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We present a density functional for liquid He, properly accounting for the static response func-
tion and the phonon-roton dispersion in the uniform liquid. The functional is used to study both
structural and dynamical properties of superIIIuid helium in various geometries. The equilibrium
properties of the free surface, droplets, and films at zero temperature are calculated. Our pre-
dictions agree closely with the results of ab initio Monte Carlo calculations, when available. The
introduction of a phenomenological velocity-dependent interaction, which accounts for back6ow ef-
fects, is discussed. The spectrum of the elementary excitations of the free surface and films is
studied.

I. INTRODUCTION

The aim of the present work is to present a density-
functional theory, which treats static and dynamic prop-
erties of liquid helium on the same ground and is accurate
at the microscopic level.

The investigation of the properties of liquid helium in
different geometries has a long story. Extensive work has
been devoted to the search for and the understanding of
superfluid effects in finite systems like helium droplets
or in quasi-two-dimensional systems like helium films on
solid substrates or within porous materials. Liquid he-
lium exhibits very peculiar properties, such as the prop-
agation of surface modes in the short-wavelength regime,
quantum evaporation of atoms produced by rotons im-
pinging on the surface, and wetting and prewetting tran-
sitions on solid substrates. The nucleation of bubbles at
negative pressure and the nucleation of quantized vortices
near walls are further examples of interesting phenomena
where both the inhomogeneity of the liquid and quantum
correlations play an important role. These phenomena,
among others, make liquid helium particularly appeal-
ing from the viewpoint of quantum many-body theories.
Theory and experiments, however, have not yet a satis-
factory overlap. One diKculty comes &om the fact that
O,b initio calculations are still hard to implement for in-
homogeneous systems. On the other hand, phenomeno-
logical theories, which are quite successful in describing
macroscopic properties, are not always adequate enough
to investigate the behavior of the system on the scale of
interatomic distances. A major progress in this direc-

tion has been recently made in the framework of density-
functional theory (DFT).

Several density functionals have been developed in
the last years for applications to quantum fluids. The
method consists of writing the energy of the many-body
system as a functional of the one-body density; from a
given functional one extracts the equilibrium state, by
minimizing the energy with respect to the density, as well
as the excited states, by solving time-dependent equa-
tions of motion. An accurate phenomenological density-
functional for liquid He (Orsay-Paris functional) has
been recently introduced; it has proved to be quite reli-
able in different contexts, such as helium films and wet-
ting phenomena, vortices in bulk liquid, or droplets.
For dynamical properties it gives predictions which are
close to the Feynman approximation for elementary ex-
citations. In particular it does not account for backflow
effects.

In the present work we present a new functional. We
follow the same ideas which lead to the Orsay-Paris
functional, taking a similar two-body interaction of the
Lennard-Jones type and including phenomenologically
short-range correlations. The main difference with re-
spect to the Orsay-Paris functional is the addition of two
new terms which allow for a better description of both
static and dynamic properties on the scale of the inter-
atomic spacing. These terms are (i) a nonlocal term de-
pending on gradients of the density, which allows one to
reproduce the experimental static response function in a
wide range of wave vectors, as well as its pressure depen-
dence, and (ii) a term depending on local variations of
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the velocity fleld (backflow efFects), which allows one to
reproduce the experimental phonon-roton dispersion in
bulk.

The velocity-dependent term has a form similar to the
one already introduced by Thouless, who studied the
flow of a dense superfluid. The idea is to model backflow
effects, which are important at small wavelengths, by a
nonlocal kinetic energy term.

With these ingredients the predictions for several prop-
erties of nonuniform systems are significantly improved
with respect to the ones given by previous functionals.
The accuracy of the density functional theory is now com-
parable to the one of ab initio Monte Carlo calculations.
The resulting approach, although phenomenological, rep-
resents a powerful and accurate tool whenever ab initio
calculations become hard to implement. It allows one
to investigate a wide variety of systems of different sizes
and in different geometries, kom few atoms to the bulk
liquid, with limited numerical efforts.

The paper is organized as follows: in Sec. II we intro-
duce the density functional for static calculations. We
emphasize and motivate the differences with respect to
the Orsay-Paris functional. The results for the equilib-
rium properties of the free surface, droplets, and films
are given in Sec. III. In Sec. IV we discuss the applica-
tion of the density-functional theory to dynamics, show-
ing the connection with the Feynman approximation and
with the formalism of the random phase approximation.
We introduce a phenomenological current-current inter-
action which makes the density-functional quantitative
in the description of the spectrum of excited states. We
discuss the role of this new term using sum rule argu-
ments. Finally, in Sec. V we present the results for the
excited states of the free surface and of films.

a quantum pressure, corresponding to the kinetic energy
of a Bose gas of nonuniform density. The quantity E,[p]
is a "correlation energy"; it incorporates the effects of
dynamic correlations induced by the interaction.

Ground state configurations are obtained by minimiz-
ing the energy of the system with respect to the density.
This leads to the Hartree-type equation

(
h2

v'+Ujp, rj) Qp(rj = pQp(rj

where U[p, r] = bE, /bp(r) acts as a mean field, while the
chemical potential p is introduced in order to ensure the
proper normalization of the density to a fixed number of
particles.

For a weakly interacting Bose system the expression of
'Ro can be derived on a rigorous basis, yielding the well-
known Gross-Pitaevskii theory. Since liquid helium is
a strongly correlated system, such a derivation, start-
ing from first principles, is not available. One then re-
sorts to approximate schemes for the correlation energy.
Krotscheck and co-workers, for instance, have de-
veloped a variational hypernetted-chain —Euler-I agrange
(HNC-El ) theory in which the one-body effective poten-
tial U is evaluated using the microscopic Hamiltonian.
An alternative approach consists of writing a phenomeno-
logical expression for the correlation energy, whose pa-
rameters are fixed to reproduce known properties of the
bulk liquid.

A simple functional was introduced in Refs. 15 and 16
to investigate properties of the Bee surface and droplets
of both He and He. The correlation energy, in analogy
with the formalism of zero-range Skyrme interactions in
nuclei, was written as

II. GROUND STATE CAI CUI ATIONS
, b 2 cE,[p] = dr —p + p+~ + d(V p—)

In the density-functional formalism at zero tempera-
ture, the energy of a Bose system is assumed to be a
functional of a complex function @:

E = drQ44

The function 4 is written in the form

4(r, t) = 4(r, t) exp
~

—S(r, t)
~

(i
qh

The real function 4 is related to the diagonal one-body
density by p = 4, while the phase S fixes the veloc-
ity of the fluid through the relation v = (1/rn)V'S. In
the calculation of the ground state, only states with zero
velocity are considered, so that the energy is simply a
functional of the one-body density p(r). A natural rep-
resentation is given by

52
E = dr'Ro p = E, p + dr V' p, 3

where the second term on the right-hand side (RHS) is

where b, c, and p are phenomenological parameters fixed
to reproduce the ground state energy, density, and com-
pressibility of the homogeneous liquid at zero pressure,
and d is adjusted to the surface tension of the liquid.
The first two terms correspond to a local density approx-
imation for the correlation energy, and nonlocal effects
are included through the gradient correction. The lo-
cal density approximation is currently used to describe
exchange-correlation energy in electron systems; its use
for liquid helium does not provide quantitative results.
Nonlocal terms, like (V'p) in (5), turn out to be crucial
for the description of inhomogeneous liquid helium. Non-
locality effects have been included in OFT in a more real-
istic way by Dupont-Roc et a/. , who generalized Eq. (5)
accounting for the finite range of the atom-atom interac-
tion. The resulting functional has proved to be reliable
in describing several inhomogeneous systems.

