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Coexistence of short- and large-scale phase variations in a charge-density wave weakly
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We reexamine the problem of phase pinning of a three-dimensional charge-density wave (CDW)
weakly coupled to impurities. Within an analytical approach, we find that the phase is adjusted both
at the short scale, around individual impurity sites, and at the large scale, over extended domains
containing many impurities. Both phase adjustments are important for the physical behavior and
contribute to the understanding of experimental data as well as numerical simulation results in CDW
systems. The former give the main contribution to energy and are responsible for the white-line
efFect observed in x-ray patterns. The latter determine the functional dependence of the threshold
field Eth for nonlinear conduction. Unlike what was widely accepted, we find that Eth is not related
to the total energy gained by phase spatial variations. This picture is consistent with that emerging
from the recent experimental investigations of doped NbSe3 and could contribute to clarifying the
controversy on the pinning type in this material.

I. INTRODUCTION

Impurity pinning is a subject of continuing interest, be-
cause of its profound role for understanding the unusual
properties of the low dimensional materials undergoing a
charge-density wave (CDW) transition. Extensive stud-
ies, &om both theoretical and experimental sides, are
especially devoted to the fascinating but difficult prob-
lem of CDW dynamics, in the interesting regime near
the threshold field for nonlinear conduction. The un-
derstanding of the static properties is a prerequisite for
understanding the more complex CDW dynamics. The
conventional theory of the static CDW containing a ran-
dom distribution of quenched impurities considers this
system as a &ustrated one, whose properties are governed
by two antagonistic conditions: the intrinsic CDW peri-
odicity tends to impose a uniform phase (usually modeled
by an elastic energy term, proportional to the square
of the phase gradient ), while the impurity potential
prefers, due to the random impurity location, a nonuni-
form phase. 4 2 s The spatial variation of the CDW phase
p(r) is controlled by the Fukuyama-Lee-Rice (FLR) pa-
rameter e. ' It is defined as the ratio of the energy gained
by adjusting the phase at the j " impurity site to the
value preferred by the impurity potential to the associ-
ated elastic energy cost. While the nature of pinning for
large s is clear, —the phase being (almost) perfectly ad-
justed to the values preferred by the impurity potential
(strong pinning limit ' ) —the small e' limit turned out
to be more delicate. By supposing that the phase vari-
ations around individual impurity sites are large ( vr),
the small energy gain from the impurity potential, in-
sufIicient to overcome the corresponding elastic energy
cost for e ( 1, simply shows that the state with the
uniform phase (whose energy is taken throughout zero)

has a lower energy. Therefore, within the conventional
approach, ' the role of the phase variations at short
scale, around individual impurities was ignored, and the
attention was solely focused on the phase variations oc-
curring at large scale, within extended regions contain-
ing many impurities. A scaling argument demonstrated
that, for space dimensions less than four, one can dimin-
ish the energy with respect to that of uniform phase if
the system breaks in phase coherent (Fukuyama-Lee) do-
mains containing a large number of impurities. ' '3 For a
three-dimensional system, to which the present study
is devoted —,this collective mechanism of pinning leads
to an energy gain

~
WFLR

~

oc e', an average phase gradient
Z/2

(V'p) Fr R oc 1/LFLR oc s (LFLR —length of Fukuyama-
Lee domain) and a ratio r—:—W; &/W, ~ of the energy
gain &om impurity potential to the elastic energy having
the value rFLR = 4/3.

In contrast to these analytical results, numerical sim-
ulation studies on the ground state revealed a differ-
ent dependence for the energy gain, ~WNs~ oc s2, and

