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In this work, theoretical formulation for optical intersubband transitions has been developed within

the framework of a simple one-band model by including the spatial variation of e6'ective mass in

quantum-well heterostructures. It has been shown how the in-plane polarized optical inter-conduction-
subband transitions could be made large in direct-band-gap semiconductor quantum wells. However,
calculations have confirmed that the normal-to-plane polarized optical intersubband transition is still

dominant. The dependence of optical intersubband transitions on quantum-well structure geometry and

parameters has been investigated, which provides insights to the underlying physics, and suggests a way
how experiments could be carried out to examine these physical phenomena related to optical intersub-
band transitions.

I. INTRODUCTION

Rapid progress has been made in both the physics of
intersubband transitions in quantum-well (QW) struc-
tures and device applications such as infrared photodetec-
tors. ' However, the present understanding and the relat-
ed device development have been limited by the common
belief that the in-plane polarized optical intersubband
transition in a conduction-band QW is forbidden. This
has resulted in the nearly universal adoption of the Brew-
ster angle, the 45' bevel angle or the diffraction grating
for optical coupling. This brings technical complica-
tions to the device fabrication and system implementa-
tion. In order to avoid such complications, normal-
incidence (i.e., incident light with the in-plane polariza-
tion) p-type QW infrared photodetectors based on inter-
valence-subband transitions have been sought and demon-
strated, where the band mixing between light and
heavy holes plays the critical role. Also, normal-
incidence QW photodetectors based on indirect-band-gap
semiconductors with anisotropic effective-mass tensors
have been suggested and demonstrated. However,
complications in design and controllability would result
from involving various valence bands with different
dispersions or tilted ellipsoidal band structures. Further-
more, the smaller electron effective mass and the higher
mobility typical of the conduction band in the I valley of
a direct-band-gap semiconductor are highly desirable to
the detector's sensitivity and speed. Thus normal-
incidence photodetectors based on an n-type conduction-
band QW system in direct-band-gap semiconductors are
more preferable. Recently, a few theoretical efforts have
been devoted to exploring some possible mecha™
nisms' ' for the in-plane polarized optical inter-
conduction-subband transition in a direct-band-gap semi-
conductor system, which include the nonparabolicity of a
bulk semiconductor band structure with sophisticated
multiband schemes, the symmetry breaking of a real QW
structure, and the strain effect with the group-theoretical
approach. Also, experimental evidence of electron inter-

subband normal-incidence absorption was reported for
direct-band-gap semiconductor QW structures, ' ' but
the mechanisms responsible for the transitions are not
clear yet. Whether the normal-incidence absorption can
be realized with n-type direct band-gap semiconductor
QW structures is still an open question. In this work,
within the framework of a simple one-band model, we
shall examine the polarization dependence of optical
inter-conduction-subband transitions in direct-band-gap
semiconductor QW structures by considering the spatial
variation of effective mass on an equal footing. Also, we
shall investigate how optical intersubband transitions are
related to the QW structure parameters, which may pro-
vide an accessible way for experimental testing.

II. ONK-BAND MODEL

In a simple one-band scheme, the wave function for a
given QW structure may be written as

where S is the sample area, k~~
=(k, k~ ) the two-

dimensional (2D) in-plane wave vector, p=(x, y ) the 2D
coordinate space vector, and r=(p, z). y(z) is a slowly
varying envelope function in the growth direction, z, and
is determined by BenDaniel and Duke's effective-mass
equation, i.e.,

P P+ V(z) exp(ik~~p)y(z) =E exp(ik~~p)g(z) .

P= —ikey is the momentum operator, V(z) refers to the
potential energy in a QW structure, E is the electron en-

ergy, and I*(z) is the spatially dependent effective mass.
With boundary conditions that require the continuity of
the envelope function qr(z) and its derivative over the
effective mass, one can solve Eq. (2) in a standard pro-
cedure, obtaining the energy eigenvalue E„and eigen-
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function (p„(z)for the nth subband. For a QW structure
which is symmetric under the reQection z ~—z, one can
find that eigenfunctions q&„(z)have even parity for all odd
levels (n =1,3, .. . ), and odd parity for all even levels
(n =2,4, . . . ).

