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InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons,
and electronic structure
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The strain distribution in and around pyramidal InAs/GaAs quantum dots (QD's) on a thin wetting
layer fabricated recently with molecular-beam epitaxy, is simulated numerically. For comparison
analytical solutions for the strain distribution in and around a pseudomorphic slab, cylinder, and sphere
are given for isotropic materials, representing a guideline for the understanding of strain distribution in
two-, one-, and zero-dimensional pseudomorphic nanostructures. For the pyramidal dots we find that
the hydrostatic strain is mostly confined in the QD; in contrast part of the anisotropic strain is
from the QD into the barrier. The optical-phonon energies in the QD are estimated and agree perfectly
with recent experimental findings. From the variation of the strain tensor the local band-gap
modification is calculated. Piezoelectric effects are additionally taken into account. The three-
dimensional effective-mass single-particle Schrodinger equation is solved for electrons and holes using
the realistic confinement potentials. Since the QD s are in the strong confinement regime, the Coulomb
interaction can be treated as a perturbation. The thus obtained electronic structure agrees with lumines-
cence data. Additionally A1As barriers are considered.

I. INTRODUCTION

Structures are called pseudomorphic when they are lat-
tice mismatched to their substrate, and the strain is ac-
commodated entirely elastically without plastic relaxa-
tion via crystal defects, e.g., dislocations. Pseudomorphic
systems have attracted immense interest due to their
unique potential to exhibit novel electronic and device
properties via use of a wealth of mismatched materia1
combinations. Originally, strained semiconductor
quantum wells had been proposed and demonstrated to
yield improved laser performance. Recently, pseu-
domorphic quantum wires and quantum dots (QD's) have
emerged as exciting realizations of one- and zero-
dimensional mismatched systems. For self-organized
quantum dots realized via Stranski-Krastanov growth,
strain is actually the driving force for the creation of
dots.

In this paper we present a thorough investigation of
the strain distribution in and around self-organized
InAs/GaAs quantum dots, whose pyramidal shape has
been evidenced by high-resolution transmission electron
microscopy. The base sides of the pyramids are oriented
along [100] and [010], and the side facets are close to
[011]. The typical base length is b =12 nm, with a
height of 6 nm. Due to the Stranski-Krastanov growth
mode, the dots reside on a continuous wetting layer (WL)
whose thickness I. is in the monolayer (ML) regime. Nu-
merical results for the strain distribution are obtained by
minimizing the total strain energy of the quantum dot,
wetting layer and barrier. The modification of LO-
phonon energy by strain in the pyramidal QD's is es-
timated and found to agree with recent experiments. In
the actual confinement potential, modified by the strain
and piezoelectric effects, we solve numerically the three-
dimensional effective-mass Schrodinger equation and ob-

tain the realistic electronic structure and wave functions
of the QD's. Coulomb interaction is treated with pertur-
bational theory. The effect of A1As barriers, leading to
stronger confinement below and above the QD and on the
top of the QD only, will be discussed.

To the best of our knowledge such a comprehensive ap-
proach has not been presented so far for three-
dimensional structures. A recent treatment of energy lev-
els in pseudomorphic QD's of diff'erent geometry (fiat
cones with a facet angle of 12' on a wetting layer) (Ref. 6)
uses several approximations: identical (fully biaxial)
strain in the wetting layer and the QD was assumed, and
the discontinuity of the mass across the heterojunction
was not fully taken into account. The strain distribution
in uncovered QD's has been simulated numerically in Ref.
7 (InAs/GaAs pyramids with [114] sidewalls), using the
valence force field model, and in Ref. 8 (truncated
pyramidal-shaped Geo s5Sio, ~ islands on Si) using finite
element analysis.

We will first discuss analytical solutions for pseu-
domorphic structures of high symmetry, i.e., a slab, a
cylinder, and a sphere made of isotropic materials, in or-
der to obtain a general insight into the fundamental
differences of strain distribution in two-, one-, and zero-
dimensionaal nanostructures. In Sec. III numerical results
are derived, taking fully into account the orthotropic
elasticity tensor in III-V semiconductors.

II. SIMPI.K CASKS OF PSEUDOMORPHIC
NANOSTRUCTURES

We consider three different elementary structures, the
pseudomorphic slab (slb), cylinder (cyl), and sphere (sph)
made of isotropic materials, taking into account different
elastic constants for the inner and outer (barrier) materi-
als. We derive analytical solutions for the strain distribu-
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Important combinations of the strain components are
the isotropic part I [Eq. (2a)], and the biaxial part B [Eq.
(2b)]. Shear components are zero in all cases considered.
The strain energy density U«, can be decomposed into
U«t = U, U„,where U, is the energy density of dilatation
and Ud the energy density of distortion [Eq. (2c)]. The
corresponding volume integrals give the respective strain
energies E«„E„andEd.