X/2
the average phase gradient, (V'y)2Ns oc s, s while the
parameter r tends to saturate at the value rNS ——2
for small e'. Because ~WFLR(/~WNs~ oc s (&& 1 for
s « 1), one immediately arrives to the conclusion that
the state, where (only) large-scale phase variations2' oc-
cur, cannot be the ground state of the interacting CDW-
impurity system. An approach based on a simple varia-
tional ansatz proposed recently succeeded to reproduce
all aforementioned features found by the previous nu-
merical simulations. ' Unlike in the conventional FLR
approach, ' the approach developed in Ref. 8 demon-
strated that, even for e (( 1, small phase adjustments
at individual impurity sites are more efFicient than large-
scale phase variations in diminishing the total energy.
Besides the good agreement found for the c dependence of
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energy and average phase gradient (reproducing the nu-
merical simulation results within factors of order unity)
and the absolute value of the parameter r(= 2), direct
evidence on the role played by short-scale phase varia-
tions was given by the dependence of the CDW prop-
erties on impurity concentration in the artiGcial lattice
used in Ref. 7 to minimize the energy, as revealed by the
critical analysis of the numerical simulation findings.

Despite the success of the analytical approach of Ref. 8
to account for the ground state properties (energy, phase
gradient, r) found by previous numerical simulations '

and the unambiguous demonstration that the FLR solu-
tion corresponds to a considerable higher energy, it failed
to explain why the values of the threshold Geld found by
numerical simulation in Ref. 7 obey the law E&h oc c, in
accord with the FLR predictions (cf. Table I of Ref. 8).
On the other side, we shall refer to the recent reports on
the doped NbSe3, one of the CDW materials most exten-
sively investigated experimentally. A detailed analysis
showed that the threshold Geld values found in both Ta
Nbq Seq and Ti Nbq Se3 samples are proportional to
the square of the concentration, E&h oc x, again consis-
tent to the FLR prediction for weak pinning. Subsequent
high-resolution x-ray scattering experiments gave fur-
ther support to this interpretation: large-scale phase
variations were observed and their characteristic length
could be identified with the length of Fukuyama-Lee do-
mains. However, a more recent analysis revealed that
only very fast phase variations, with wavelength shorter
than the amplitude correlation length (, are excluded.
Summarizing the foregoing discussion, one can conclude
that, including either the short- or the long-scale phase
variations, neither the approach of Ref. 8, nor the con-
ventional FLR approach ' can account for all numerical
simulation and experimental results listed above.

Basically, both the FLR approach ' and the recently
proposed one attempted to find analytically a state
whose energy is smaller than that of the nonpinned CDW
within certain simplifying assumptions on the manner in
which the phase adjustments in the presence of impuri-
ties occur. Instead of solving the complicated problem of
finding the function y(r) that minimizes the free energy
functional, both assumptions introduced a variational pa-
rameter —the domain length IFz,R in Refs. 2, 3, the
degree of local phase adjustment denoted by yo in Ref. 8—that can easily be determined analytically. While the
solution obtained in Ref. 8, based on a simple variational
ansatz that allows for phase adjustments at individual
impurity sites (even) in the small s limit, corresponding
to a CDW whose energy is substantially lower than found
by Lee and Rice, unambiguously demonstrated that the
latter cannot be the ground state, it can obviously rule
out neither a state of lower energy, nor the occurrence of
large-scale phase adjustments.

We shall present in this paper analytical results, ob-
tained by minimizing the energy functional of the three-
dimensional CDW weakly coupled to impurities with re-
spect to the phase y(r), which reconfirm many results de-
rived in Ref. 8. The method used here is not new; it has
been used in a number of previous investigations, '

where, nevertheless, different aspects have been em-

phasized. On the other side, numerical simulations '

posterior to these analytical studies did not attempt
to establish any connection between the two methods.
The present study demonstrates that, contrary to those
claimed previously, short- and large-scale variations of
the phase of a three-dimensional CDW weakly coupled
to impurities coexist, but their roles are different. In ad-
dition to the good agreement with numerical simulation
results already found in Ref. 8, the present findings are
in accord to the dependences Eth cx r and Eqh oc n;
(n, —impurity concentration) found in the numerical
simulation and in experiments on doped NbSe3, re-
spectively, as well as with the formation of large phase
coherent domains and the exclusion of very fast phase
variations in the latter system. However, contrary to
what was claimed previously, ' ' no simple relationship
is found here between the threshold field Eth for depin-
ning and the gain in the total energy due to the phase
adjustments produced by the CDW-impurity interaction.
As already noted, the occurrence of phase adjustments
at individual impurities is consistent with the variety
of CDW materials in which the "white-line" efFect was
observed experimentally, a finding incompatible with
the FLR model of weak pinning. ' Therefore, although
recovering results derived previously, the present inves-
tigation shows that the physical picture of the three-
dimensional CDW weakly coupled to impurities is more
complex than that emerging from the previous studies.