The effective-mass equation (2) has been widely used
for calculating the energy levels and envelope functions
of electronic states in semiconductor QW heterostruc-
tures. A further justification for its use was recently
given by Burt with a direct derivation of the effective-
mass equation for QW structures. ' In the presence of a
photon field, within an effective-mass framework, ' re-
placing P by P+ (e /c ) A in Eq. (2), an effective
electron-photon interaction Hamiltonian can be written
as

pear after the integration. Considering the presence of
scattering in practical devices, the 5 function can be re-
placed by the line broadening function L(E„E—„—A'co),

which is often taken to be the Lorentzian line-shape func-
tion. '4

Assuming that the polarization is solely in the x direc-
tion, one can simplify Eq. (4) to

2
hAe 2 1k.' &q„l, Iq. & 5(E, E„ fee),

c m'(z)
(5)

which is proportional to the in-plane wave-vector
square. Consequently, the optical-absorption quantum
efficiency il„(i)ico)can be written as

eA
int

' p+p '
m* m

(3)

2
2M e 1fk', ( „I I „,)

n; cco II m *(z)

where A, e, and c denote the vector potential, the elec-
tron charge, and the speed of the light, respectively.
Equation (3), which takes the spatial variation of an
effective mass into account, may not be readily accepted
by some readers. In fact, using Burt's method ' or adopt-
ing a multiband model under the spatially varying
effective-mass approximation, ' one can derive Eq. (3) at
a fundamental level where the electron-photon interac-
tion is related to the free-electron mass mo, which is
shown in the Appendix. In the framework of the multi-
band model, the intersubband transition is determined
mainly by the mixing of the conduction- and valence-
band states due to the band coupling, which is position
dependent in QW heterostructures. Such a band cou-
pling is implicitly included in the one-band scheme, and
essentially represented by the effective mass. We note
that a sophisticated multiband model is more desirable
for accurate calculations. However, in this work we will
confine the discussion to the one-band model, which is
much simpler and more illuminating than a multiband
approach.

According to Fermi's golden rule, the optical transi-
tion rate between the nth subband and n 'th subband is

XL(E„, E„fico)—(f ' —f )dk

where n; is the refractive index, f„is the Fermi-Dirac
distribution function, and the line broadening function
L (E„.E„fico—) reduc—es to a 5 function in the absence of
scattering.

If the spatial variation of the effective mass in QW
structures is ignored, the overlap integral
(y„I(1/m*)Iy„)in Eq. (5) vanishes due to the ortho-
gonahty of eigenfunctions, and the in-plane polarized op-
tical intersubband transition is forbidden. In most previ-
ous studies, this conclusion was reached by first calculat-
ing the dipole matrix element or momentum matrix ele-
ment without considering the spatial dependencies.
However, the inverse effective mass could vary substan-
tially in nanometer scale, which is comparable to the
electron de Broglie wavelength, and thus the inverse
effective-mass term, which originates from the effective
electron-photon interaction Hamiltonian H;„,as shown in
Eq. (3), cannot be taken out from the overlap integral in
Eq. (5). Applying Eq. (2) to the two eigenstates p„and
y„,with eigenvalues E„andE„,respectively, after some
algebra one can find

z = „~& q
„

IH,„,e„,) '5(E„,—E„—f~)

2&e A
( IIp

I

1

Ac S 0'n
m

)
fi n n

m~ " 2(E„. E„) m~ —dz

xj

f'n' ~V'n

m* dz

+P Ie' " (p & 5(E E —fico), —
m

(4)

where co is the photon frequency, and the spatial varia-
tion of the photon field has been neglected because the
wavelength of light is normally much larger than the QW
scale. Here the 5 function has units of energy and indi-
cates the energy conservation, which implicitly assumes
that R refers to a single transition process within a con-
tinuum of states owing to the continuous in-plane wave
vector kII. To evaluate the total transition rate, one has
to integrate R in kII space using the density of states, and
the singularity introduced by the 6 function would disap-

which is not zero with the spatial variation of the
effective mass, making the in-plane polarized optical in-
tersubband transition possible.

