es-
timated in the framework of the single-particle approxi-
mation. With this new concept, previous cyclotron-
resonance experiments performed on low-density electron
inversion layers in GaAs heterostructures could be ex-
plained satisfactorily. We recently demonstrated that
electron-electron interactions also couple the electrical
dipole transitions between difFerent Landau levels
%~%+1, and that there is essentially no inAuence of
the temperature on the interaction coupling strength. '

To explain the striking inhuence of the electron spin on
the 0~1 cyclotron transition, Cooper and Chalker com-
pared the experiments to their numerical interaction
model for ideally 20 electron systems. Here we attempt
to go beyond this ansatz and extend the concept of the
interaction-coupled dipole transitions to quasi-two-
dimensional systems. We would like to demonstrate as
well how one can gain information on the spatial distri-
bution of the interacting electrons from cyclotron reso-
nances. We performed a detailed investigation of the
influences that rule the interaction coupling of the two
spin-resolved electron cyclotron transitions in the mag-
netic quantum limit in Al& Ga As-GaAs single hetero-

junctions. The density dependence of the coupling
strength was studied with gated samples in a density re-
gime 0.5X10' cm ~N& ~ 5X10' cm . The coupling
is sensitive to the electron distribution in space, leading
to deviations from the X& dependence of the interaction
strength for ideally 20 electrons. At the higher densities,
the coupling can be reduced due to the finite extent of the
inversion layer in growth direction and screening by the
gate, whereas at the lower densities the coupling is con-
siderably enhanced due to the presence of disorder.

The experiment was performed with far-infrared
transmission spectroscopy in temperature and magnetic
field regimes from 1.5 to 7 K and from 12 to 14 T, respec-
tively. Our samples were two modulation-doped
A1Q 3GaQ 7AS-GaAs heterostructures grown by
molecular-beam epitaxy on semi-insulating (100) sub-
strates with X+=8X10' cm and mobilities of order
3.5 X 10 cm /Vs at liquid-helium temperatures. The lay-
er sequence for sample 1 (2) was 1- (1-) pm buffer, 100-
(60-) nm spacer, 40- (g0-) nm Ala 3Gao 7As layer doped
with Si to 1X10' cm, 34- (0-) nm Alo 3Ga07As, 30-
(20-) nm GaAs cap. Four alloyed In contacts and a 5-nm
semitransparent NiCr front gate of resistance Rg = 1 kA
allowed X& to be varied continuously via the field effect.
The far-infrared transmission in frequency space was ob-
tained with an experimental set up as presented else-
where. ' As usual we plot the normalized transmission
T(B)/T(Bo), where B and Bo are the measurement and
reference magnetic field strengths, respectively.

Figure 1 shows the spin-split cyclotron transitions
from the ground %=0 state to the Arst excited Landau-
level N=1 for different Nz and two temperatures, T=5
and 1.5 K, illustrating the inhuence of electron-electron
interactions. In a single-particle approximation, the spin
splitting is essentially dominated by the bulk Lande g-
factor gg =go+g&(X+ —,')B, where go= —0.44 is the g
factor at the conduction-band edge and g &

=0.01 T ' is a
correction related to the nonparabolicity of the conduc-
tion band. " The transition involving the majority spin
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(a) B=13.5T, T=5.0K (b) 8=13.5T, T=1.5K
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up occurs at the higher energy, and the expected reso-
nance splitting Eco=cog cog =g&pgB /i6 is independent
of g0 and proportional to the square of the magnetic field
strength. The oscillator strengths of the two transitions
should be given by the thermal population and with in-
creasing temperature the amplitudes should approach the
same value. In contrast to this expectation, a slight
change of the temperature from 5 to 1.5 K, results in a
reversal of the relative intensities, and with increasing
Nz, both transitions collapse in a single line. This
behavior has been explained being characteristic for the
interaction coupling of electrical dipole transitions in a
magnetic field.