In the present work we follow the spirit of Ref. 1. We
use a similar two-body finite-range interaction screened
at short distances and a weighted density (or "coarse-
grained" density) to account for short-range correlations.
The most important feature of this approach is that the
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A major advantage of liquid helium is that y(q) is
known experimentally. It is related to the inverse-
energy-weighted moment of the dynamic structure func-
tion S(q, w), measured in neutron scattering, through the
relation
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FIG. 1. Static response function in liquid He at zero pres-
sure. Points, experimental data (Ref. 20); dotted line, from
functional of Refs. 15, 16; dashed line, Orsay-Paris functional
(Ref. 1); solid line, present functional IEq. (11)].

h2 2 b2E,—i() q ~ p d d « —s~(r —r')
4m V h p(r) h p(r')

(6)

static response function of the liquid can be reproduced
even at Rnite wave vectors q, up to the roton region. The
static response function y(q) fixes the linear response of
the system to static density-perturbations and is a key
quantity in density-functional theories. It is easily calcu-
lated &om functional (3) by taking the second functional
derivative of the energy in q space:

y(q) = —2m i(q)

the n moment of S(q, ~) being defined as

m„(q) = d(u S(q, ~) (her)"
0

The experimental data for y(q) in the uniform liquid at
zero pressure are shown in Fig. 1 (circles). The pre-
dictions of the zero-range functional of Ref. 15 [i.e. , with
the correlation energy given in Eq. (5)] and of the finite-
range Orsay-Paris functional are also shown as dotted
and dashed lines, respectively. The q = 0 limit is Axed
by the compressibility of the system, which in both cases
is an input of the theory. It ensures the correct behav-
ior in the long-wavelength limit and, consequently, the
correct description of systems characterized by smooth
density variations as happens, for exainple, in the &ee
surface or in helium droplets. The height of the peak of
the static response function in the roton region, q 2
A. , is important in characterizing structural properties
on the interatomic length scale (for instance, the layered
structure of helium films). Therefore, the first important
idea is to improve on the Orsay-Paris functional in order
to better reproduce the experimental peak of g(q) in the
roton region.

In the present work, the function Q0, entering func-
tional (3), is taken in the form

P7~p) + —fur' p(r)Vj(~~r —r'~~)p(r') y —p(r)(p, ) + —p(r)(p, )

dr' +(Ir —r'I)
I

1 —
I
&p(r) . &p(r')

I

1—h', , ( p(r) l P(r') &

4m ) «) (9)

The first term on the RHS is the quantum pressure, as
in Eq. (3). The second term contains a two-body inter-
action Vj, which is the Lennard-Jones interatomic poten-
tial, with the standard value of the hard core radius of
2.556 A and of the well depth 10.22 K, screened at short
distance (Vj = 0 for r ( h, with h = 2.1903 A.). The
weighted density p is the average of p(r) over a sphere of
radius h:

p(r) =
far ««q(~r —r'~)p(r') (10)

where II«, (r) = 3(4vrh ) for r ( h and zero else-
where. The two terms containing p, with the parameters
c2 ———2.411857 x 104 KA.s and cs ——1.858496 x 10s
K A.s, account phenomenologically for short-range cor-
relations. All these terms have a form similar to the
Orsay-Paris functional. The Lennard- Jones potential is
here screened in a simpler way, avoiding the fourth power

I

for r & 6, and the dependence on p is slightly differ-
ent. The effects of these minor changes will be discussed
later. The last term in Eq. (9) is a completely new
term; it depends on the gradient of the density at dif-
ferent points and corresponds to a nonlocal correction
to the kinetic energy. The function P is a simple Gaus-
sian +(r) = z «g exp( —r /l ) with E = 1 A. , while
cr, = 54.31 A. . The parameters are fixed to reproduce
the peak of the static response function in the bulk liq-
uid. The latter can be easily calculated by using Eq. (6).
One Ands

2 2

+ pVi(q) + "[2rr~(q) + n'„(q)]

,[ir„(q) + n'„(q)]
h' ( p ), ( q'&')

~.pI 1 —
I

q'exp
I

— I, (»)
2m ' ( po ) ( 4 )
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where Vj(q) and IIh, (q) are the Fourier transforms of
the screened Lennard-Jones potential and the weight-
ing function IIh, , respectively, while p is the bulk den-
sity. The resulting curve for the liquid at zero pressure
(p = po = 0.021836 A ) is shown in Fig. 1 (solid line).
The factor (1 —p/po, ), with po, ——0.04 A. s, is included
in order to obtain a pressure dependence of the static
response function close to the one predicted by diKu-
sion Monte Carlo simulations. For instance in the liq-
uid near solidification (p = 0.02622 A ) one finds a
peak of g(q) about 10% higher than at zero pressure,
and displaced by 0.1 A to larger wavelengths. Finally,
the quantity p(r) is again a weighted density, calculated
using the gradient-gradient interaction function E as a
weighting function:

400

300

200

100

p(r) = dr'+(lr —r'I) p(r') (12) —10 20

p+ p + p (13)N 2 2 3

where 6 = —718.99 KA. is the integral of the screened
Lennard- Jones potential Vj. Pressure and compressibility
can be derived directly by taking the first and second
derivative of the energy:

28 E2

BpN (14)

30

20

Actually the density p(r) is very close to the particle
density p(r) except in strongly inhomogeneous situations
(like helium adsorbed on a graphite substrate). For this
reason one can safely replace p(r) with p(r) for the in-
vestigation of the free surface, helium droplets, and films
on weak binding substrates. Stronger constraints on the
form of E should be provided by the study of the liquid-
solid phase transition.

In a uniform liquid of constant density the energy per
particle, from functional (3)(9), reduces to the power law

FIG. 3. Sound velocity in bulk. Points, experimental data
(Refs. 2&); dashed line, quantum Monte Carlo results (Ref.
22); solid line, present density functional.

The experimental values of the density, energy per par-
ticle, and compressibility of the uniform system at zero
pressure are used as input to fix the parameters 6, c2, and
c3 ~ The resulting equation of state and the sound veloc-
ity, c = —[my(0)j, are shown in Figs. 2 and 3, respec-
tively. The comparison with the results of Monte Carlo
simulations and with experimental data ' shows that
the present density-functional theory describes correctly
the ground state of the bulk liquid He at all pressures.
Comments about the equation of state in the limit of
a quasi-two-dimensional (quasi-2D) liquid will be given
when discussing the structural properties of films.