~I1+~22+33 ~

(ell E22) +(E22 E33) +(E33 sll }

E EU= I U= B
6(1—2v)

' " 6(1+v)

(2a)

(2b)

The results simplify when the Young moduli of the inner
and outer materials are taken to be identical. For III-V
semiconductors, v= —,

' is a typical value and leads to
specifically simple expressions.

A. Pseudomoryhic slab

This geometry is the simplest one, and has been treated
previously in the literature, e.g. , Ref. 1. The slab extends
along the x and y directions. The outer material imposes
(interface) strains e„=e=E onto the inner material, s
being the relative lattice mismatch between inner and
outer materials. The slab can freely extend in the z direc-
tion, and the Poisson effect leads to

tion in and around them, clarifying the general charac-
teristics of strain in two-, one-, and zero-dimensional
structures. The simplifying assumption of isotropic ma-
terials does not precisely describe the case of III-V semi-
conductors. The general behavior of the strain, however,
like decay with large distances, and distribution of the
anisotropic part of the strain between inner and outer
materials, is weakly affected by the simplification.

In the following, all quantities for the inner material
shall be indexed with in, and those for the outer (barrier}
material with out. The stress-strain relations for any or-
thogonal coordinate system (1,2,3) are given by Eq. (1)
for isotropic materials. o. denotes the stress, and c the
strain tensor, E is the Young modulus, and v the Poisson
ratio:

E; =—[(1+v)o; —v|i,jo„„].
1

lJ

B. Cylinder

The situation for the pseudomorphic (infinitely long)
cylinder is more complex: along the cylinder axis, which
extends in the z direction, the inner material is strained
due to the lattice mismatch c., and the outer material
remains unstrained along this direction (this is also true
for anisotropic materials" ):

c.'" =E E'"'=0
zz ~ zz (4a)

fr EoUt p

2

oUt oUt
(9e ~rr (4c)

The inner and outer materials are brought into contact
(also known as the shrink gt, e.g. , Ref. 9). The mismatch
in lattice constants of inner and outer materials imposes
condition (4d), that the difference of the radial displace-
ments u, in the inner and outer materials at the interface
has to be 5=cro:

(4d)

From this condition we obtain the magnitude of the con-
tact pressure P:

P,„j=—c,
OUt

Eout

in

+ 1 —v'" —2( v'" }
Ein

(4e)
I

2(1—v)

This is the complete solution of the cylinder problem.
The prime denotes the case in which the elastic constants
for inner and outer materials are identical, which will be
used in the following for the sake of simplicity. Finally,
for the strains we find

For the plane of the circular cross section we introduce
polar coordinates (r, 0). The radius of the cylinder is ro,
and the cross-sectional area 3, &=~ro. As a next step
the problems of a hollow cylinder under inner pressure
and a massive cylinder under outer pressure are solved
under consideration of the constraints given in Eq. (4a)
for the outer and inner materials, respectively. With P
being the applied pressure, we find

1
[ 1 Vin 2( Vin)2]p in& in jn

V

1 v
(3a) 1 3vin in in

PP 88 2(1 )
& zz

We note that the outer material remains completely un-
strained. ' This is even true for nonisotropic material pa-
rameters; however, in this case Eq. (3a) becomes depen-
dent on the interface orientation. " With Eq. (3a) we ob-
tain

I'" =2E B'" =&2~s~
V V

(3b)

Uin 2E 2 Uin 1~ 2 (3c)
(1 —v) ' ' (1—v)

All corresponding quantities in the barrier are zero.

out out 1+v ~0

2(1 —v) r

2

Note that if v= —,', the in-plane strain in the cylinder van-
ishes. Now we may write I and B and the energy densi-
ties:

1 —2v;„1
~ ~

1+v

2
ro

lout —() Boui —
~ ~ Q 3 —v r
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1 —2v
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1 v)
Integrating the energy density of distortion over the en-
tire barrier results in

Integrating the energy density in the outer material over
the cross-sectional area gives the energy of distortion
Ed'",'y& in the barrier:

out i 2 1+
Ed,.p~

=T« , ~.p~ .
(1—v)

(5g)

1+v
Ed, cyl 4E~ 2 ~cy](1—v)

(4i)

C. Sphere

For the pseudomorphic sphere we introduce spherical
coordinates (p, 8,$). The radius of the sphere is po, the
sphere's volume is Vsph =4m. /3po, and the relative lattice
mismatch shall again be called c,. The problem is solved
in a similar manner as for the cylinder. First a hollow
outer sphere and a massive inner sphere are treated with
inner and outer pressures P, respectively.