We investigated the Xz dependence of the interaction
coupling by analyzing the relative spin intensities in a
newly developed analytical model for the high-frequency
response of interacting 2D electrons. Our model is
equivalent to the one of Cooper and Chalker, but pro-
vides a different approach to the interaction coupling of
the spin transitions. To describe the intensities and fre-
quencies of the two spin transitions, we start from the

Hamiltonian of a strictly 2D electron layer in a perpen-
dicular magnetic field, which is embedded in a semicon-
ductor with relative dielectric constant c. For a
suKciently dilute electron gas, one can write

n& nl
H= g hco&(a, a, + —.,')+ g fico~(a„+Ja„+1+—,')

i=1 j=1

(a,. —a. )(a,. —a. )

8ireEO, i i lR, —R
l

lWJ

where we used operators a, = (p; i p—,")/v'2l,
a; =(p;"+ip; )/v'2l, b; =(R;"+iRf)I&2l, and
b; =(R; iRf—)/&2l, which relate to the orbital p and
the guiding-center coordinates R;=r, —p; of the elec-
trons and follow the commutation relations [a;,ai ]=5;.
and [b;,b "]=5; . The first two terms describe the spin
transitions as uncoupled one-dimensional harmonic oscil-
lators, and n

&
and n ~ are the populations of the majority

and minority spin, respectively. The interaction term
was obtained by expanding the Coulomb potential in
powers of the orbital coordinates up to second order.
This is a good approximation for an electron gas, where
there is no overlap from adjacent Landau orbits. Our
mean interparticle distance ra=(irN&) ', is of the or-
der of 50 nm, large compared to the Landau orbit
l =(A/eB)'~~=7 nm as well as the extent of the inversion
layer perpendicular to the layer plane, which is about 10
nm. By rearranging the terms in a, , a~, b;, and b, one
obtains
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FIG. 1. Gate voltage dependence of the spin-split electron
CR for sample 2 at temperatures of (a) 5 and (b) 1.S K. The
bold lines are best fits to the experiment with the interaction
model. The fit parameters Nz in 10' cm, scattering time ~ in
ps, and C are given in brackets. Due to a different cool-down
history, densities at the same Vg are different for T=5 and 1.5
K.

where double indices indicate separations, e.g. ,
rij ri rj The fourth term on the right-hand side of
Eq. (2) describes the interaction coupling of the cyclotron
transitions, whereas the last two terms couple the orbital
and guiding-center motions of the electrons. Compared
to the fourth, all other terms vary slowly on the time
scale of the orbital motion and can be neglected in a first
approximation.

We then transform the Hamiltonian Eq. (1) to harmon-
ic coordinates, i.e., H =QA'co; (ata;+ —,

'
) such that

[a, ,H] =%co;cc;. It is convenient to define the coordinates

A, = (1/Qn
& )g; ',a; and A z

= (1/Qn
& )g; ',a„+;,

which form a subspace of the whole [a; ] space, and com-
mute with Eq. (1) in such a manner that the result is a
linear combination of A1 and A2. Moreover, the dipole
operator for right circular polarized light can be written
as a linear combination of A 1 and A 2 and couples only to
this subspace. Solving the 2 X 2 eigenvalue problem
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Nse
o+(co)= F)co) F2 F02+1+i (co a), )r— 1+i (co co2)—r (4)

where a =n ~ /n t, col, =col /(1+Ii ), and
rolp=iolK/( 1 +Ii ), we determine the eigenfrequencies and
the two harmonic coordinates a; =f„A,+f2; A2
(i =1,2). Electron-electron interactions rule Eq. (3) via
ficol = [(el) /8irEEO]g; ', ' (1/d; ), reflecting the in-
teraction energy of a single electron at the origin with all
others separated by the distances d, Without loss of gen-
erality we assumed that each electron has the same in-
teraction energy. Because of the large N&, we replace the
sum (n

&
+ n ~

—1) by infinity, and we finally
get &oil =C2D(~Ns ) [(el) /8ireeo], where CzD

i(ro/d;) is a dimensionless configuration constant
depending on the electron distribution in the layer plane.

Assuming a frequency dependence of Drude type, the
high-frequency conductivity of interacting 2D electrons
can be written as

O

0
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FIG. 2. Experimental configuration constant determined
from the spin-split CR for electron inversion layers in GaAs in
magnetic field and temperature regimes 12 T ~8 ~ 14 T and 1.5
K ~ T ~ 7 K, respectively. The dashed line indicates the
configuration constant C» for an ideally 2D hexagonal Wigner
crystal.

where, using abbreviations N =col /b, co, p = n ~ /( n t +n ~ ),
and 8=[(l—@) +4@p]', the transition energies co;
and intensities F, of the majority (i =1) and minority
(i =2) spin are given by

@—1 —( —1)'0
co; —co

y
+ Aco,

0+( —1)'(4&—1+2p)
20

The F, were calculated by projecting the eigenvectors of
Eq. (3) to the perturbation Hamiltonian for right circular
polarization. Please note that in the parabolic case,
Ace=0, this reduces to Kohn's theorem, i.e., co, =co&+col,
ci72 = ct) y.