To conclude this section we emphasize again the main
idea. The density functional (3),(9) incorporates the cor-
rect long-range behavior of the interatomic potential, and
accounts for short-range correlations in a phenomeno-
logical way. The ground state of the uniform liquid is
well reproduced at all pressures and, furthermore, the
response to small static density perturbations, up to the
roton wavelength, is also correctly reproduced. Signifi-
cant differences with respect to previous functionals are
expected in the predictions of properties which depend on
the behavior of the Quid on the interatomic length scale.
Some interesting examples are discussed in the following
section.

III. RESULTS
FOR THE EQUILIBRIUM CONFIGURATION

OF FREE SURFACE, DROPLETS, AND FILMS

—10
0.01 5 0.020 0.025

A. Free surface

FIG. 2. Pressure versus density in bulk. Points, experi-
mental data (Ref. 24); dashed line, quantum Monte Carlo
results (Ref. 22); solid line, present density functional.

To compute the density profile and the energy of a
planar free surface of He at zero temperature one has to
solve the integro-differential Hartree equation (4) with
the mean field U extracted from (9). Both p and U
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FIG. 4. Free surface pro61e of liquid He at zero temper-
ature. Dotted line, functional of Refs. 15, 16; dashed line,
Orsay-Paris functional (Ref. 1); solid line, present functional.

by compressibility elects, so that the density oscillations
turn out to be quite small. The role of the static re-
sponse function in characterizing the form of the surface
profile is clearly seen in Figs. 1 and 4. Of course one
expects that functionals describing the short-wavelength
behavior of y(q) in a correct way will give rise to more
reliable predictions for the properties of the fIuid in the
microscopic scale. It is worth noticing that similar os-
cillations of the surface profile have been recently pre-
dicted in classical fluids interacting through short-ranged
potentials. In that case, the presence of oscillations is
related to the behavior of the radial distribution function
by means of the Ornstein-Zernike equation. The con-
nection with our density-functional approach, applied to
a quantum fluid interacting through a potential of the
I ennard-Jones type, could help to clarify the physical
basis of the soft sphere close packing model suggested by
Regge.

0. = dz (&o[p] —pp) (i5)

The bulk density is kept fixed to the experimental value
at zero pressure, po

——0.021836 A . The density profile
is shown in Fig. 4, together with the results given by the
Skyrme functional of Eq. (5) and the Orsay-Paris one.
The surface tension is practically the same in the three
cases. The present functional gives 0 = 0.272 K A 2, to
be compared with the experimental values quoted in the
literature: 0.275 KA. 2 (Ref. 25) and 0.257 KA. 2. (Ref.
26). The 10%%uo

—
90%%up surface thickness is approximately

6 A. The value 7.6 A, extracted Rom x-ray scattering
data, " is slightly larger, being closer to the result of the
zero-range functional of Eq. (5). However, the experi-
mental value is expected to depend on the form of the
density profile used to fit the measured reflectivity.

Notice that the density p(z) resulting from expression
(9) is not as smooth as the ones given by previous cal-
culations. It exhibits small oscillations which appear as
shoulders on the surface profile and asymptotically die in
the bulk region. Oscillations of this type were predicted
long time ago by Regge. 2 In his theory the surface was
treated as a source of elementary excitations producing
static ripples on the density profile. The form of the
ripples was connected to the behavior of the static re-
sponse function and the pronounced peak at the roton
wavelength was associated with the tendency of atoms to
localize in "soft sphere close packing. " This tendency is
opposed by the zero-point Inotion of the surface, whose
thickness is larger than the interparticle distance, and

depend only on the coordinate orthogonal to the sur-
face, so that the equation is one dimensional. The in-
tegrals on parallel coordinates in the nonlocal terms of
the functional can be written analytically. The numeri-
cal solution of the nonlinear equation (4) is obtained by
means of an iterative procedure and provides the density
p(z), from which the surface tension a can be calculated
through

B. Droplets

The solution of the Hartree equation (4) in spherical
symmetry with a fixed number of particles N provides
the ground state of He droplets. Since the density-
functional approach is not time consuming, it allows
one to compute the energy and the density profiles of
droplets in a wide range of sizes. The density p(r) for
droplets with 8 & N & 60 is shown in Fig. 5. Again
one finds ripples on the surface profile; they are more
pronounced than in the case of the free surface, since
the droplets have a size of the order of a few inter-
atomic distances and the soft sphere close packing tends
to produce shell structures. This efFect was already sug-
gested by Rasetti and Regge, but subsequent theoret-
ical calculations ' did not predict any clear and
systematic oscillation in p(r). Only recently, sizable os-
cillations were found in difFusion Monte Carlo (DMC)

OQ

C

D
CO

6 g

(A)

FIG. 5. Density profile of small He droplets (density nor-
malized to the bulk value).
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FIG. 6. Density profile of a droplet with 70 He atoms.
Solid line, present work; triangles, DMC simulations of Ref.
34; dashed line, variational (HNC) calculations (Ref. 35); cir-
cles, DMC simulation of Ref. 36.

FIG. 7. Energy per particle versus N. Solid line, present
work; dashed line, results with functional of Ref. 1; dotted
line, Ref. 16; crosses, Ref. 38; circles, Ref. 34.

calculations by Chin and Krotscheck. An example is
given in Fig. 6, where we show the density profile of a
droplet with 70 particles. The solid line is the result
of the present density-functional calculation, while the
DMC results of Ref. 34 are represented by triangles. The
DMC data exhibit more pronounced oscillations, but the
presence of long-lived metastable states, slowing down
the convergence in the Monte Carlo algorithm, cannot
be completely ruled out. Recently Chin and Krotscheck
have found oscillations in p(r) even with a variational ap-
proach based on the HNC approximation (dashed line).
Even though the HNC method underestimates the cen-
tral density, it predicts oscillations with amplitude and
phase in remarkable agreement with the ones of density-
functional theory. An even better agreement is found
in the most recent DMC calculations by Barnett and
Whaley (circles), where the statistical error is sigrnf-
icantly reduced with respect to Ref. 34.

