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We present a method to calculate the binding energy of exciton s states in any kind of layered struc-
ture potential including the case of zero valence- or conduction-band ofFsets. Furthermore, our numeri-
cal resolution of an effective Schrodinger equation allows one to take into account the eFects of a mag-
netic Geld, of arbitrary intensity, perpendicular to the layers. This paper extends the Leavitt and Little
method [Phys. Rev. B 42, 11 774 (1990)],which deals only with the 1s state of the exciton in the absence
of a magnetic field. Excellent agreement is obtained with experimental results.

INTRODUCTION

Semiconductor heterostructures have been of great in-
terest for the past twenty years. The majority of the ex-
perimental and theoretical investigations has been carried
out on the III-V semiconductor heterostructures, such as
the GaAs/Al Gai A.s system for example. Compara-
tively, the II-VI semiconductor heterostructures
represent a relatively recent innovation and extend the
field of application for the confined quantum systems.
We have previously reported on various CdTe/
Cd„Zni „Te and CdTe/Cd, Mn, „Te heterostruc-
tures. '

As the band gap depends on the layer composition, the
heterostructures can be considered as having a spatially
dependent gap acting as an additional potential for the
carriers (we call it the heterostructure potential). This is
the main idea behind the envelope function theory of het-
erostructures, which constitutes the basic theoretical tool
used in this paper.

The heterostructure potential can localize the electron
and the hole in the same or in different semiconductor
layers. Therefore, these two particles form an exciton,
whose binding energy can be very different from its bulk
value. Considering the very large variety of heterostruc-
tures, it is convenient to have a calculation method of' the
exciton binding energy, whatever the characteristics of
the quantum potential and the materials, which the het-
erostructure is made of.

Leavitt and Little have developed a simple, rapid, and
accurate method that allows us to estimate the binding
energy of a 1s exciton confined in an arbitrary hetero-
structure potential (except for fiat band off'sets). They
solved the problem with an adiabatic treatment of the in-
plane motion, with respect to the one along the growth
axis. This enabled them to simply write the binding ener-
gy as a double integral (over the electron and hole coordi-
nates perpendicular to the layers) of a prescribed function
weighted by the squares of the electron and hole subband
envelope functions. They took into account both the rel-
ative electron-hole motion in the plane and along the
growth axis. Therefore, they were able to express in a
better way the intermediate dimensionality of the system

[between two dimensional (2D) and 3D]. However, their
one-parameter variational resolution of the effective
Schrodinger equation limits their field of investigation to
the exciton 1s state in the absence of a magnetic field.

The aim of this paper is to describe a method, which
allows one to calculate the evolution of excited excitonic
ns (n ~ 1) states, with a magnetic field (applied perpendic-
ular to the layers) of arbitrary intensity. The magnetic
field is a powerful tool for investigating the matter prop-
erties, particularly in the semiconductor systems, where it
allows many studies. Among them we can mention im-
portant information about efFective masses, ' gyro mag-
netic factors, and exchange interaction. Extensive mag-
netoexciton calculations in quantum well and in superlat-
tices have been done by Bauer and Ando and by Yang
and Sham. But these methods are usually used in the
low- or high-field limits, and are not really satisfactory
for intermediate-field values. Some of them are easily and
quickly computed, but they only treat the extreme 2D
(Ref. 9) or 3D (Ref. 10) limits, and do not refiect the in-
termediate dimension of the layered systems.

The outline of this paper is as follows. In Sec. I, we
show the results that we have obtained with a numerical
resolution (based on the finite difFerence method) of the
effective Schrodinger equation. We show that our
method is suitable in order to obtain the binding energy
of the exciton excited s states. We test the method in a
simple and specific case. We calculate the binding energy
for a heavy exciton in a rectangular GaAs/Alo 3Gao 7As
quantum well as a function of the well width for different
values of the magnetic field. A very good agreement is
obtained with previously published results (for 1s and 2s
states). In Sec. II, we extend the method to the case of an
exciton in the presence of a magnetic-field applied per-
pendicular to the layers. In these first two sections, we
consider that each exciton supported by the system can
be associated with a specific pair of electron and hole sub-
bands. It means that the Coulomb interaction does not
mix the subbands states. Leavitt and Little show that,
due to the electron-hole correlation along the quantiza-
tion axis, a single term for the envelope function is
sufhcient in order to give reasonably accurate exciton
binding energies for a wide range of quantum well widths.