Commonly, the oscillator strength F„(,)(fico) is used
as a measure of optical transitions, in terms of which the
optical-absorption quantum efficiency il„(,)(A'co) can be
expressed as

2~ Ae 1il„(,)(fico) = g —F (,)(fico)
mon;c k S

II

XL(E„.E„fico)(f„f„),—(g)——
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and subscript x (or z)is the free-electron mass, and
eno es

' ' '
e x (or z) direction. Here thedenotes polarization in the x or z

oscillator strength is defined as

2F (%co)= 2IM (,)I,X~

accounts forra factor 2 in front of ~M„I,II
15 ndM "ththe twofold sps in degeneracy, an

- lane polarization, usingturn ma rixt '
element. For the in-p ane po a

'

ss M asEqs 6 (8), and (9), one can express M„
M„=ok„(q„(m,/I *) q „,
ilarl for the z polarization (norm pal to lane), the

momentum matrix element, ca

(10)

moa+~, ~q„,)*( )
'

2 *( )

=M„+M„, (1 la)

M =(~„~ ' r, ~q„,)
m '(z)

(1 lb)

is a stan ard d momentum matrix element for the z-
andpolarized optica in e1 tersubband transition, a

D20
(1 lc)

where P, = —I,= —'A'8/Bz is the momentum op0 erator in the z
dii ection,
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momentum components, 8„,=M„/M„,and the oscilla-
tor strength Fz at the photon energy fico( =Ez E—, )

which equals the energy separation between the first and
second energy levels, for In Ga, As/Al„Ga& As
square QW's with z-polarized light. Because of the
effective-mass difference between the well and barrier ma-
terials, the effective potential energy in QW structures
changes as the in-plane wave vector k~~ varies, ' which
leads to a nonparabolic dispersion relation (E—

k~~) for
each subband in a QW structure, though a bulk parabolic
dispersion relation (energy-independent effective mass) is
assumed for each material. Consequently, the energy
separation between subbands is not constant when the
in-plane wave vector kI~ changes. Also, the ratio R„,and
oscillator strength vary with the in-plane wave vector k~~

for the same reason. From Fig. 1, one finds that the ratio
R„,is negative. This means that M„and M„make op-
posite contributions to the momentum matrix element
M, . When the well width is small, the amplitude of M„
is relatively larger, but is still insignificant to the z-
polarized optical intersubband transition. Thus M„can
be neglected without a significant change of results.
When the well is wide, electrons are confined in the well,
and the oscillator strength F, is approximately 2mo/m *,
being independent of the well width, which reduces to the
result obtained from an infinite deep potential-well mod-
el. When the well width is narrow, the wave function

@2 of the second electronic state substantially extends to
the barrier region, reducing the confinement in the well
region as shown by the moderate increase of the energy
separation between subbands. Thus the oscillator
strength F, becomes smaller. This is because the momen-
tum matrix element for a transition between two states is
critically determined by the overlap of their wave func-
tions, which decreases when one of the wave functions
becomes more extended in real space with reduced ampli-
tude. This also agrees with the previous finding that the
z-polarized optical intersubband transition decreases as
the well width becomes smaller. The variation of the
oscillator strength with the in-plane wave vector k~I, as
shown in Fig. 1, which was not considered in previous
studies, also demonstrates the features of optical inter-
subband transitions related to the confinement of elec-
trons. Since the effective mass is larger in the barrier lay-
er than in the well layer, the electron confinement within
the well is reduced and the second level is pushed toward
the top of the effective potential well with increasing k~~,

leading to a significant decrease of the oscillator strength.
When the in-plane wave vector ki is further increased or
the well width is reduced such that the second energy lev-
el is pushed above the barrier into the continuous spec-
trum and the transition becomes from a bound state to a
quasibound state, the oscillator strength is well below the
one for transition between bound states. A cutoff point in
Fig. 1 indicates the turning from the bound state to the
quasibound state with the increase of k ~~.