The detailed structure of p(r), though interesting from
a theoretical viewpoint, is not yet observable experi-
mentally with enough accuracy to distinguish between
a smooth profile and a profile with small oscillations. It
is thus important to explore the efI'ects of the soft sphere
close packing on the energy systematics, since the latter
is related to the mass distribution of droplets in the ex-
perimental beams. In Fig. 7 the energy per particle is
given as a function of 2V. The results of the present work
(solid line) are compared with the ones of previous func-
tionals (dashed and dotted lines), as well as with Monte
Carlo simulations (dots from Ref. 34 and crosses from
Ref. 38). First we note that the accuracy of the density
functional theory, compared with ab initio simulations,
increases progressively, following the improvement in the
prediction of the static response function y(q) in the mi-
croscopic region. The agreement between the results of
our functional and Monte Carlo data is excellent. Sec-
ond, as the energy is a smooth function of N, helium
clusters behave essentially as liquid droplets. Indeed the
energy can be easily fitted with a liquid drop formula:

—= a + a m-'~'+ a m-'~'+ a,X-'

I I I I I I I I I

0.4

~4
LaJ

I

I

2

0.3

0.2

I I I I I I I

40 80 120 160
—0.1

200
N

FIG. 8. Evaporation energy. Solid line, density functional;
dashed line, liquid drop formula. Circles, deviation from the
liquid drop formula (axis on the right).

where the volume coefIicient a is the chemical potential
in bulk and the surface energy a, is fixed. by the surface
tension, while a and ao can be taken as fitting param-
eters. The energy calculated. with the density functional
difFers from the liquid drop fit by less than 0.02 K for
all droplets with N ) 30. This seems to rule out appar-
ently any shell eKect in the energy systematics. However,
the relevant quantity to investigate in this context is the
evaporation energy [E(K—1) —E(%)j. The latter is not
as smooth as the energy per particle. Figure 8 shows the
evaporation energy predicted by the density-functional
(solid line) and the one obtained with the liquid drop
formula (16) (dashed line). The difFerence between the
two curves is also shown (circles). When the difFerence
is positive the droplets are more stable than is predicted
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TABLE I. Values of the potential parameters C3 and D.

c.
Cs (K A. ) 673 754 812 1070 1360 1775 2088

D (K) 4.41 4.99 6.26 10.4 17.1 32.1 192.6

—10

by the liquid drop formula. We note clear oscillations,
having decreasing amplitude and increasing periodicity
as a function of ¹ The same kind of oscillations ap-
pear in the central density of the droplets, as seen in
Fig. 5. Since the distance between two crests of the sur-
face ripples is practically constant and the droplet radius
goes approximately like N ~, the period of oscillations
of the central density as a function of N, as well as the
one of the evaporation energy, increases as N ~ . The
predicted deviations of the evaporation energy from the
liquid drop behavior are rather small (less than O. i K).
Unfortunately this value is smaller than the temperature
of droplets in available experimental beams (about 0.4
K).

—20

0 1 2 3 4

—25
0

I I I I I I I I I I I I 4 I I

2 3
Layers

FIG. 9. Evolution of p vs He coverage on several sub-
strates. Solid lines, present cwork; dashed lines, Orsay-Paris
functional. The substrates are H2 (inset) and, from top to
bottom, Cs, Rb, K, Na, Li, Mg.

C. Layering and prewetting transitions in fflms

4C,'
V,ub(z) = C3

z3

where C3 is the Hamaker constant and D the well depth
of the potential. The values taken from Ref. 39 for vari-
ous substrates are gathered in Table I.

The energetics of helium Alms on various surfaces indi-
cate that two type. of phase transition in film growth can
take place, depending on the strength of the substrate po-
tential. On strong and medium binding surfaces, which
create large local pressures (one or two layers may be-
come solid), the growth of the first liquid layers proceeds
via layering transitions, described for helium on graphite
in Ref. 40. When considering weak binding substrates,
however, these layering transitions are no longer present.
One enters a new regime of film adsorption where preset-
ting transitions take place at T = 0, as analyzed in detail
in Ref. 4. By convention, the term layering transition is
reserved usually to the case of a first-order transition in
film thickness involving one layer only. The occurrence
of such transition is not linked to the question of wetting;
it is essentially related to the nature of the quasi-2D sys-
tem. To the contrary, a prewetting transition involves a

In order to find the equilibrium state of liquid he-
lium on a solid substrate, we add the external helium-
substrate potential V,„b(r) to the mean field U in the
Hartree equation (4). We assume the substrate to be
flat, avoiding the problem of possible corrugations. This
approximation is certainly valid for weak-binding sub-
strates, such as the alkali metals, for which the cloud of
delocalized electrons is expected to smooth out the po-
tential along the substrate plane. In this case the Hartree
equation is again one dimensional. The substrate-helium
potential is taken here as a 9-3 potential of the form

jump in film thickness which can take any value. The
notion is intimately connected to that of wetting, since a
prewetting transition is the continuation of the wetting
transition ofI' coexistence.

The various cases are best illustrated by considering,
for a given substrate, the dependence of the chemical po-
tential p on coverage, as shown in Fig. 9. A negative
slope (dy, /dN ( 0) indicates an unstable range of film
thickness, and the transitions are determined by Maxwell
constructions. The figure shows the results for a H2 sub-
strate and for the alkali metals. For H2, we have used a
parametrization of the helium-substrate interaction pro-
posed in Ref. 41:

900 000
H 2 z9

15 000 435
z5 z3

where z is in A. and VH, in K. This form is fitted to
the results of Pierre et al. and gives a well depth of
33 K. The binding energy of one He atom is 16.4 K,
in good agreement with the experimental determination
of Paine and Siedel, which is 16+2 K. For this poten-
tial, two layering transitions occur. The mechanism by
which these transitions are produced can be summarized
as follows: On a strong substrate, liquid helium forms
well-defined layers which are approximately independent
quasi-2D systems. As 2D helium is a liquid (Monte Carlo
simulations give a binding energy of 0.8 K at an equi-
librium density of 0.043 A. 2) the formation of each of
the first layers exhibits a quasi-2D condensation. It is
important to realize that the two aspects are necessary:
On the one hand the layering transitions would not oc-
cur if quasi-2D He were a gas; on the other hand we
shall see below that they also disappear if the substrate
is not strong enough to produce a suKcient layering of
the Quid, as is the case with the alkalis. Figure 10 repre-
sents the growth of a helium film on H2 characterized by
two regions of instability or metastability.
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FIG. 10. Density profile of helium 6lms on solid hydrogen
from 0.02 to 0.6 A . Solid lines, stable films; dotted lines,
unstable or metastable Glms. The growth is not continuous
because of the two layering transitions related to the forma-
tion of the first two layers.
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One sees from Fig. 9 that the Orsay-Paris functional
produces rather smooth curves and in particular misses
the layering transitions besides the first one. This fact
is due to two deficiencies of the model, related to the
mechanism described above; namely, (i) the peak of the
density-density response function y(q) is underestimated,
as we have seen, by a factor of almost 2 and (ii) the
binding energy of the quasi-2D system is too small. Both
deficiencies are corrected with the new functional.

Let us now turn to the results for the alkalis. Al-
though p(K) has still some structure, Mg appears as a
limiting case where the layering transitions tend. to dis-
appear, except for the first one. Interestingly, one sees
that with decreasing strength of substrate potential, it
is this first transition which becomes larger and larger
in amplitude and thus turns into the prewetting transi-
tion. The physics here is no longer that of the quasi-2D
system, but that of wetting and prewetting: For a given
substrate, the thinnest stable film is such that the energy
cost of forming two interfaces one with the substrate,
one free surface is compensated. by the energy gain of
placing the Quid in the attractive potential of the wall.
The limit between wetted and nonwetted substrates is
obtained when stability is obtained only for an infinitely
thick film. Notice that the predictions of the Orsay-
Paris functional and of the present one become similar
for these weak binding surfaces. Using the original val-
ues of the substrate potential parameters, one still Ands
that the three alkalis Cs, Rb, and K are not wetted. The
new functional slightly favors wetting with respect to the
Orsay-Paris one. For example, the contact angle calcu-
lated for Cs is reduced by 3; also, on a Na substrate,
the prewetting jump is reduced to 3.3 layers, compared
to 5.2, and metastable films are found to exist down to
1.2 layers.