0163-1829/95/52(16)/12026(7)/$06. 00 12 026 1995 The American Physical Society



52 EXCITON s STATES IN SEMICONDUCTOR QUANTUM WELLS. . . 12 027

I. EXCITON BINDING ENERGY

We consider a general multilayer semiconductor sys-
tem grown in the [001]direction. The Hamiltonian of an
exciton associated with either the heavy-hole or the
light-hole band in an arbitrary heterostructure is ex-
pressed as follows (considering a zero center-of-mass
momentum):

and

a
2az, m, az,

+ V, (z, )+ Vh(zi, )+H
g2p2

2pIi
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The respective hole and electron vector position r,(p„z, )
and rh(ph, zi, ) are described in cylindrical symmetry suit-
able for the description of a particle motion in a layered
heterostructure grown in the z direction. p, and ph refer
to the in-plane direction. p= ~p,

—
ph~ and Z = ~z, —zh ~

are the relative electron-hole coordinates. V'~~ is the com-
ponent of the gradient with respect to p. V, (z, ) and
V&(zh ) are the heterostructure potentials for the conduc-
tion and the valence band, respectively. m, and m& are
the respective electron and hole effective masses. Unlike
m&, m, is taken to be isotropic, in each material compos-
ing the heterostructure. Therefore, m& has different
values whether the considered direction is the growth
axis (m&, ) or the plane of the layers (m&~~ ). This results in
an anisotropy of the exciton reduced effective mass:

p~~
' =m, '+ mz

I~

' in the plane of the layers and

p, '=m, '+mh, ' along the growth axis. It is well
known that the valence-band coupling results in a large
nonparabolicity of the in-plane hole energy dispersion. '

Therefore, it is very dificult to extract a value for the in-
plane effective hole mass. In order to avoid the difhculty
of considering the valence-band mixing, a lot of au-
thors ' ' have used the diagonal approximation, where
m/, )(=1/(yl+y2) (heavy hole) and mi~~ =1/(yl —y2)
(light hole), yl and y2 are the Luttinger parameters. '

As noticed by Eckenberg and Altarelli' this is a dubious

On the opposite, in Sec. III, we deal with the case where
the valence-band discontinuities are small (even zero).
For the electron the confinement energy remains large
with respect to the Coulomb energy. In such a case, the
hole envelope function is determined both by the quan-
tum heterostructure potential and the Coulomb interac-
tion. " In the limit case of a zero valence-band
confinement, the hole envelope function is entirely fixed
by the Coulomb interaction. We meet this special situa-
tion in semimagnetic systems, such as CdTe/
Cd Mn& Te quantum wells and superlattices'" sub-
jected to a magnetic field. The numerous results obtained
with these calculations being already published, ' the
aim of this paper is to focus on the method itself.

4„(r„rh ) =&b(z„zh )g„(p;Z), (2)

where n =1,2, . . . labels the eigenstates in order of in-
creasing energy (i.e., n =1 is the excitonic ground ls
state). 4& depends on the absolute position of the two car-
riers along the growth axis, g„depends on their relative
motion. This approach was first used by Born and Op-
penheimer' in order to describe a molecule by separating
the electronic and nuclear coordinates: the electronic
motion is fast and the nuclear motion is comparatively
slow. Therefore, the ions are moving in an effective po-
tential created by the average motion of the electrons.
Here p, the in-plane relative motion, is associated to a
fast motion and, on the contrary, Z is associated to a
slow motion. In that way g„(p;Z) is normalized, what-
ever the value of the Z distance between the electron and
the hole along the growth axis. It is the classical hy-
pothesis of the Born and Oppenheimer's theory. Since
@(z„zI,) is normalized, it leads, after a straightforward
calculation, to the main result of Leavitt and Little,
which is the following simple expression for the exciton
binding energy (defined as a positive value):

E„,= I dz, I dzh i4&(z„zh )i iE„,(Z)i . (3)

E„ i (Z = ~z,
—

z& ~
) is the lower eigenenergy of II and

is, therefore, independent of the heterostructure potential
shape. This energy is weighted by the presence probabili-
ty of the electron and of the hole along this axis and in-
tegrated over all the space coordinates (z, and zh).