~ 1 —2v'n
in p in in

EIn

D. Comparison and discussion

Around a slab the barrier is completely unstrained. In
the cylindrical geometry the strain of the inner material
is constant over the cross-sectional area, while the strain
in the barrier decays like r . Also for a sphere, the
strain in the inner material is constant, and the decay in
the barrier follows a p law. The distribution of the dis-
tortion energy between inner and outer materials is fun-
damentally different for the three geometries, while the
total strain energies (inner material plus barrier) of all
three structures are identical and are given by

Ec
0

1 v

3

1+v p «out 2ot
Eout p

~ 44
out
pp

The magnitude of the contact pressure P is obtained from
the shrink gt condition for the radial displacement u in

P
the inner and outer materials:

(u'" —u'"')i„„=5=spa.
The pressure P depends on the elastic constants of the
inner and outer materials:

As depicted in Fig. 1 (for v= —,
' ), the energy of dilatation

(due. to the isotropic part of the strain) E, =ED/3 is com-
pletely stored in the inner material for all three cases. In
the case of a slab the energy of distortion (due to the an-
isotropic component of the strain) is fully stored in the
slab. For a cylinder the barrier becomes strained and
stores —,

' of the energy of distortion. For the spherical

(5b) geometry the entire energy of distortion resides in the
outer material. These results may serve as a guideline to
understand the distribution of strain and of strain energy
in more complicated geometries.

P.p~
= —

out 1 2 in

+
2E out E In

2EPI
3(1—v)

The prime again denotes the case in which the elastic
constants in the inner and outer materials are identical.
This allows considerable simplifications. The strains are

in 2 in in
~ 1 —2v
pp

—
3

E, —
Egg

—
Kyy y

3

&out 1+v Po out 2 out
PP 3 1

~90

(5d)

In the case of v= —,', we find
happ 3c The isotropic and

biaxial parts and the energy densities are given by

III. STRAIN DISTRIBUTION FOR PYRAMIDS

1.0-

D)

05-
LLj

C:
G5

CO

~ E in

Eden

Edout

Now we consider an InAs pyramid (Fig. 2) on a thin
InAs layer within GaAs, as has been observed by us for
self-organized quantum dots, grown by molecular-beam
epitaxy. The wetting layer thickness L increases with in-
creasing amount of deposited material. For QD's of base
length b =12 nm, L amounts to 1.7 ML. For other dot
sizes we scale I. linearly with the dot's base length, which
realistically reproduces experiments on smaller sized

1 —2vIm 2 8 In =0
sph i & sph1 v

'3 (Se)

0.0
Slab Cylinder Sphere

lGilt —0 g out

v p

1 —2v
Us, spb

——',«', Ud", .pb
—0

(1—v)

(5$

FIG. 1. Energy of dilatation (E; =E ", solid black) and ener-

gy of distortion in the inner (Ed", dotted) and outer (Ed"',
hatched) materials (with identical elastic constants) for the three
different geometries. Eo is the total strain energy according to
Eq. (6a).
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FIG. 5. Hydrostatic (dashed line) and biaxial (solid line)
strains in the pyramidal QD along line A in Fig. 2.
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FIG. 4. Strain distribution in and around a pyramidal QD
for linescans in the [001] direction: (a) through the wetting lay-
er far away from the dot; and (b) along line A and (c) along line
B of Fig. 2. The solid line denotes c„,the dashed line c „,and
the dotted-dashed line cyy.

small forces act on the QD in the xy plane, but the GaAs
barrier compresses the pyramid mainly from the sides
along the z direction, imposing tensile strain components
in the xy plane (s =s~~ at the top become positive).
Generally, however, the strain is still compressive even at
the top of the pyramid (TrE&0}. Around the pyramid
the barrier also becomes significantly strained (=3%
close to the interfaces).

The character of the strain is not determined by the
separate components of the strain tensor, but by decom-
posing the strain tensor into the isotropic (hydrostatic)
and anisotropic parts according to Eqs. (2a) and (2b).
Additionally shear strains c,; (i Aj ) also exist, which turn
out to be significant close to the pyramid edges (intersec-
tions of the t011I side facets). In Fig. 5 we compare the
linescans through the dot center (line A in Fig. 2) of the
hydrostatic part I and biaxial part 8 of the strain tensor.
As expected from the simple considerations in Sec. II D
the inner part of the QD contains nearly homogeneous
hydrostatic strain, while the barrier exhibits almost no
hydrostatic strain. The biaxial strain is transferred to a
significant amount into the barrier around the QD and
has a distinct minimum in the QD.

We note that the strain distribution presented here
may not be directly compared to TEM data if thin foil re-
laxation plays a significant role. In this case different
boundary conditions were required for the calculation.