Figure 2 shows the calculated results of the overlap in-
tegral, (y&~(mo/I *)~p3), and the oscillator strength F
at the photon energy A'co (=E3 E, ), which equ—als the
energy separation between the first and third energy lev-
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FIG. 2. Calculated results of the overlap integral, and
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widths listed in the figure.

0.20
0.0

els, for In„Ga, As/AlxGa, As square QW's with in-

plane polarized light. From Fig. 2, one can see that the
overlap integral and the oscillator strength F„change
nonmonotonically with the well width and the in-plane
wave vector k~~. To understand such features, we come to
examine the spatial characteristics of wave functions
„(z).
According to the oscillation theorem that the eigen-

function y„(z)corresponding to the nth energy eigenval-
ue E„vanishes (n —1) times, y3 has two nodes at zo and
—z0 as shown in Fig. 3. Since the wave function A@3 is
positive in region I (from —zo to zo) and becomes nega-
tive in region II (from —~ to —zo and zo to ~), the in-
tegral f,y, (mo/m")p3dz in region I and the integral

f y&(mo/I *)y3dz in region II make opposite contribu-
tions to the overlap integral (y&~(mo/m*)~y3). The in-
verse effective-mass term in the overlap integral acts like
a local weight of the wave function, which gives a mea-
sure of how electrons in different positions contribute to
the optical transition. If the effective mass I* is a con-
stant over the whole space, electrons in different positions
contribute the same weight to the optical transition, and
the overlap integrals in regions I and II cancel out due to
the orthogonality, leading to a forbidden transition and
making the weight of the wave function meaningless.
However, the effective mass in QW heterostructures
varies in real space, and thus the weights for regions I
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E3

—E2

E)

FICx. 3. Schematic illustration of eigenfunctions qv&, y3
and its derivative &pz (upper part), and the square QW (lower
part).

and II can difFer substantially, providing a way to manip-
ulate the in-plane polarized optical intersubband transi-
tion. We note that the above discussion can also apply to
the z-polarized optical intersubband transition, since
pz(=dy2/dz, derivative) in the momentum matrix ele-
ment M, =ifiI(pi~(molm )~p2)+ f tp]+2d(mo/2m")]
(the first term is dominant) has a spatial feature similar to
tp3, but with two nodes closer to the interfaces as shown
in Fig. 3, leading to a nonzero overlap integral
(y, ~(m, /m ') ~q,').

For square QW's with a finite efFective-mass diff'erence
in the well and barrier layers, calculated results in Fig. 2
show that the overlap integral (yi~(mo/m*)~tps) and the
in-plane polarized optical intersubband transition in-
crease as the well width decreases when the third energy
level E3 is well below the top of the well. This is because
the nodes of wave function y3 grow closer to the inter-
faces, making the weight difference between regions I and
II larger. On the other hand, when the well width is re-
duced or the in-plane wave vector k~~ is larger such that
the third energy level is pushed toward the top of the
effective potential well, wave function y3 would extend to
the barrier region, reducing the overlap with wave func-
tion y&. This will lead to a decrease of the overlap in-
tegral (y, ~(mo/m') y3) and the oscillator strength F,
which becomes dominant when the third energy level is
near or above the top of the effective potential well.
Combining the two competing factors discussed above,
one can understand the nonmonotonic dependence of the
in-plane polarized optical intersubband transition on the
well width and the in-plane wave vector. Such a non-
monotonic dependence of the in-plane polarized optical
intersubband transition on the well width of the square
QW structures is distinct from that of the z-polarized op-
tical intersubband transition, suggesting a way for the ex-
perimental study to verify this optical transition mecha-
nism.

Since the nodes of wave function y3 for a bound state
are always located in the well, there are electrons with
smaller effective masses in both regions I and II, which
limits the weight difference and leads to small in-plane
polarized optical intersubband transitions in the square
QW's. When the well width is reduced such that the
third energy level is pushed above the barrier into the
continuous spectrum and becomes a quasibound state,
the nodes can be located on the interfaces, and the maxi-
mal difference in weight between regions I and II can be
reached. However, the overlap between y3 and y& is
dramatically reduced due to the significant expansion of
wave function y3 into the barrier region, as discussed
above, which leads to a substantial decrease of the in-
plane polarized optical transition between bound state y,
and quasibound state y3 though the weight difference be-
tween regions I and II is larger. Thus the in-plane polar-
ized optical intersubband transition is difficult to observe
in conventional square QW's, which agrees with the usual
experiments.