=co g F] =0, and F2 = 1. In the very weak cou-
pling limit, coI «Ace, we determine the transition ener-
gies to be co

&

=co ~, co2 =co &, and that the oscillator
strengths F, =n& (/n t+n&) and F2=n~ (/n t+n&) are
dominated by the thermal population of the spin states.

We determined the configuration constant by fitting
the normalized transmission T (B)/T (Bo )
=1—Reo+(co)/I [1+(E)' ]c,oc+o ] with Eqs. (4) and
(5) and the thermal population derived from Fermi-Dirac
statistics (see Fig. 1). Figure 2 shows the Ns dependence
of the experimental configuration for samples 1 and 2.
Cooper and Chalker demonstrated that at low tempera-
tures there is little difference between a solid and liquid-
like electron configuration in CR for ideally 2D electron
systems. Thus, the configuration constant can be calcu-
lated assuming that the guiding-center coordinates are
fixed to the positions of a Wigner crystal. For a hexago-
nal Wigner crystal with long-range order, we get
C~D =6(i/3/2ir) g" g' '[1/(i +j ij ) ] = 1.6,—1=0
shown in Fig. 2 by a dashed line. This value is insensitive

to the unit cell of the Wigner crystal, e.g. , for a square
lattice one obtains nearly the same value.

Most prominently, for both samples the configuration
constant increases with decreasing Xz, exceeding the
value for ideally 2D electrons by up to an order of magni-
tude. For sample 2, the configuration constant is
enhanced for densities smaller than about 2 X 10' cm
whereas for sample 1 there is evidence for an enhance-
ment already at higher Xz, indicating a sample depen-
dence. The increase in the configuration constant we at-
tribute to the presence of disorder developing at the
lower Nz. Evidence for a metal-insulator transition for
electron inversion layers in CxaAs at densities of the order
of 10' cm has also been observed previously from in-
elastic light scattering experiments. ' In the metal-
insulator transition regime, the electrons are no longer
distributed evenly in the sample but are believed to be lo-
calized in dimples that to some extent might be isolated
from each other. Assuming that the electron density in
the dimples Nz is larger than the density X& of the
equivalent homogeneous system, we can qualitatively ex-
plain the enhancement of the experimental configuration
constant in the regime where disorder is important.
Since our analysis is based on the assumption of a homo-
geneous system, we observe a configuration constant,
which increases proportional to (Ns/Ns )

~ . Our experi-
ment provides a promising approach to study the metal-
insulator transition in semiconductors by cyclotron reso-
nance.

For sample 2, there is a tendency that the configuration
constant is reduced compared to C2D at densities larger
than about 2X10' cm . A reduction can be expected
due to the finite extent of the inversion layer in growth
direction and screening by the gate. For a quantitative
evaluation of the effect, we calculated the effective
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electron-electron interaction potential for quasi-2D elec-
trons in the framework of the Fang-Howard variational-
envelope function'

V(r) = f dq F, — +F2 — Jo(qr),
4wEFp p b b 0.9-

where Jp is the Bessel function of zeroth order
and FI(q/b)=[1+ —'(q/b)+ ', (q —/b )](1+q/b)
and F2(q/b) = [1—coth(qD)][1+coth(qD)] '[1+(q/
b)] are form factors related to the inversion layer
thickness and the screening by the gate, respectively.
The parameter b =[12m*e (N~, &+ ,",Ns)/—eEofi ]'~ de-

pends on Xz and the depletion charge Xd, &
in the GaAs

buffer and rules the layer thickness. In the definition of
F2(q/b), we neglected the small difference in the dielec-
tric constants of CxaAs and Alp 3Gap 7As. In terms of the
derivatives of the interaction potential, the configuration
constant can be written in the more universal form

0.8-

0.7

Nd, , ——1xlo cm

D =120nm

2 44 68 2 4 68
0.1 1

Ns(10 cm )