From the strain distribution we estimate the phonon
energy in the QD. While for monolayer InAs/CxaAs

quantum wells the shift of the phonos energy due to
strain is almost compensated by the strong confinement

13 ~ ~

effects, no significant confinement effects are expected
for the fairly large dots. As an approximation we calcu-
late at each point in the InAs the bulk optical-phonon en-
ergy for the respective local strain state following Eq. (2)
of Ref. 14. In Fig. 6 we show the histogram of the
strain-induced relative shifts of the optical-phonon ener-
gies. The doublet and singlet components are obvious;
the sharp peaks are due to the (more homogeneously
strained} wetting layer, and the broader ones to the QD.
One of the doublet components becomes the shift of the
LO phonon in III-V zinc-blende-type material. ' With a
bulk LO-phonon energy of 29.9 meV, the expected aver-
age strain-induced shift of the LO-phonon energy in the
QD is DE=2.2 meV, giving EL =32. 1 meV. Recent
investigations of multiphonon relaxation in QD's of this
pyramidal geometry have yielded an experimental value
of ELQ 32.2+0.S meV, in good agreement with ourQD

theory. We note that, as long as phonon confinement
effects play no role, the phonon energy in the QD is in-
dependent of the QD size in the framework presented
here.

M
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12

FIG. 6. Histogram of the relative shift of optical-phonon en-
ergies in the InAs. Sharp peaks are due to the (more homogene-
ously strained) wetting layer, broader ones to QD's. One of the
doublet components is the strain-induced shift of the LO pho-
non.
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which reside close to the pyramid's edges and have oppo-
site signs for adjacent edges (Fig. 8). Positive charges re-
side on the outer edges of I112IA planes. Since the
piezoelectric module e&z=e$23 of InAs is a factor of 4
smaller than that of GaAs, the resulting piezoelectric po-
tential

I I I
Ll

—4 —2 0 2 4 6 8 10

(%)

FIG. 7. Histogram of E„in InAs (wetting layer and QD).

is present mainly in the barrier. In Fig. 8 the isopotential
surfaces for

~ Vp~ =30 meV are displayed. The potential
V~ has quite a complicated geometry and vanishes along
line 2 of Fig. 2. We note that Vz is not independent of
the QD size but scales linearly with the pyramid base
length. Inclusion of Vz in the calculations reduces the

An important figure for x-ray-diffraction experiments
is the distribution of strain c.

„

in the dot, affecting, e.g. ,
the position of the (004) reflection. Figure 7 depicts the
histogram of c.

„

in the InAs. The sharp peak is due to
the (more homogeneously strained) wetting layer, and
represents the biaxial strain in a quantum well. The
broad peak with its maximum at about 3% is due to the
QD, and shows that the strain in the z direction is quite
inhomogeneous and strongly relaxed. This is important
for the future interpretation of x-ray-diffraction data
from such nanostructures.

IV. ELECTRONIC STRUCTURE
OF PYRAMIDAL QD's

The strain-induced modification of the band gap is ob-
tained from the strain tensor in the following way: We
decouple the conduction band from the valence bands
and for the strain-induced shift of the conduction band
5E, use Eq. (7), which depends only on the hydrostatic
component of the strain:

5E, = —a, (s„+E+E„). (7)

The shift and splitting of the three valence bands are ob-
tained from the 6X6 Hamiltonian H, for the three
valence bands under strain as given in, e.g. , Refs. 15 and
16. The top valence band under the present essentially
compressive strain is the

~

—'„+—,
' ) band (heavy holes). The

other two bands are split far from the valence-band edge,
and will play no role in the following.

Further refinement could be obtained by taking into
account the gradient of the strain tensor as outlined in
Ref. 16. For a deduction of the electron and hole
confinement potentials, the strain-induced changes have
to be added to the heterostructure band offsets. The
offset ratio Qo for the unstrained bands is taken from the
difference in absolute energetic position of the average
valence band E„,„,' and amounts to Qo =85% for
InAs/GaAs. The confinement potentials for electrons
and holes will be denoted as V, (r, ) and Vl, (rs ), respec-
tively, in the following.

The shear strains induce a piezoelectric polarization P
which creates fixed charges pz,

!I!I!!I!'Sly! ICE!

2n
FIG. 8. Upper part: Piezoelectric charge density due to

shear strain in a 12-nm QD (isosurfaces for a volume charge
density ~q~=0. 3 enm ). The front left edge is on a I112IA
surface; thus the outer charge (red) is positive. Lower part: Re-
sulting piezoelectric potential (isosurface for

~ Vp
~

=30 meV). In
both parts equal color means equal sign.
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TABLE I. Material properties of GaAs and InAs used in the calculations. Symbols are explained in
the text; I(;; are phonon deformation potentials as used in Ref. 14.