From the above analysis, one can conceive that if the
nodes of the excited-state wave function can be located
on or near the interface of two materials with substantial
effective-mass offsets, and, simultaneously, the overlap of
wave functions between the two transition states is large
in real space, a large in-plane polarized optical intersub-
band transition can result. This can be done by adjusting
the structure geometry and the material compositions
through band-gap engineering, with attention paid to the
spatial characteristics of wave functions. Two modified
QW structures, the symmetric step QW and the coupled
double-step QW, as shown in the insets of Figs. 4 and 5,
respectively, can have the required features. In these QW
structures, inner step QW's make the weights between re-
gions I and II differ substantially, and the outer barrier
layers protect the wave function of the third energy state
from expansion outside the well region. The calculated
results for two modified QW structures are given in Figs.
4 and 5. Though the two structures are not optimized,
the overlap integral and the oscillator strength for the
in-plane polarized optical intersubband transition are
substantially enhanced compared with that in the square
QW's.

Figure 6 shows the calculated results of the z-polarized
optical transition oscillator strength at the photon energy
A'co (=E2 Ei) for the I—n Gai As/InP/In, Ali, As
symmetric step QW structures. The oscillator strength
and the subband separation decrease as the side layer
thickness b increases. This is because the excited-state
wave function y2 extends farther away from the center
well layer, reducing the overlap between yz and y, which
is mainly localized in the center well layer. Compared
with the square QW, the modified QW structure
configuration is more beneficial to the manipulation of
optical properties.

As illustrated above, the in-plane polarized optical
inter-conduction-subband transition can be made larger
by modifying the QW structure configuration through
quantum wave-function engineering. However, the in-
plane polarized optical inter-conduction-subband transi-
tion is generally much smaller than the z-polarized opti-
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cal intersubband transition. The equally strong intersub-
17, 18band transitions reported for different polarizations

cannot be explained by this simple one-band theory, but a
similar conclusion could be made by using an eight-band
model. ' Including remote bands with considerations of
broken symmetries could produce other possible mecha-
nisms for the in-plane polarized optical inter-
conduction-subband transition, which is more complicat-
ed and may not be well handled by a perturbation theory,
since the result could vary substantially depending on ap-
proximations made. Recent numerical calculations by
Voon, Willatzen, and Ram-Mohan, based on a more30

elaborate microscopic model, have confirmed that the
inhuence of remote bands is negligible, and that the in-
plane polarized optical inter-conduction-subband transi-
tion is much smaller than the z-polarized optical inter-
subband transition, suggesting the reinterpretation of the
above-mentioned experiments. ' Here, using a one-17, 18

band model which contains the essential physics, we
present some features of the optical intersubband transi-
tions related to QW structure configurations and parame-
ters, which can be examined by experiments and may be
helpful to the clarification of the confusion in the litera-
ture.

Regarding the observed separated absorption peaks
for different polarizations reported for In 6a1 As/
In„Alt As QW's (Ref. 17) and In Gat As/GaAs
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coincide. The observed separated absorption peaks for
different polarizations have been interpreted mainly as a
result of strain effects, ' and partially because of the
depolarization effect. ' There may be several mecha-
nisms responsible for such a splitting of different polar-
ized optical-absorption peaks, since strain deformation,
interface roughness, many-body effect, and spatial charge
transfer and buildup are present in real QW structures.
More systematic experimental investigations are needed
to provide specific features which can be used to identify
different causes.

B. Asymmetric QW structures

FIG. 7. Schematic illustration of eigenfunctions y& and yz
(upper part), and the asymmetric step QW (lower part) which
consists of a deep well with the well width a, and a shallow well
with the well width b.