The main point is now to calculate E„(Z), i.e., to
solve the Schrodinger equation [Eq. (lb)]. This equation
is parametrically dependent on the Z coordinate through
the Coulomb potential. Leavitt and Little use a one-
parameter variational resolution restraining themselves
to n =1. With a finite difference numerical method, we
propose to solve Eq. ( lb), whatever the value of n.
E„(Z) is plotted on Fig. 1 for n = 1, 2, 3, and 4.

approximation. Our approach is definitely different. We
use m&~~ as an adjustable parameter by fitting the experi-
mental results. It will be shown that only one value of
mh~~ is sufficient to fit all the data of the same sample.
The way to define such a mass is a real theoretical prob-
lem and should be of great interest. However, in order to
compare our results with previously published ones, we
use the diagonal approximation. We allow the possibility
for effective masses to depend on z, even if this position
dependence is not explicitly expressed.

H can be considered as a Hamiltonian describing the
Coulomb interaction between an electron and a hole li-
able to move in the planes z =z, and z =z&, respectively.
E„(p;Z) and g„(p;Z) are the eigenvalue and eigenfunc-
tion of 0 . Z is considered as a parameter. We can use
the same static dielectric constant E = s( co =0) for the
whole structure or, as Leavitt and Little, we can also use
an average value for c. taking into account the probability
density of the carriers in the different layers. Image
charge effects are neglected. Following Leavitt and Lit-
tle, we choose the following form for the trial wave func-
tion of an electron-hole pair:
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FIG. 1. The function E„ is plotted versus Z= ~z, —z„~, for
n =1, 2, 3, 4. The energies are expressed in Rydberg unit:

Rp~~:p~~e /[2(47reep) A' ]. The lengths are expressed in Bohr ra-
dius un't aoll ~~~ pll ). We note v =Z/aoll For n =1,
our calculation give the same result than Leavitt and Little.
E„(Z)can be fitted by the functions given in Table I.

FIG. 2. 5W„'=, [defined in Eq. (4)] function versus Z. The
energies are expressed in Rydberg unit: Ro, =p, e /
[2(4ireE0) fi ]. The lengths are expressed in Bohr radius unit:

aoll ( U =
Z/aoll ). The calculated values of 5 8'„', ( U) are

represented by the circles. For U )0. 12, 58'„', (U) =0.
68'„'—&(v) can be fitted by the polynomial expression, given in
Table I, in the interval 0& U &0. 12 (dashed line).

We must not forget that the masses of the particles
along the growth axis are finite, therefore, the relative
motion of the electron-hole pair along this axis provides a
kinetic energy, which could contribute to some extent to
the exciton binding energy. This kinetic-energy function
is noted as W„'(Z), and is such that

&g„(p;Z)

2pz 0 BZ
(4)

E„(Z)=[E„(Z)+W„'(Z)]

—lim + „[E (Z)+ W' (Z)] .

Equation (5) may be simplified as follows. Note first that
lim + E (Z) =0 for all Z [continuum solution of Eq.
(lb) first appears at zero energy]. Although the functions
W„'(Z) are comparable to the two-dimensional binding
energies E„(Z), a numerical evaluation has shown that
the difference 5 W„'(Z) = W„'(Z) —W' + (Z) contrib-
utes to at most 10% of the total exciton binding energy.
Therefore, except for n =1, we can neglect the 68'„' con-
tribution. In addition, 5 W„,(Z) is significantly
different from zero only for arguments whose magnitudes
are smaller than 0.12 times the exciton Bohr radius, as
shown on the Fig. 2.