4&E,Epr p

e3;=i Br2 r Br

In Fig. 3, the calculated Xz dependence of the
configuration constant normalized to Czz is shown for
different Nd, „l. In the limit of small X&, the curvatures
and the first derivatives of the interaction potentials for
2D and quasi-2D systems approach the same value if
screening by the gate is ignored. Thus, the electrons will
always behave as being confined in an infinitely thin elec-
tron layer. However, if the gate is included, the
configuration constant drops to zero in the limit of van-
ishing N&, resulting in a total cancellation of the
electron-electron interaction. With increasing Xd pl i.e.,
decreasing layer thickness, the configuration constant ap-
proaches the 1imit for ideally 2D electrons. Decreasing

pl is equivalent to approaching the 3D limit with re-
duced interaction coupling. In our Nz regime from 0.5 to
5 X 10' cm the gate gives only a small correction com-
pared to the finite thickness effect, since the distances D
between the gate and the inversion layer are large for our
samples. The calculated configuration constant is in
close agreement with the experimental data of sample
two for Xd p]

5X10' cm, a realistic value for our
samples.

In principle, the interaction coupling of the dipole
transitions should also inhuence the cyclotron resonance
of electrons in bulk samples. However, in previous exper-
iments, which were performed at electron concentrations
n, of the order of 10' cm, the frequencies and intensi-
ties of the two spin-transitions were in satisfactory agree-
ment with the predictions in single-particle approxima-
tion. " An estimation of the interaction coupling
strength in the bulk is complicated due to the possibility
of the electrons moving freely parallel to the magnetic
field direction. However, for sufFiciently high magnetic
fields and low temperatures we might assume that all
electrons have energies close to the band edge of
the ground Landau level. Then it is straightforward to
show that the interaction energy is given

FIG. 3. Normalized configuration constant C/C2& vs Nz for
different Nd, ». Dotted and solid lines are calculated consider-
ing the finite thickness effect with and without screening by the
gate, respectively. A gate to inversion layer separation of
D = 120 nm is assumed.

by %col =C3o(4mn, /3) [.(el) /Sn. Eeo], where the
configuration constant for bulk electrons C3~is defined as
in Eq. (7) with ra=(3/4~n, )'~ . Similarly as in the 2D
case, we evaluate C3& assuming that the positions of the
guiding-center coordinates are fixed to the positions of a
Wig ner crystal. Considering that one has a body-
centered-cubic lattice for bulk electrons' and that the
difference in the single-particle transition energies is
essentially the same for 2D and bulk samples, one obtains
a relative coupling strength 3C2o(mN& ) /C3o4m n„
which is larger by a factor of about 30 if we assume
Xz -—10" em in the 2D ease. A similar interaction
coupling strength in the bulk as in the 2D case can be ex-
pected only if n, is increased to about 10' cm . Thus,
for the experiment of Ref. 11, the single-particle picture
should provide a good approximation.

Finally, we like to comment on the possibility of a col-
lective mode that can exist in a 2D electron system with
broken translational invariance. The guiding-center
motion is coupled with the orbital motion due to the fifth
and sixth terms in Eq. (2), indicating that an inter-
Landau-level cyclotron excitation is always associated
with an intra-Landau-level excitation of the guiding-
center coordinates. If one neglects the small sixth term,
which couples excitations that are active to left and
right circular polarization, the motion of the guiding-
center coordinates is solely active to left circular
polarization, and the mode dispersion
A'A=2%col =C2o(mN&) [(el) /4nEeo] is proportional to
B '. Modes with this B dependence are characteristic
for 2D electrons with broken translational invariance.
They were predicted to occur in a disordered 2D electron
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gas, ' and are well known for laterally microstructured
quantum discs and dots, ' where these excitations resem-
ble edge magnetoplasmons.

In conclusion, we have studied the density dependence
of the spin-split CR of interaction 2D electrons in GaAs
in the extreme magnetic quantum limit. The interaction
coupling of the electrical dipole transitions deviate from
the strength predicted for ideally 2D electrons due to
influences of the finite extent of the inversion layer,
screening by the gate and disorder. There is evidence for
a collective intra-Landau-level mode associated with the

motion of the guiding-center coordinates. The experi-
mental configuration of this mode is important for the
understanding of the properties of interacting two-
dimensional electron systems in a magnetic field.
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