Property

GaAs
InAs

ao (nm)

0.565 33
0.605 84

C„(10"Pa)

12.2
8.3

C, (10' Pa)

5.5
4.5

C (10' Pa)

6.0
4.0

Property E„„(eV) 60 (eV) Eg p (eV) a (eV) a& (eV) b (eV) d (eV)

GaAs
InAs

—6.92
—6.67

0.34
0.38

1.519
0.41

—8.33
—6.08

—7.17
—5.08

—1.6
—1.8

—4.23
—3.1

Property

GaAs
InAs

ei4 (Cm )

0.16
0.045

m, (mo)

0.0665
0.023

mhh, (mo)

0.0377
0.0341

V 0

0.112
0.035

12.5
15.2

Property

GaAs
InAs

Ki, +2Ki2
—7.4
—6.4

+11 +12

0.7
0.57

—0.53
—0.76

+ Vi, (ri, )+H, (r„ri,),
Q2 1

H, „;„(r)= g V; V;,
i =x,y, z me re

1H„k,„(r„)= g V; V;2; mi,

imari,

(9a)

(9b)

1

'm (r )
t

—e 2 1
H, (r„r)=i

477E„Ep ir ri, i

(9c)

(9d)

The Coulomb interaction H, is the only term which de-
pends on coordinates of both electrons and holes, and
couples their motion. Since the QD's under considera-
tion are in the strong confinement regime, ' i.e., their
effective radius r = 6 /(8m )'i3=4 nm, b being the pyramid
base length, is small compared to the bulk exciton Bohr
radius (ap y ~ =50 nm), the size quantization represents
the dominating part of the carrier energy. The Coulomb
interaction, however, should not be completely neglected.
It will be treated as a perturbation of the kinetic eigen-
states' as outlined below.

First we solve the three-dimensional single-particle
effective-mass Schrodinger equation with locally varying,
anisotropic effective masses in the confinement potentials.
The equation is discretized on an isotropic cubic cell grid

symmetry of the QD z axis from C&„ to C2„and thus
leads to a lifting of degeneracies. For nondegenerated
levels, corrections in first-order perturbation theory are
zero. Since the energies of levels involved in optical tran-
sitions are generally affected by less than 1 meV, Vz will
be neglected for the main part of the paper. It will be dis-
cussed in detail in Sec. IV D.

The Hamiltonian H for an electron-hole pair in the QD
is given by

H(r„ri,) =H, k;„(r,)+ V, (r, )+Hi, k;„(ri,)

A. InAs/GaAs

Self-organized InAs/GaAs quantum pyramids form
during molecular-beam epitaxy (MBE). The confinement
potentials for electrons and holes are shown in Fig. 9 ac-
cording to the actual sample structure from Ref. 4. The
QD's are embedded in a 14-nm GaAs quantum well,

TABLE II. Material properties of A103Ga07As and AlAs
used in the calculations.

Property Egp(eV)m, (mo)mhh, (mo)mhh(mo)
Alo 3Gao 7As
AlAs

1.90
3.13

0.084
0.124

0.409
0.51

0.135
0.26

with about 1 X 10 voxels (lateral resolution =0.5 nm) by
applying a symmetrical second-order nonstandard
discretization to (8/Bv)(1/m )(8/Bv) (harmonic
differences ), employing Dirichlet and Neumann bound-
ary conditions. The resulting matrix eigenvalue problem
is solved by a nested iteration generalized block Davidson
algorithm ' with multidirectional tridiagonal precondi-
tioning. Material parameters used are listed in Tables I
and II.

In the following we will present calculations for three
different material combinations. First we treat InAs
QD s in GaAs, a system investigated in detail experimen-
tally. Next we consider A1As barriers; in this system the
quantized InAs electron level lies above the GaAs con-
duction band for certain QD sizes, making a resonant
tunneling diode look feasible. The third system investi-
gated has asymmetric barriers: InAs QD's on GaAs with
an upper barrier of A1As. For this combination wetting
layer states are unbound, while QD states are still local-
ized. Carrier relaxation in this system should be quite
different from the case of a CxaAs top barrier. In Sec.
IV D, we outline the effects of the piezoelectric potential
for the case of InAs/GaAs QD's.
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FIG. 9. InAs QD's in GaAs and Ala 3Gao ~As superlattices.
Confinement potential for electrons (top) and holes (bottom), in-
cluding modification of the band structure due to strain.

which itself lies within an Ale 3Gao 7As/GaAs (2 nm, 2
nm) superlattice. Inclusion of this superlattice into the
confinement potentials (Fig. 9) has been found to e6'ect
level energies by less than 0.5 meV compared to pure
GaAs barriers for the QD sizes investigated here (b ~ 6
nm). All further results in this section have been ob-
tained with pure GaAs barriers.