The expression (3) of Leavitt and Little does not take
into account the kinetic-energy function 5 W„' i (Z).
Since we do not neglect this term (for n = 1), we substi-
tute [Eq. (3)] by the following expression:

which is also analog with the Born Oppenheimer's
theory.

The binding energy is defined as the energy difference
between the bottom of the electron-hole pair continuum
and the lowest excitonic bound state. In term of quanti-
ties defined above, we obtain the binding energy:

E„=f dz, f dzh 4&(z„zh ) lE„(Z)i, (6)

and

a 1 a + V (z ) E' f ''(z )=—0.
2 Bz m Bza a a

where a =e or h (7)

On the figures 3(a) and 3(b), the ls- and 2s-eih, associ-
ated exciton binding energies are calculated for a
GaAs/Gao 7Alo 3As single quantum well. Our results are
compared to Leavitt and Little calculations (for E i, ) on
the one hand, and with Greene, Bajaj, and Phelps' calcu-
lation (for Ei, and Ez, ) on the other hand. Here, we
have used the diagonal approximation. The agreement
with the multiparameter variational method of Greene
and Bajaj is excellent. In Fig. 3(a), the comparison be-
tween our results and Leavitt and Little's ones show that
the 5Wi(Z) term is not negligible in the case of small
quantum well width. Henceforth we are able to calculate
the binding energy, whatever the heterostructure

where E„(Z)=E„(Z)+5 W„'(Z) if n = 1,
E„(Z)=E„(Z)if n ) l.

In Table I, we propose a set of analytical functions,
which fit E„and 5W„', (expressed in a Rydberg unit)
versus Z (expressed in a Bohr radius unit). These func-
tions are useful when computing the exciton binding en-
ergy [using Eq. (3) or Eq. (6)], whatever the values of the
parameters of the material composing the quantum struc-
ture.

We assume that each exciton can be associated with a
pair (i,j ) of electron and hole subbands, where
(i,j)= 1,2, 3. . . are the states in order of increasing ener-
gies. Therefore, we can write
(z„zi, ) =f '(z, )f1 '(zi, ). The states are described by
single-band envelope functions f ' and f~ ', satisfying.
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TABLE I. This table summarizes the parameters of the polynomial expressions, which fit the E„(v)
and 68'„'

&
(v) functions plotted on Figs. 1 and 2.

E„(v)/R~~o=m j /(1+v)+m2/(1+v) +m3/(1+v) +m4v
m) mp m3

2.816024
0.778 004
0.378 807
0.167 364

—5.497 548
—0.866 559
—0.416 971
—0.106 859

6.680 902
0.533 742
0.198414
0.021 518

—0.019755
0.003 448
0.003 618
0.002 672

po p&

58„' &(v)/Rzo po+pj v+p2v +p3v'+p4v +p5v'
pz p3 p4 ps

0.7 —0.8982 154.973 —5841.52 51894.8 —139716

confinement potential and whatever the state of the exci-
ton. A microcomputer takes between ten and twenty
seconds to obtain each eigenvalue. The other big advan-
tage of this method is its ability to be extended to the case
of an exciton under an arbitrary magnetic field applied
parallel to the heterostructure growth axis.

II. EXCITON IN A HETEROSTRUCTURE SUBMITTED
TO MAGNETIC FIELD ALONG THE GROWTH AXIS

In this section we develop a method, which is an exten-
sion of the one accounted in the first section for arbitrary
intensity of the magnetic field applied perpendicular to
the layers. The main difficulty resides in the simultane-
ous presence of the Coulomb interaction and of the har-
monic potential created by the field B. When one of

these two effects dominate, the other can be treated as a
perturbation. It is very convenient to introduce the pa-
rameter y =%co, /2Ro, where %co, is the cyclotron energy
and Ro the effective Rydberg of the exciton. For exam-
ple, if the cyclotron energy is small in comparison with
the exciton Rydberg, diamagnetic effects proportional to
the square of B are expected. On the contrary, for
strong-field values, a Landau quantization of the states
induces a linear variation of the exciton transition associ-
ated lines versus the magnetic field. But, it is often a
difficult problem to connect the different energy levels
and states at intermediate field. Note that, in this section
we only consider the effect of the field on the orbital part
of the wave functions (i.e., the Zeeman spin splitting is
not treated here).