QW's, ' since the absorption peaks have finite widths,
and the polarization of a lightwave mode in a waveguide
structure can affect the optical field and its interaction
with the environment, there is no absolute reason why
the absorption peaks for different polarizations should

For an asymmetric QW structure, the eigenfunctions
y„(z)do not have a definite parity, thus the in-plane po-
larized optical transition can occur between any pair of
subbands. We consider the in-plane polarized optical
transition between the first bound state and the second
bound state in an asymmetric step QW structure, as
shown in Fig. 7. Similarly, the node zQ of the wave func-
tion y2(z) should be designed to be on or near the inter-
face, as illustrated in Fig. 7, for obtaining a large overlap
integral ( pi ~ ( m 0/m *

)
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Calculated results of the overlap integral and the oscil-
lator strength at the photon energy iiico(=Ez E—, ) for
GaAs/Alo, 5Gao s5As/Alo 45Gao 55As asymmetric step
QW's are shown in Fig. 8. One can find that as the deep
well width a decreases with the fixed shallow well width
b, as shown in Fig. 8(a), the overlap integral and the oscil-
lator strength first increase because the node of wave
function y2(z) is pushed from the inside of the deep well
toward the interface with the shallow well, and then de-
crease after the node of wave function y2(z) is pushed
over the interface and into the shallow well when the
deep well width becomes small. The energy separation be-
tween the first level E

&
and the second level E2 also

changes with the deep well width a, which shows a non-
trivial dependence on the in-plane wave vector kII, attri-
buted to the variation of electron confinement due to the
combined effect of the potential-energy difference and the
effective-mass difference. Fixing the deep well width a
and changing the shallow well width b as shown in Fig.
8(b), the overlap integral shows a similar variation, but
the oscillator strength has a somewhat difFerent depen-
dence because the energy separation changes more drasti-
cally, corresponding to difFerent photon wavelength re-
gions.

One can enhance the effective-mass difference between

the deep and shallow wells by using a relatively wider
band-gap material Alo. 2Gao 8As instead of Alo. isoao. ssAs
to increase the overlap integral and the oscillator
strength. The calculated results of the overlap integral
and the oscillator strength at the photon energy
fico( =E2 Ei—) for GaAs/Ala 2Gao sAs/Alo 45Gao s5As
asymmetric step QW's, as shown in Fig. 9, indicate the
feasibility of obtaining more desirable optical properties
by adjusting the material composition. The recent obser-
vation of surface-emitting second-harmonic generation by
inter-conduction-subband transitions reported for
GaAs/Al Gai „Asasymmetric step QW's (Ref. 19) is
indicative of the occurrence of in-plane polarized optical
intersubband transitions, which was questioned by
Berger, Bois, and Rosencher. ' Since the observed
Fourier transform absorption spectrum of the waveguid-
ing sample' could come from both TE and TM active in-
tersubband transitions, direct comparison cannot be
made with our calculations. Further experiments are ex-
pected to clarify this controversial issue.

IV. CONCLUDING REMARKS

In summary, optical inter-conduction-subband transi-
tions in QW structures have been investigated, with an
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emphasis on the polarization dependence and specific
features related to the structure configurations and pa-
rameters. It has shown that the in-plane polarized optical
intersubband transition due to the spatial variation of the
effective mass could be made large in a conduction-band
QW through quantum wave-function engineering. How-
ever, based on our calculations, the in-plane polarized op-
tical intersubband transition is still much smaller than
the z-polarized optical intersubband transition. Thus, us-
ing the in-plane polarized optical intersubband transition
instead of the dominant z-polarized optical intersubband
transition may not be beneficial to the photodetection,
though a normal-incidence scheme could be realized. On
the other hand, the possible in-plane polarized optical in-
tersubband transition opens up opportunities for interest-
ing nonlinear optical properties in QW heterostructures.
Since the flexibility provided by band-gap engineering for
QW structures, near-resonance intersubband transitions
are possible, and the asymmetry of the envelope wave
function can be easily manipulated. This can lead to
large nonlinear optical coefFicients such as the second-
order susceptibility g' '. Therefore, it is possible to ob-
serve surface-emitting second-harmonic generation based
on inter-conduction-subband transitions in asymmetric
QW structures. The dependence of optical intersubband
transitions on QW structure geometry and parameters re-
vealed in this work suggests a way in which experiments
could be carried out to examine these physical phenome-
na related to optical intersubband transitions.
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APPENDIX

where F„(r.) is the envelope function, and UJ(r) is the
periodic basis function. ' The electron-photon interac-
tion is

H,
cmo

AP. (A2)

According to Fermi's golden rule, the optical transi-
tion rate between the nth subband and n 'th subband is

&=
~ I&+. IH, , lq'„&I'&(E„E„——& ) .