In the following we will first treat the single-particle
problems for electrons and holes, and then consider their
Coulomb correlation. For the typical InAs QD sizes de-
veloping in epitaxy, there exists only one bound electron
level. Higher levels hybridize with the wetting layer.
Figure 10 depicts the term scheme for QD's and WL's:
the zeroes of the electron and hole energy scales are taken
at the unstrained GaAs conduction and valence bands,
respectively. In Fig. 11 the electron (ground state) wave
function in the QD is shown in a perspective view and in
a (010) or (100) cross section. The isosurface containing
70% of the wave-function probability lays almost com-
pletely within the dot. The heavy-hole ground-state wave
function is shown in Fig. 12 together with excited-state
wave functions having energies below the wetting layer.
Due to the strain-induced potential the hole ground state
is squeezed at the bottom of the QD. The excited states
are classified according to their nodes in x, y, and z direc-
tions. Their energy levels can be found in Fig. 10, where
the hole's energy scale starts at the valence band of un-
strained GaAs. The first excited level (E= —183 meV) is
twofold degenerate with states ~100) and ~010). They
can be rotated in their two-dimensional subspace, giving,
e.g. , the wave functions shown in the second row of Fig.
12. Those wave functions, located in the corners, will de-
velop into eigenstates when the piezoelectric potential is
included (see the lower part of Fig. 12, and the discussion
in Sec. IVD). With increasing energy the wave function
increasingly leaks into the wetting layer.

The variation of electron and hole levels with varying
quantum dot size is shown in Fig. 13. Only one electron

unstrained Wetting
GaAs layer

l( ) )1)
tD tD

00 cQO
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e -93
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-40
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FIG. 10. Electronic levels for an InAs pyramidal QD (12-nm
base length) in GaAs with a 1.7-ML wetting layer. Reference
levels (origin of electron and hole energy) are bands for un-
strained GaAs. On the right side, energy levels are shown for
constant biaxial strain.

FIG. 11. Three-dimensional view of the isosurface (the prob-
ability of finding the electron inside is 70%), and cross section
with isolines (30%, 70%, and 96% probabilities of finding the
electron inside) of the squared electron ground-state wave func-
tion for a b =12-nm InAs QD. The cross section is a (100) or
(010) plane through the dot center.
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FIG. 12. Three-dimensional view of the iso-
surface of the squared heavy-hole wave func-
tions (the probability of finding the hole inside
is 70%) for b= 12 nm QD. The upper part ls
calculated without inclusion of the piezoelec-
tric potential. The levels are classified by their
knods in x, y, and z directions; their energies
are given in Fig. 10. The lower part is calcu-
lated with the inclusion of the piezoelectric po-
tential from Fig. 8. Degeneracy of former
~100) and ~010) levels is lifted (for splitting,
see Fig. 20).

4

I

level exists, whose energy rises strongly until for about
b (6 nm no bound-electron state exists anymore. Several
hole levels are found (wave functions for b = 12 nm were
shown in Fig. 12); the topmost merge one after the other
with the wetting layer for decreasing dot size. For elec-
trons a spherical approximation of the pyramid already
gives satisfactory energies, since the strain-induced
band-gap modulation within the dot is quite homogene-
ous and the mass is isotropic. However, for different
confinement strengths (e.g. , for A1As barriers; see Sec.
IV C) the spherical approximation gives poor results. For
a given pyramid base length b we consider a sphere of ra-
dius r having the same volume. The electron confinement
potential is taken as Vo= —450 meV, the average over
the QD. The ground-state energy for electrons is ob-
tained from the equation given in Ref. 22, taking the
mass discontinuity into account. It is shown as dashed
line for electrons in Fig. 13. For all dot sizes the spheri-
c@jL approximation yields electron energies close to those
calculated using the exact treatment. For holes the
spherical approximation cannot be applied. The adiabat-
ic approximation, i.e., solving the one-dimensional
Schrodinger equation in the z direction and subsequently
solving a two-dimensional in-plane Schrodinger equation,
has been found to work poorly for both electrons and
holes. Assuming the strain distribution as a constant (bi-
axial) strain in the InAs (the same strain in the WL and
QD) results in a very poor approximation for our pyram-

ids: The ground-state energies are wrong by more than
50 meV for both electrons and holes, the order of excited
hole states is changed, and the hole sublevel separation is
wrong by up to 100%%uo. The schematic level scheme is
shown on the right side of Fig. 10.

Despite the difference in the shape of the wave func-
tion, the wave-function overlap of the electron and hole
ground states is 88%%uo for the b =12-nm QD. However,
there is a fairly large local charge non-neutrality, causing
a dipole moment. In Fig. 14 we depict the local charge
density q&„,&=p, +phh of the ground state (isosurface for

~ q&,«& ~

=0.2p, ,„), which has a dipole moment

p = fp(x')x'd x' of ~p~ =0.77 e nm=1. 2X10 ' Cm.
This dipole moment might play an important role for QD
interaction with light and optical phonons. Due to in-
plane symmetry the overlap between the

~
100) and ~010)

hole states with the electron ground state is zero. But the
overlap of the electron with the ~001) hole state is finite
and amounts to 34% for b =12 nm. We believe we have
observed this transition in absorption ' and in lumines-
cence at higher excitation.