The field in the Faraday geometry only affects the in-
plane radial motion, therefore, the previous 2D-
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FIG. 3. (a) 1s heavy-hole exciton binding energy E&Hj for a GaAs/Gao 7AlQ 3As single quantum well calculated by several au-
thors. The parameters used are m, =0.067, y&(GaAs) =7.36, y2(GaAs) =2.57, v=12.5; the conduction- and valence-band offsets are,
respectively, CBO= 322.8 meV and VBO=57 meV. These parameters are those used in the following references. Dotted line: Pries-
ter, Allan, and Lannoo (Ref. 14); dashed line: Leavitt and Little (Ref. 3); dot-dashed line: Greene, Bajaj, and Phelps (Ref. 15); solid
line: our numerical calculation. (b) 2s heavy-hole exciton binding energy E&H& for the same GaAs/Gao 7Alo 3As single quantum
well. The parameters used are the same as those of (a). The dashed and the solid curve represent the Greene, Bajaj, and Phelps (Ref.
15) results and our calculation, respectively. The dift'erence between the two methods is smaller than 0.2 meV, which is below the ex-
perimental accuracy. The origin of this small dift'erence comes from the fact that we neglect the 58 „=2 term in this case.
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Hamiltonian H is the only operator that is affected by
the field:

g2p2
II

2 2 2e + e B
p

2P~~ 4me+p +Z SP~~

[H E'—(Z ) B)]g„(Z;B)=0 .

(Sa)

(8b)

Equation (Sa) is written in the Lorentz gauge, which
preserves the cylindrical symmetry of the problem. We
only consider the exciton s states, (i.e., without any orbit-
al moment). The total potential is the sum of Coulomb
potential and of harmonic potential, due to the field B. It
is shown on the Fig. 4.

The exciton wave function is now

4,"„(r„r&,B)=f '(z, )f'."'(zl, )g„(p;Z;B) . (9)

Y(p,O, Bo

E(O,BO)

The functions E„and g„are now dependent on two pa-
rameters: Z and 8. The field, because of its geometry,
does not affect the Z motion and we can consider these
two parameters as independent. Thus, 5W„', (Z), which
represents the kinetic energy of the exciton along the
growth axis, should not be strongly affected by the field.
5W„', (Z) is independent of the sign of the field, this
property implies that this function does not have a first-
order field dependence. Therefore it is not surprising, as
we will see later on, that the reliability of our results is
not affected by taking the same function 5W„', (Z),
whatever the intensity of the magnetic field. We also as-

sume that the envelope functions f ~(z, ) and fj'"'(zI, ) are
not affected by the field.

While a variational resolution of Eq. (8b) is difficult to
achieve, the numerical resolution of this one-dimensional
equation is easy. Once again, in this case, the magnetoex-
citon binding energy is

E; „(B)=f dz, f dzq If '(z, )I

(10)

with E„(Z,B)=E„(Z,B)+5K„'(Z) for n =1 and
E„(Z,B)=E„(Z,B) for n & l.

In Fig. 5, we compare our results with the ones of
Greene and Bajaj' for a is exciton in a GaAs/
Ga Al, As quantum well submitted to a magnetic field
parallel to the growth axis. The agreement between the
two methods is excellent and proves the reliability of our
calculations. Whereas greene and Bajaj use a great set of
basis states of functions, we only use the function written
in Eq. (9). This allows us to follow the evolution of a ns
exciton state from the weak- to the strong-field values, by
simply counting the number of zeros in the g„(p;Z;B)
function along the p direction. Let us call ~ this number:
~=0 represents the fundamental state of the potential,
~ =1 is the first excited state, etc. At low field ~ = n —1.
(n is the quantum number for the exciton states. ) At high
field ~=N (N is the quantum number for the Landau
states). At intermediate field the harmonic and Coulomb
parts of the potential are of the same order of magnitude.
Strictly speaking, we do not have a pure exciton or a pure
Landau level, the description of the magnetoexciton state
is very convenient when using the number of zeros rz as
the invariant of the problem.