Substituting Eq. (Al) into Eq. (A3), one can have'

(A3)

F„„(r)=[E„—H„„(r)]'[mo 'P„,PF„,(r)
+K„,(r)F„,(r)], (A5)

where H '(r) are the .corresponding matrix elements of
the periodic crystal Hamiltonian of the material at r, '

the subscript r denotes remote bands, i.e., all bands other
than the conduction band described in Ref. 21. From
symmetry consideration, one can only obtain a nonzero
F„„(r)for r corresponding to a basis function of either I,
or I i5 symmetry. For I

&
symmetry, one obtains P„,=O

and

~ &(&F„,IPIF„,&& U, IU, , &

cmo
7

+(F.IF. , ) «, IPIU,'&)

~ y (&F„,IPIF„.,'»,,cmo J~J

+&F„,IF„,»,, )

(A4)
where P ' are matrix elements of the momentum with
respect to the periodic basis functions UJ(r). Considering
the intersubband transitions in the conduction band, the
conduction-band envelope function E„,associated with
U, (r) is dominant among all F„(r).Neglecting spin-
orbit interaction, the small envelope functions F„„(r)are
given by '

In the framework of a multiband model, the eigenfunc-
tion V„(r)for the nth subband with eigenenergy E„can
be written as

F„„(r)=[E„—H„„(r)]'H„,(r)F„,(r) .

For I i5 symmetry, one obtains

F„„(r)=[E„—H„„(r)]'mo 'P„,PF„,(r) .

(A6)

(A7)
q „(r)=QF„,(r) U, (r),

J
(A 1)

Thus one can obtain

. &&F„,IPIF.;&+ g (&F., IF. , »,„+&F., IF. , &P„)

+ g ((F„IF„.„)P„„+(F„,IF„„)P„„).
r(r, ),r'(r» &

(A8)

From Eqs. (A6) and (A7), one can see that the last term corresponding to (F„„IF„.„.) in Eq. (A8) is a higher-order small
quantity and can be neglected. Using Eq. (A7), one obtains
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&~. IH, , i~. &= '".y&F„,IP F., &

col o

P .P
+ y "' '"((F„,i[E„—H„„]'PF„,, &+([E„H—„„]'PF„,iF„., &) .

cm0 (p ] mo
15

In the multiband model, an energy-dependent efFective mass m, (E,r) is given by '

P7Z O P .P=1+2 g [E H„„]-
m~(E, 1 ) „(r ) mo

(A9)

(A10)

Substituting Eq. (A10) into Eq. (A9) and noticing that P is a Hermitian operator, one obtains

&e„iH, , ie„&=' g&F„,iPiF„,&
cmo

e A mo m, (E„,r) mo+ F„, — ' "' P+P
cmo "' 2m, (E„,, r) 2m, (E„,r) (A 1 1)

For only the conduction band, we focus on the spatial
dependence of the effective mass and neglect its energy
dependence. Hence the energy-dependent eA'ective mass
m, (E,r) is replaced by an energy-independent efFective
mass m*(r) in the one-band model. For semiconductor
materials of interest, the electron eftective mass m' is
much less than the free-electron mass mo, and the second
term in Eq. (All) makes a donunant contribution to the
optical intersubband transition. Therefore, under the
efI'ective-mass approximation, Eq. (All) can be rewritten

(e„iH, , e„,&
eA (F 1 p+p 1

m *(r) m *(r)

=&F„,H,„,iF„,, & . (A12)

This means that one can introduce the effective electron-
photon interaction Hamiltonian H;„,indicated in Eq. (3),
together with only conduction-band envelope functions,
for the optical intersubband transitions in the
conduction-band QW heterostructures.
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