Layering growth can be also seen in the adsorption
isotherms. In Fig. 11 is plotted the isotherm T = 0.639
K for helium on graphite. For comparison with experi-
mental data we use the ideal gas formula

0 i & ma

6

Layers
10

FIG. 11. Adsorption isotherm on a graphite substrate with
T = 0.639 K. Solid line, present work; dashed lined, Or-
say-Paris functional (Ref. 6); dots, experimental results ex-
tracted from Ref. 45. One layer corresponds to 0.078 12 A.

(i.e. , po~ where po is the bulk density).

where pp = —7.15 K is the bulk chemical potential and
Pp the saturating vapor pressure at T. The graphite sub-
strate is a test for the model in a highly inhomogeneous
situation. The two first layers are known to be solid.
To first approximation, the eR'ect of localization of the
atoms in the plane parallel to the substrate can be ig-
nored. Hence, we have treated the two solid layers as
the liquid. The experimental data show a clear staircase
structure, associated with the progressive Ailing of layers.
The results of the present functional (solid line) exhibit a
similar pattern, with steps of amplitude and phase close
to the experimental ones.

IV. DYNAMICS

t2

dt dr 'R[4*, %j —pC'4 —@*ih
Ot

0

(20)

The equations of motion for the excited states of the quid
can be derived by making variations with respect to 4
or O' . One finds a Schrodinger-like equation of the form

In Sec. II we wrote the Hartree equation (4) for the
ground state of the Quid, which corresponds to the min-
imization of the energy E in Eq. (1) with respect to the
density. This formalism is generalized to the study of
dynamical properties using the least action principle:
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t9
(H —p, )% =ih —4 (21)

where H = bEjb@' is an effective Hamiltonian. We
linearize the equation by writing

@(r,t) = 4 o(r) + h 4 (r, t), (22)

where 4o(r) refers to the grouiid state. The Hamiltonian
H then takes the form

(23)

The static Hamiltonian

h
Ho ——— V' + U[p, r],2m

which appeared already in Eq. (4), determines the equi-
librium state @o(r) = gp(r). The term bH is linear in
b4 and accounts for changes in the Hamiltonian induced.
by the collective motion of the system. Since H depends
explicitly on the wave function 4', the Schrodinger equa-
tion (21) has to be solved using a self-consistent proce-
dure, even in the linear limit considered in the present
work.

The formalism here described corresponds to a time-
dependent density-functional (TDDF) theory which, in
the linear limit (22), coincides with the random phase
approximation (RPA) for a Bose system. This theory,
which is basically a mean fi.eld theory coupling one-
particle —one-hole configurations, is suitable for describ-
ing collective (one-phonon) states, but not multiphonons
excitations.

A completely equivalent formulation of the equations
of motion can be obtained by using the canonically con-
jugate variables p and S, defined in Eq. (2). The least
action principle takes the form

g2 2 ~
i/2

Ru q (m~y(q) ~ )
(30)

Result (30) can be also written in terms of the moments
(8) of dynamic structure function S(q, u). Indeed, one
has

i/2

~(q) =
I(m, (q) )

where the energy-weighted moment

OO
g

mi(q) = d(u S(q, (u) Ru
0 2m

coincides with the well-known f-sum rule, while the in-
verse energy-weighted moment m ~ is related to the
static response function by the compressibility sum rule

The present formalism, with R„given by (28) and with
difFerent choices for Qo, has been already applied to he-
lium droplets ' and films. However, there are two ma-
jor shortcomings which make the results of those calcula-
tions not satisfactory from a quantitative point of view.
First, the static response function is not well reproduced
in the roton region. Second, the theory does not account
for backflow effects.

To understand this point better, let us discuss the re-
sults of the TDDF in bulk. In this case the density is
constant and b@ can be expanded in plane waves, corre-
sponding to the propagation of phonon-roton excitations.
In the absence of backfIow efFects, the only dependence
of the energy on the velocity field comes from the hy-
drodynamic limit of 'R„[see Eq. (28)] and the resulting
dispersion relation for the phonon-roton mode takes the
form

t2 BS
dt dr Rp[p] +'R„[p, v] —pp+ p

cH
0

where we have separated the velocity-dependent part of
the functional from the velocity-independent one. After
variations with respect to p and S, one finds two coupled
equations of the form

30 I
I

:I I
.:I I

-'I I
.j I

dr fRp[p]+'R„[p, v] —pp) = 0

Op—+ —V', — dr ('R„[p, v]} = 0,
i9t m ' bv
BS b

Ot 'bp

(26)

(27)

10

which can be viewed as a generalization of the equation of
continuity and the Euler equation. In the hydrodynamic
limit, A„ is given by the usual kinetic energy term, 0.0 0.5 1.0 1.5

(il ')
2.0 2.5

&-[p v] =

so that (26) leads to the usual conserved current

~o(r) = p(r)v(r) = +S(r)p(r)

(2g) I IG. 12. Phonon-roton dispersion in bulk at zero pressure.
Points, experimental data (Ref. 50); dotted line, Feynman
approximation (33) with the experimental static form factor
Sv (Ref. 51); dashed line, Orsay-Paris functional (Refs. 1, 9);
dot-dashed line, from Eq. (20) with 'R„given in Eq. (28); solid
line, same as before but with 'R„ from Eq. (41).
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Density functionals having the form (28) for 'R„exactly
fulfill the f-sum rule. Thus, difFerences in the predictions
for the dispersion ur(q) come only &om the quantity y(q),
which is axed by the static part 'Ro[p] of the functional.
In Fig. 12 we show the results for the phonon-roton dis-
persian obtained with the Orsay-Paris functional (dashed
line) and functional (9) (dot-dashed line). Both curves
overestiinate significantly the experimental phonon-roton
energy (points). The difFerence between the predictions
of the two functionals is clearly understood by looking
at Fig. 1 and Eq. (30): Starting from the Hamiltonian
density of Eq. (9), one obtains the full peak of y(q) at
the roton wavelength, thus predicting a lower roton en-
ergy. The remaining gap between theory and experiment
is mainly due to the role of multiphonon excitations in the
f-sum rule. In fact, the analysis of the spectra of neutron
scattering experiments shows that the collective mode
gives only a &action (= 1/3) to the f-sum rule in the ro-
ton region, the remaining part being exhausted by high-
energy multiphonon excitations. On the contrary, due
to the u factor in the integrand, the collective mode
almost exhausts the compressibility sum rule for wave-
lengths up to about 2.2 A . This means that in order
to have an accurate prediction for ur(q), only the single-
mode contribution to the f-sum rule should be included
in the moment mi(q) entering Eq. (31). Therefore, one
concludes that, once the static response function y(q)
is properly accounted for, the dispersion law (30) given
by TDDF theory provides an upper bound to the exact
energy of the phonon-roton mode.