Figure 6 presents a fit of the experimental results ob-
tained for a CdTe/CdQ 7sZno z2Te quantum well grown on
a Cdo 78Zno 22Te substrate. In the II-VI heterostructures,
we often have to deal with the case y =1, because of the
comparatively high value of the effective Rydberg A in
compounds such as CdTe. The agreement with our ca1-
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FICx. 4. V(p, Z;8) is the sum of the Coulomb interaction
(with a r=O singularity) and of the harmonic potential, due to
the magnetic field. E„(ZO,Bo) is the corresponding eigen-
energy.

FICx. 5. e
&
h

&
exciton binding energy for a few single

CxaQ 7A10 3As quantum wells of various thicknesses, with a mag-
netic field applied parallel to their growth axis. We compare
our results (solid curves) to the greene and Bajaj (Ref. 19) re-
sults (dashed curves). Once again, we can see that the difT'erence
between the two methods is experimentally unobservable.
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V' (zh ), which is the sum of the heterostructure potential
and of the Coulomb interaction with the electron.
V' (zh ) is averaged over the electron motion (z, ) and
over the in-plane (p) relative motion. This method has
been proposed by Peter et aI. ,

' but they achieved a vari-
ational resolution as well. Applying this method to the
calculation developed in Sec. I, and integrating the
Schrodinger equation over z, and p, we obtain

V „(zs,B) =E, +E '+ Vs ( zh )

+I dz, lf '(z, )l'[E, (Z B)

+ W„"(Z,B)] .

FIG. 6. Exciton energy variation of the heavy-hole e& h, exci-
0

ton in a 57 A CdTe/Cdo 78Zno 22Te single quantum well grown
on a Cdo 7,Zno»Te substrate (strained structure). Circles are
the experimental points obtained at the temperature T=2 K.
We have chosen mI, l~=0. 5mo. We have taken a dielectric con-
stant a=10; The conduction- and valence-band offset are, re-

spectively, CBO=1.01 meV and VBO=35 meV. The CdTe gap
is 1606 meV (Ref. 22), at T =2 K. The agreement between the
experimental and theoretical results allows us to identify,
without any ambiguity, the 1s, 2s, 3s, and 4s exciton states. The
dashed lines represent the slopes of the Landau levels X =0, 1,
2 3

culations is excellent, and allows us to clearly identify the
1s, 2s, 3s, and 4s heavy exciton states. We would like to
emphasize that in order to fit all of the sample data, we
have used a single parameter: m&~~

—0.5mo.
The methods that already exist in the literature are

variational and, in this case, less flexible. The method in-
troduced here has the overwhelming advantage of being
fast and accurate, in addition to keeping the flexibility of
the Leavitt and Little calculations, i.e., it is still applica-
ble to a great variety of heterostructures.

+ V,"„(zs) E~ „(B) F—( )(z"h;B)=0 . (12)

F~' '(zs ', B) is the eigenfunction of the hole confined to the
effective potential V' (z&,B).

Once again we deal with a one-dimensional differential

The associated energy is E; „. The approximation we
make here is to substitute W„'(Z) by 5W„'(Z)=W„'(Z)
—W' (Z), to take into account the Coulomb potential
continuum effect. A rigorous treatment should consist in
recalculating the energy associated with the effective po-
tential V', with the term W'„(Z) instead of W„'(Z) and
in subtracting from this energy, the value E; „ in order to
obtain E;.„. We have not done it here, because in the
case of small valence-band confinement, the contribution
of the correction due to the kinetic terms 8" is at most
0.5 meV, which is far from being important comparative-
ly to the total exciton binding energy. Thus, the effective
Schrodinger equation describing the exciton is

B 1 r)

2 r)zs m h Bz)I

III. SMALL VALENCE-BAND DISCONTINUITIES

In this section, we are going to extend the previous
method to the case of small (even zero) valence-band
offsets. The case of a small (even zero) conduction-band
offset is strictly equivalent. When the valence-band po-
tential is small enough compared to the Coulomb attrac-
tion between the electron and the hole, the quantum po-
tential is not strong enough to confine the hole that is at-
tracted in the neighborhood of the electron. In that case,
the single hole subband envelope function fj )(z& )