With respect to energy relaxation in the QD's a de-
tailed look at the hole levels (Fig. 15) is very interesting.
For typical dot sizes the ~100), ~001), and ~110) levels
are close to two, three, and four LO-phonon energies
(dashed lines in Fig. 15), respectively, separated from the
hole ground state, taken as zero energy. Thus multipho-
non relaxation processes of excited holes into the hole
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ground state are energetically possible. Such multipho-
non (or multiple single phonon) relaxation processes
probed by excitation spectroscopy have been reported by
Heitz et al.

So far only single-particle eigenstates of the kinetic en-
ergy have been considered. The Coulomb interaction can
be treated with standard perturbation theory. If ~0) and
Eo are the unperturbed ground-state vector and energy,

aE = (0[a [0)+ E —E0
(loa)

a sums over excited states. In our case the matrix ele-
ments for the one-particle electron and hole kinetic eigen-
states a,P are

the correction AE due to a perturbational Hamiltonian
H' is given to second order as

(00~He t b txP) = & p

e 1= —Id'r, J d",+p(r, )+p(rg )
~

+ (r )+p(rh ) .
47Tspe„re rp,

(lob)

Since there is only one bound electron state, we have to
consider only excited hole states in the second order of
the perturbation. It turns out that Voo represents the
dominating term, and second-order corrections are at
least two orders of magnitude smaller and therefore negli-
gible. This a posteriori justifies our perturbational ap-
proach. The exciton binding energy Ez obtained this
way is depicted in Fig. 16 as a function of pyramid size.
For b =12 nm we find EX=20 meV. Compared to the
bulk exciton binding energy of InAs of 1 meV, it is drasti-
cally enhanced. We note that we have used c.„=15.2

=c„,„A,throughout the calculation, thus neglecting im-

age charge effects due to the different static dielectric
constants in the QD and the barrier. Since the dielectric
constant is smaller in the barrier, the true exciton binding
energy will be slightly larger.

Now we have a satisfactory solution of our Hamiltoni-
an Eq. (9a). The resulting optical transition energies (in-

cluding the exciton binding energy) are shown in Fig. 17
for recombination of electrons with holes in their ground
state and the 001) state.

B. InAs/AlAs
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Since the elastic properties and the lattice constant of
A1As are very similar to GaAs, we use the same strain
distribution as for the InAs/GaAs case. The confinement
potentials are only modified due to the higher band gap
of A1As. For the calculation we use the I gap contribut-
ing an additional conduction- (valence-) band offset of
1079 meV (532 meV). The A1As/InAs QD's are of in-
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FIG. 13. Variation of electron and heavy-hole levels as a
function of QD size. The dashed line for electrons is obtained
from the spherical approximation, with the confinement poten-
tial averaged over the dot.

FICi. 14. Local charge density q&„,&
=p, +p» as an isosurface

for
~ qt„,t ~

=0.2p, ,„

in a 12-um base length pyramidal quantum

dot. The lower cloud is positively charged, the upper cloud neg-

atively. The dipole moment of this charge distribution is 0.77
e nm.
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FIG. 15. Hole subband energies with respect to the dot
ground-state structure as a function of dot size. Horizontal
dashed lines are separated integer multiples of the dot LO-
phonon energy of 32.2 meV. Dash-dotted lines show the in-
clusion of the piezoelectric potential (see Sec. IV D and Fig. 20).

FIG. 17. Transition energy between the electron QD ground
state and the hole ground state ~hhooo) and third excited state
~hhoo, ), respectively, as a function of dot size, including the ex-
citon binding energy.

terest for resonant tunneling structures if the QD elec-
tron ground state is so strongly confined that it lies above
the GaAs (substrate) conduction band. As one can see
from Fig. 18 (triangles), this is indeed the case for b (11
nm. In Fig. 18 we include the result for GaAs barriers
(Fig. 13) as circles for comparison. As we pointed out
above, the spherical approximation in this case works
poorly, and yields energies about 70—30 meV (for
b =6—20 nm) too small.
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C. GaAs/InAs/AlAs

This material system with asymmetric barriers is of in-
terest from a fundamental point of view. Due to the
asymmetric potential well the WL ground state lies above
the level for unstrained GaAs for electrons and holes, and
is no longer bound. The QD ground state, however,
remains localized, i.e., the quantized electron level lies
below the GaAs conduction band, for b ~ 9 nm (squares
in Fig. 18). Due to the heavier mass the holes are
confined for all QD sizes considered (b &6 nm). In Fig.
19 the electron wave function is shown for b = 12 nm and
asymmetric barriers. The electron is pushed away from
the top barrier and penetrates somewhat more into the
lower barrier in comparison with Fig. 11 (GaAs as upper
barrier).