It is instructive to compare the above predictions with
the results of the so called Feynman approximation for
collective excitations, often used in dynamic calcula-
tions for nonuniform He states. ' ' ' In the bulk the
Feynman dispersion law takes the form

prove the following inequality:

mg fAQ

m y mo
(35)

2

S (q, ~) = S(~ —u)DF)
27ACd DF

and the dispersion law uDF given by Eq. (31). While
Eq. (36) reproduces exactly the sum rules mi and m
it yields the approximate expression

S (q) = Qmi(q)m 1(q)
62q2

I&(q) I

for the static structure factor. Actually result (37) pro-
vides an upper bound to the exact value of S(q). The
difference is again due to the role of multiphonon excita-
tions.

One of the purposes of this work is to make the TDDF
theory more quantitative. The idea is to realize that the
expression of 'R„given by Eq. (28) comes from a many-
body wave function of the form

holding at zero temperature. This implies that the dis-
persion law given by Eqs. (30), (31) provides an upper
bound closer to the exact dispersion law with respect to
the Feynman approximation. This is explicitly shown in
Fig. 12.

Concerning the static structure factor S(q), one should
note that it cannot be properly accounted for by the
TDDF theory developed above. The reason is that, in
the bulk liquid, this theory represents a single-mode ap-
proximation with the dynamic structure function in the
form

m, (q) h2q2

mp (q) 2mS~
@N(rl ~ ~ ~ rN) = exp i) s(r, ) ~@N(ri ~ ~ ~ rN)~

where the static structure factor is related to the non-
energy-weighted moment of S(q, w) through the equation

S(q) = 3333(q) = fdwS(qw),
General properties of the moments I, permit one to

where s is real. Clearly, this wave function does not
take into account short-range phase correlation, and de-
scribes correctly the superfluid motion in the hydrody-
namic limit only. The exact wave function should be
expressed with a more general phase:

s(r1, r2, ..., r~) = ) si(r;) + ) s2(r;, r~) + . .
i&j&k"

sN(riq rjq rkq ".)

The average kinetic energy obtained from this wave function has nonlocal contributions coming &om s2, ..., s~. Now,
if we make the assumption that those terms can be expressed only with the two canonically conjugate variables p
and S, then we are led to add a nonlocal velocity-dependent term to 'R„[](),v]. Indeed, this procedure was proposed
a long time ago by Thouless in the study of the flow of a dense superfluid, but in his article, helium was treated
as an incompressible liquid. In the present work, we incorporate the suggestion of Thouless by introducing the most
general quadratic form

q(„= —p(r)]v(r)] + fSr3SrrSrr ]v(r) —v(rr)]G(p;r, rr, rr, rr)]v(rr) 3 (33)] (40)

where we have explicitly exhibited Galilean invariance. Generally speaking, G is a tensor which takes nonzero values
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-19.7544
I

TABLE II. Values of the parameters used in Vq(r); see Eq. (46).

CX]

—0.23951 ' 16 ~ '
I

0.0312 4
I

1.023 X
0!2

0.14912 A

on scales Ir; —r~I of the order of the interparticle distance. So far no microscopic derivation has been found for this
functional form. Our phenomenological approach consists in keeping only diagonal terms as follows:

&„=—p(r) Iv(r) I

—— dr' Vg(lr —r'I) p(r) p(r') Iv(r) —v(r')]
2 4

(41)

and fixing the efFective current-current interaction VJ to
reproduce known properties in bulk. The new term plays
the role of a nonlocal kinetic energy. Now, the conserved
current is no longer Jo, rather, Eq. (26} leads to the
current

J(r) = Jo(r)+ J~(r) (42)

Physically, J~(r) acts as a backflow which depends on
the velocity and the density in the vicinity of point r.
As expected, its contribution vanishes when many-body
phenomena are not present (p -+ 0).

This form of 'R„ lowers the value of the energy-
weighted moment mi(q) predicted by the density-
functional theory. In bulk one now finds

h~q2
~1(q)

2 (~ P +&(o) —&~(v) )
where VJ(q) is the Fourier transform of the current-
current interaction V~(r). Notice that the expression for
the static response function y(q) does not change, since
it is entirely 6xed by 'Ro. The phonon-roton dispersion in
bulk is still given by the ratio (31), so that the dispersion
law is given by

duced. At P = 24 atm, for instance, the roton minimum
is displaced at q = 2.01 A and the roton energy is
4 = 7.4 K, close to the experimental values q = 2.05' and A = 7.3 K.s2

The energy-weighted moment mi(q) is shown in
Fig. 13, where the density-functional result (44) is com-
pared with the experimental data for the collective con-
tribution to the f-sum rule. The fact that the new func-
tional no longer satisfies the f-sum rule (32) points out
in a clear way that the TDDF theory does not account
for multiphonon excitations. The new current-current
term in the functional (41) changes also the expression
for the static structure factor, which is still given by
S (q} = hami(q)m i(q) as in Eq. (37), but with the
new mi(q) moment (44). The resulting SDF(q) is no
longer an upper bound to the exact S(q); conversely it
turns out to be close to the experimental one-phonon con-
tribution to the total S(q). A similar separation between
collective and multiphonon excitations, in the context of
linear response theory, has been developed by Pines. Fi-
nally we note that the dispersion law (45) is not aB'ected

by the new term in the q —+ 0 hydrodynamic regime,
where it gives the usual sound velocity c2 = —Imp(0)]
This is an important feature ensured by Galilean invari-
ance.

1.0

This relation can be used to fix Vg(r) in order to repro-
duce phenomenologically the experimental phonon-roton
dispersion. We have chosen the simple parametrization

VJ(r) = (yii + pi2r ) exp( —nir )

0.5
U

+(p2i + p22r') exp( —n2r') (46)

where the parameters are given in Table II. The corre-
sponding dispersion relation is shown in Fig. 12 (solid
line). The roton minimum is at qo ——1.92 A. and the
roton energy is 4 = 8.7 K. The pressure dependence of
the dispersion relation turns out to be also well repro-

0.0
0 0.5 1.5

q (A')
Z. 5

FIG. 13. Energy-weighted moment of the dynamic struc-
ture function. Dashed line, total f-suni rule; bars,
one-phonon contribution as measured in neutron scattering
(Ref. 20); solid line, present work [Eq. (44)].
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In conclusion, the complete Orsay-Trento functional
has the form

V. EXCITED STATES
OF THE FREE SURFACE AND FILMS

dr (&Ol:l 1+ &-b»vi) A. Equations of motion

where 'Ro and 'R„are given in Eqs. (9) and (41), re-
spectively. The term 'R„vanishes in the ground state
calculations of the previous sections. On the contrary, it
is crucial in the calculation of the dynamics. Both the
experimental static response function and the phonon-
roton dispersion in bulk are taken as input to parametrize
the functional. The theory can then be applied to study
the excited states of inhomogeneous systems. This is the
purpose of the next section.