[defined in Eq. (7)] is not sufficient to correctly describe
the hole confinement along the growth axis. However,
we assume that the electron is sufficiently well confined to
consider that its wave function f,"(z, ) is not alterated by
the electron-hole Coulomb attraction (i.e., the electron
confinement is large compared to the electrostatic in-
teraction). One possibility would be to achieve a calcula-
tion, which takes into account the admixing of the
different hole subbands by the electrostatic potential.
Another solution would be to calculate the exact en-
velope function of the hole in an effective potential

15
E

13-I
LU
CO 11-
Cl

9O
O
X

UJ

7

CO

x.'

Indirect

(Type II)

irect

ype I)

5 I I j I I I I I I

-50 -40 -30 -20 -1 0 0 1 0 20 30 40 50
Q ('Yo)

FIG. 7. 1s heavy-hole exciton binding energy in a multiple
quantum well versus the relative valence-band offset

Q =VBO/b, Es, bEs =80 meV, the thickness of wells and bar-
0

riers is 100 A. Calculations are carried out in the diagonal ap-
proximation and are represented by the solid curve. The dashed
curves represent the calculations achieved with simply a square
quantum well hole envelope function (i.e., f,'"'(z„), with our no-
tation [see Eq. (7)]).
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equation that we solve numerically. Without any
Coulomb interaction, the energy of the free-electron-hole
pair is Ef (B)=E,"+E'"'+E, +(X+—,

' )ih'co„where
N =n —1. The exciton binding energy is then obtained
by subtracting the exciton energy E,. „ to the free-
electron-hole pair energy:

EJ„(B)=E~p(B) EJ—„(B) (EJ„&0) . (13)

Figure 7 shows the binding energy of an each &
exciton

confined to a multiple quantum well versus the relative
valence-band ofFset Q=VBO/b, E . VBO is the valence
band oft'set defined as the difFerence between the edge of
the valence bands in the barriers and in the well. AE is
the band-gap dN'erence between barriers and well. For
Q & 0, both the electron and the hole are confined to the
same layer (type-I confinement), thus they create a direct
exciton (in the real space). When Q & 0, the electron and
the hole are situated in separate layers (type-II
confinement), and give rise to an indirect exciton. We
can see that for the small values of Q (~Q~ &10%%uo, the
hole confinement, due to the quantum well potential, be-
gins to disappear and the calculation developed in the
first section is not valid yet. Outside this interval (i.e.,

~Q~ & 10%), the ls heavy hole exciton binding energy
(Ehh ) is almost quite constant. For Q & 10%, the
electron-hole proximity increases the binding energy and

E„„=13.5 meV (type I) and for Q & —
10%%uo, the separa-

tion of the two particles by the quantum potential de-
creases the binding energy and Ehh=7 m.eV (type II).
The value of the exciton binding energy drops very rapid-
ly from type-I to type-II confinement in the interval

~ Q~ & 10%. For Q =0, we cross the bulk exciton binding
energy Ehh =10 meV. This calculation is very useful,
especially in the case of the semimagnetic heterostruc-
tures, such as CdTe/Cd~ Mni „Te,'" where the
type-I —type-II transition can be tuned by a magnetic
field.

CONCLUSION

The exciton binding-energy calculations developed
here are reliable, whatever the profile of the heterostruc-
ture potential along the growth axis —even in the case of
a Hat valence-band profile —whatever the value of a mag-
netic field applied perpendicular to the layers, and what-
ever the s state of the exciton. The last, but not least, ad-
vantage of such a calculation is that it is fast to compute.
To our knowledge, it is the first time that a reliable exci-
ton binding-energy calculation provides such Aexibility.
It can be applicable to the very large field of various al-
ready existing or future heterostructures. Thus, it is an
efficient tool for anyone who wishes to quantitatively in-
terpret experimental results.
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