By comparing experiments on InAs QD structures,

-300
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AIAs

FIG. 18. Electron level in InAs QD's as a function of QD
size with respect to the unstrained GaAs conduction band (hor-
izontal dashed line). GaAs barriers (circles), A1As barriers (tri-
angles), and asymmetric barriers (squares), with GaAs as the
lower barrier and A1As as the upper barrier.

)
Q)

E

CD

Q)

LIJ

CDc
U

CQ

O
O
X

UJ

30
I

&

I
&

I
&

I
'

I
&

I
&

I

25:

15:
10:

0 I s I i I i I i I i I i I

6 8 10 12 14 16 18 20
Pyramid Base Length (nm)

RYGaAs

RYInAs

FIG. 16. Exciton binding energy for InAs/GaAs QD's as a
function of the pyramid base length.
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FIG. 19. Three-dimensional view of the isosurface (the prob-
ability of finding the electron inside is 70%) and cross section
with isolines (30%, 70%, and 96% probabilities of finding the
electron inside) of the squared electron ground-state wave func-
tion for a b = 12-nm InAs QD between asymmetric GaAs and
A1As barriers. The wave function for the QD in GaAs only is
shown in Fig. 10.
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order perturbation theory yields small corrections ( ( 1

meV) for b ~ 14 nm practically only for the ~000) and
~002) states. However, for larger structures and QD ma-
terials with larger piezoelectric moduli, Vp makes
significant contribution and thus should generally be tak-
en into consideration.
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FIG. 20. Energy position relative to the hole ground state for
~100) and ~010) levels when the piezoelectric potential is
neglected (E~&oo& from Fig. 13, dashed line) and included (trian-
gles). Dash-dotted lines are level positions in first-order pertur-
bation theory for VI.

grown on the same GaAs substrate and buffer layers, but
with diFerent upper barriers (GaAs and A1As), the role of
the wetting layer for carrier capture and relaxation could
be identified and separated from that of the GaAs barrier.

D. Impact of piezoelectric potential

In Fig. 8 we showed the piezoelectric charge p~ and
potential V~ for an InAs/GaAs QD. The maximum of
Vz in the clouds is 60 meV. Due to the lack of inversion
symmetry of Vp with respect to the [100] and [010] direc-
tions, the symmetry of the pyramid z axis is lowered from
C4, to C2, . In Fig. 12 we compare the hole wave func-
tions for calculations with and without Vz. The electron
wave function is very weakly distorted and cannot be dis-
tinguished from that shown in Fig. 11. The ~100) and
~010) hole levels were degenerate because the Hamiltoni-
an was invariant under 90' rotation (operation C4)
around the z axis through the dot center. Inclusion of the
piezoelectric potential now removes that symmetry and
lifts the degeneracy. The splitting of both levels, ob-
tained from the full numerical calculation including V~,
is compiled in Fig. 20 as triangles. The lower- (higher-)
energy hole level is located in the {111I2 ([111)8)
corners of the pyramid because there the charge residing
on the inner side of the edge is negative (positive), respec-
tively. The dash-dotted lines in Fig. 20 are the level shifts
in first-order perturbation theory for Vz. First-order
corrections for nondegenerate levels are zero. Second-

V. CONCLUSION

We have calculated the strain distribution in and
around InAs/GaAs quantum dots of pyramidal shape on
a thin wetting layer. Such QD's have been observed in
TEM analysis of MBE-grown structures. The hydrostat-
ic part of the strain is mainly confined within the dot.
The anisotropic part is shared between the dot and the
surrounding barrier, and has a minimum in the dot. The
estimated strain-induced shift of LO-phonon energy
agrees with our experimental data. Additionally the TO-
phonon energies in the QD are determined.

From the strain the modification of conduction and
valence bands is obtained. With our general purpose pro-
gram to solve a three-dimensional effective-mass
Schrodinger equation with arbitrarily varying potential
and anisotropic mass, we obtain the eigenenergies and
wave functions. The QD energy levels and hole sublevel
structure agree with recent luminescence and absorption
data for such dots. For typical dot sizes investigated here
(pyramid base length 6 =6—20 nm) only one confined
electron state exists. Ground-state wave functions of
electrons and heavy holes have a large overlap ( =90%%uo);

however, a quite large local charge non-neutrality
remains. Excited hole level wave functions are classified
by their nodes in x, y, and z directions. The exciton bind-
ing energy can be calculated in first-order perturbation
theory, and typically amounts to 20 meV. Piezoelectric
effects lift degeneracies and distort the hole wave func-
tions, but affect the energies of allowed optical transitions
rather weakly. InAs QD's with AlAs barriers and asym-
metric A1As and GaAs barriers are also treated.
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