A detailed study of excitations using the Orsay-Paris
functional can be found in Ref. 9. The same method
of resolution is followed here. The systems under con-
sideration have translational invariance parallel to the
x-y plane; hence the ground state wave function depends
only on one coordinate, which is taken as the z coordi-
nate orthogonal to the free surface or to the plane of a
film. The excited state wave functions can be expanded
in plane waves as follows:

@(r~~ z t) = @o(z)+) (~~,bc'~b(z)e *' "" "'"'+~~b@~b(z)e' "" "'"')
k, b

(48)

where r~~ denotes from now on a two-dimensional vector parallel to the surface of the liquid. The quantities o,k b are

small amplitudes, the factor 1/QAI is a normalization constant (A. is the area of the sample, I is an arbitrary length),
and b labels the various branches of excited states. The functions @q(z) and @2(z), without any loss of generality,
can be chosen as real. This formalism has been already used in Refs. 9, 18.

It is convenient to introduce the quantities

1 24
@k,b @k,b + @k,b (49)

Then the phase S can be written as

ih 1
S(r~~, z, t) = — ) — (nk; bC'~ b(z)e 'l " ' "'~~l) + c.c.

2 Al -C, z
k, b

(5O)

and the density takes the form

p(r~~, z, t) = po(z) + 8p(r)~, z, t), (5i)

where po ——~@o~ is the ground state density, while

1
b (rp~~, z, t) = ) @0(z)(ogb4~ b(z)e 'l "" "'~~lf+ c.c.

Al „b

The equations of motion (26) and (27) assume the form

DkC'k, b+ ~(@'k,b) = ~k, b~'k, b

+k@k,b + +(@k,b) ~k b@k,b
(53)

The eigenvalues hark b satisfying Eq. (53) are the energies of the collective modes of the system. The symbol 17k

denotes a differential operator of second order, while ~ and M are integral operators. They are deGned by

h2 d' 6'A. "
, + + U(«z]+ V-b(z) —p2m dz2 2m

(54)

W(f) = 240(z)
$2 kdr'0 0(z') f(z') e'""~'

4, (z') b S(r)h S(r')

(55)

(56)

where E„ is a functional containing only the nonlocal part of '8„. A simple way of solving Eq. (53) is to expand it
on the basis of eigenstates of the static one-body Hamiltonian. This leads to a matrix equation that is easily solved
numerically by a direct diagonalization.
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A quantum hydrodynamical formalism is also obtained by making the substitution (—ini, i, ) -+ ak g, where ai, i, is
the operator of creation of one phonon which satis6es the Bose commutation rules

[ai, ,i„ak,b] = o (57)

From the completeness relation

) e„-,(z)C+,(")=La(z —")
b

one recovers the equalities

[p(r), S(r')] = iM(r —r'), (59)

= @o + ) ~k, i ai, i,ai, b
(2)

k, b

(60)

Then, after a quadratic expansion of the total energy and
using the properties of Eq. (53), one finds the Hamilto-
nian

L —+ oo, are shown in Fig. 14. The lowest branch corre-
sponds to a wave function Ci+ (z) localized in the surface
region. In the long-wavelength limit, it coincides with
the hydrodynamical surface wave called ripplon, whose
dispersion is

where Eo is the energy of the ground state. This diago-
nalization is obtained provided the C» b s are normalized

)

according to

dz @i, i, (z)c'i+, i,~(z) = LSi,i,'

where the orthogonality appears as a consequence of (53).
Higher-order expansions of H in terms of density and
phase fluctuations would give rise to interactions between
quasiparticles.

The transition density associated with the solution
(52) is given by [the vector q denotes (k, q, )]

where o and p are the surface tension and the bulk
density, respectively. For wave vectors of the order of
0.5 A i, the dispersion relation starts deviating from
the hydrodynamical limit, until its curvature eventually
changes sign, due to a coupling with bulk modes. Our
curve reaches the value of the roton energy A = 8.7 K
at about k = 1.15 A i. A first experimental evidence
of a similar deviation &om the hydrodynamic law came
from measurements of the surface entropy. More re-
cently the dispersion of surface modes has been measured

ilute(z)C„+~(z) exp(iq, z)dz,
16

and the dynamic structure function can be evaluated by
means of the definition 12-

2

S(k, q„cu) = ) (p )„h((u —u)i, i, ) (63)

In order to compare the theoretical strength with the
experimental results, we have introduced a width of the
order of the experimental resolution, by substituting the
8 function of Eq. (63) with a normalized Gaussian, as
done in Ref. 54.

8

4-

k (A. ')
1.6 2.4

B. Dynamics of the free surface

We have done calculations in a slab geometry, i.e. , liq-
uid between two parallel surfaces at a distance I much
larger than the surface thickness (typically 50 —100 A).
The slab geometry is a good approximation to a semi-
infinite medium for wave vectors larger than 1/L. The
dispersion relation of the various modes, extrapolated to

FIG. 14. Dispersion relation of bulk and free surface ex-
citations. The threshold A = 8.7 K, for roton states with
di8'erent values of parallel wave vector k, is shown as the hor-
izontal line. The present result for the surface mode (lowest
solid line reaching A at k = 1.15 A. ) is compared with the
experimental data on films (Ref. 56) (squares) and with the
hydrodynamic dispersion of ripplons (short-dashed line). The
bulk phonon-roton branch (upper solid line) is compared with
the experimental one (circles). The threshold for the emission
of atoms into the vacuum is also shown (dot-dashed curve).
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C. Dynamics of films

FIG. 15. Dynamic structure function (in arbitrary units)
for q = 0 in a slab 50 A. thick. The lowest line corresponds
to k = 0.3 A. , the highest one to k = 1.9 A . The dashed
lines are the phonon-roton and the ripplon dispersion. The
b function in the definition (63) is replaced by a Gaussian of
vridth 0.4 K.

in neutron scattering experiments on helium films. The
experimental data are shown in Fig. 14 as squares, the
error bars accounting for the spreading of the data for
different coverages (3.5 —5 layers of helium on graphite).
The agreement with the calculated values is satisfactory.

Below L the surface modes are undamped, while above
4 they couple with the continuum of bulk modes (rotons
with negative and positive group velocity) propagating at
different angles (q, g 0). This results in a spreading of
the strength associated with the surface modes. Actually
the spreading predicted by our theory is small. In Fig. 15
we show the dynamic structure function for scattering
at grazing angle (q = 0) on a slab of thickness L
50 A. The strength of the lowest surface mode is well
localized not only below but also above A, even though
it is partially distributed among bulk modes coupled to
ripplons. The position of the peak of the ripplon mode
above A is shown also in Fig. 14 as a dashed line.

We obtain also a second. branch of surface excita-
tions, lying in between the ripplon and the phonon-roton
modes. It is visible in Fig. 15 as a small bump, which
is close to the phonon peak for k 0.3 A i, and stays
almost parallel to the ripplon dispersion for larger k. The
relative strength of this mode is larger in thin films; in
that case, the experiments seem also to support the ex-
istence of such a surface mode.

A more detailed analysis of the results of the present
density-functional theory for the excitations of the free
surface is given in Ref. 57; in that work, a general discus-
sion of the mechanism of hybridization between ripplons
and rotons is presented, and some properties connected
with re8ection and evaporation of bulk excitations im-
pinging on the surface are also discussed.

In order to illustrate the results obtained with the
present model, we have chosen the case of a H2 substrate,
since it has been the subject of both experimental and
theoretical investigations. ' Besides finite-size effects,
the interesting features to be expected. are linked to the
layering of the liquid near the substrate. Submonolayer
super8uidity has been observed on H2, indicating that
helium remains liquid close to the substrate. However,
the well depth of the helium-hydrogen potential is rather
large (33 K), which produces a well defined layering of
the liquid.

In a thin film, the long-wavelength limit of the lowest
surface mode is no longer a ripplon, for which the restor-
ing force originates from the surface tension, but rather a
third-sound excitation. The restoring force is here given
by the substrate potential. The third-sound speed c3, is
obtained as the hydrodynamic limit (k ~ 0) of Eq. (53):

dp
dN' (65)

where N is the coverage of the film. Indeed, one can
verify that for small momentum, CI @o, so that the
contribution due to M vanishes. With increasing film
thickness, since the chemical potential varies as 1/N, so
does c32

The results for cs, (Fig. 16), show strong oscillations
as a function of coverage. This is due to the layered
structure of the film, which is rejected into the cover-
age dependence of the chemical potential (see Sec. III C
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FIG. 16. Evolution of third sound speed c3, vs coverage on
a H2 substrate. Solid line, Orsay-Trento results. Dashed line,
Orsay-Paris results.
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liquid interface is nearly solidified, so that low-energy

with a momentum corresponding to t e pinter article dis-
tance. T e minimumn 2D roton energy was foun to e
aoout wib 12 K 'th the Orsay-Paris functional. It reduces
to 5.6 K with the present one. The combined etc o
the evolution of the third-sound excitation and of the 2D
roton, with completion of the first layer, may lead to un-
expected behavior of the heat capacity of submonolayer

nctionIn ig. , we sF' . l8 how the dynamic structure unc ion
associated with the spectra of Fig. 17. The strengt is-

bu of the thinner film is more fragmented, as an
efFect of the finite size of the system in the z iree ion.
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FIG. 17. Spectrum of films on a H2 substrate for cover-
a es 0.24 A. (a) and 0.48 A (b). Note the presence of a

d 2 A which is associated withlow-energy excitation aroun
a 2D roton mode trapped in the first layer. 8 12
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abave). Films for which a uniform coverage is unstable
have a constant chemical potential characteristic of a lay-
ering transi ion, e rat' n the range of which is determine by a
Maxwell construction as discussed abov . Td ove. T is causes
the third-sound velocity to drop dramatically to zero.
The structure is more marked than with the Orsay- aris
functional, w ic missel h' h d the layering transitions besides

b to now no indication of the layering transitions.een up o no
The third-sound velocity does show oscillations, ow-
ever less marked than calculated here, although the mea-
surements were done at a tempeerature of 0.18 K, which
is expected to be lower than the critical temperature of
the layering transitions. It is also piso ossible that surface
inhomogeneities o ef th H surface are able to smoot out
the dips seen in the calculations of c3, for a perfect y at
surface.

Two typical spectra are shown in Fig. or woFi . 17 for two val-
ues of helium coverage (N = 0.24 A 2 and N = 0.48

on a H2 substrate. For wave vectors in the range
1.5 —2 A. , the low-lying excited states are modes con-
fi d the first layers of the Quid close to the substrate.
Their nature has been discussed in details in ~~e s.

t the substrate-54. Their formation rejects the fact tha e su s

200 4 8 12 16

Energy (K)

FIG. 18. Dynamic structure function in
'

yin arbitrary units)
associate wi ed ith the spectra in Fig. 17, for coverages 0.24

e lowest lineand 0.48 A (b) on a Hq substrate. The lowes ine
s ands to A,'= 0.1 A. , the highest one to k = 2.0 A.

The h function in the definition (63) is rep ace y a a
of width 0.4 K.
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The relative strength of the ripplon mode is also higher
for the thinner film, since the surface-to-volume ratio is
larger. One notes also that the surface mode maintains
its identity well above the roton energy. The thicker film
has a spectrum quite similar to the one of the free surface,
apart from the 2D roton at the substrate-helium inter-
face, which is still present but a8'ects the spectrum only in
the region q 2 A i. The spectrum is dominated by the
bulk phonon-roton mode and the lowest surface mode, a
non-negligible strength being also associated with the ex-
cited surface modes which lie in between.

It is worth noticing that the potential between one He
atom and the H2 substrate is similar to that between one

He and a graphite substrate coated by two solid He
layers. ' Hence, the liquid He film on graphite has a
spatial structure similar to the profile of Fig. 10. Thus
we can safely compare our results with the experimen-
tal ones, obtained at ILL-Grenoble, as well as with the
variational theory of Ref. 59. The spectra in Fig. 17 are
indeed similar to the experimental ones (see, for exam-
ple, Fig. 14 of Ref. 59). The energy of the excitations
are in rather good agreement, apart from the energy of
the 2D roton which, however, depends crucially on the
substrate-helium potential. A reasonable agreement is
also obtained for the strength distribution.

VI. CONCLUSIONS

inhomogeneous states of liquid helium in difFerent geome-
tries like the &ee surface, droplets, films, bubbles, and
vortices. Equilibrium configurations and excited states
can be studied in a unified framework. Here we have
presented results for static and dynamic properties of the
free surface and films, as well as for the ground state of
helium droplets. The comparison with available exper-
imental data, as well as with Monte Carlo simulations,
is in general satisfactory. The present density-functional
theory turns out to be quantitative even on the scale of
interatomic distances. The improvements with respect
to previous density functionals are clearly understood in
term of the key ingredients of the theory, namely, (i)
the bulk equation of state; (ii) the static response func-
tion and (iii) the phonon-roton dispersion in the uniform
liquid. In particular we have discussed in detail the im-
portance of reproducing the peak of the static response
function at the roton wavelength in determining static
density oscillations near the surface and shell structures
in helium droplets. We have also discussed the contri-
bution of the collective (one-phonon) modes to sum rules
(compressibility sum rule, f-sum rule, static form factor),
in order to clarify the grounds of TDDF theory, as wel1.
as to include backHow efFects. The results for the excited
states of the free surface and films compare quantitatively
with experiments. The applications of the same theory
to the dynamics of droplets and to the phenomenon of
quantum evaporation are work in progress.

We have presented a density-functional theory for liq-
uid He at zero temperature. The theory corresponds to
an improved version of the density functional introduced
in Ref. 1. It is a phenomenological theory, where known
properties of the uniform liquid are used to fix the param-
eters of the functional. The theory is suitable to study
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