The remaining part of this paper is organized as fol-
lows. The model of the deformable CDW containing im-
purities is described in Sec. II, where the effect of short-
scale phase variations is also investigated. Sec. III is de-
voted to the large-scale phase adjustments. Some discus-
sions and conclusions are made in the last Sec. IV.

II. EFFECT OF SHORT-SCALE PHASE
ADJUSTMENTS

In the presence of impurities, both the phase p and am-
plitude of the CDW are distorted. Over large distances,—within the mean-field theory, larger than the ampli-
tude (BCS) correlation length (—the amplitude fluc-
tuations are energetically more expensive than the phase
fluctuations. Therefore, many investigators ' ' ' dis-
regarded the variations within the correlation length (
and described the CDW by a &ee energy functional W
expressed solely in terms of &p(r) (phase-only theory), ob-
tained by making a Ginzburg-Landau gradient expan-
sion. In the static limit, zero temperature and in the
absence of an applied electric Geld, one can write

W = W.i+ W;, = — d'r ~V'y(r)~'
V

+E,. d n r cos r+y r . 1

Here, K is the CDW elasticity, Q is the CDW wave vec-
tor, and E, () 0) is the pinning strength, proportional
to the density of CDW condensate and Q-Fourier com-
ponent of electron-impurity potential. Because of impu-
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V' 8(r) = n, en(—r) .sin [Qr+ viz) + 8(r)], (2)

where the FLR parameter s = n, E;/K has been1/3

introduced. The above equation can be rewritten in in-
tegral form by means of a Green function. To solve
this integral equation diagrammatically, ' particularly
convenient is to use a Green function, whose average over
domains vanishes, (G(r))z) = 0. Straightforward analy-
sis shows that, rather than spherical domains, ' ' cubic
domains (of volume 0 = L3) are more convenient for
calculations and will, therefore, be used below. Impos-
ing, furthermore, periodic boundary conditions, one gets
the following Green function:

rity randomness, the fluctuation of the impurity concen-
tration n(r)—:g &~ h(r —R~) —n; has the correla-
tor (n(r)n(r')), = n;b(r —r'), (), denoting throughout
impurity averaging and n; = K;/V is the mean concen-
tration (V —total volume). 4 To express the gradient
term of Eq. (1) in an isotropic form, we have assumed
that the transverse correlation lengths are larger than
the interchain spacings and performed an appropriate
length scaling. To find the ground state of the CDW
with quenched random impurities, one has to determine
the function &p(r), which minimizes the sum of the two
competing energies R'

~ and TV; p entering the functional
(1).

Following Refs. 12—14, we shall look for a minimum
of Eq. (1) corresponding to a system in which (almost)
independent phase coherent domains, containing many
impurities (n;0 )) 1, 0 —domain volume), are formed.
For each domain 'V, one can de6ne a collective phase co-
ordinate Qz) = (p(r))zi = j& d rp(r)/0 —()~ standing
throughout for the spatial average over the domain P
and split p(r) = @~ + 8(r).

By supposing that the CDW within a domain 17 does
not experience elastic forces from other domains (in-
dependent domain approximation), iz'i3 the boundary
terms give a vanishing contribution and the stationarity
of the functional (1) leads to

Here and hereafter, the bar will be used to denote the
double average over space and impurity distribution. I et
us proceed with the evaluation of the various contribu-
tions to the total energy. It is convenient to use dimen-

sionless energy densities i() = W/(Van, . ). By com-
bining Eqs. (2) and (4) and applying the diagrammat-
ical method, ' the elastic energy per domain associated
with the fluctuations of 0 can also be obtained in a closed
form:

—2/3
ni

~ei, e =
2

[@8[&= n—, '~'G(r)], =. (6)

As already mentioned, a phase-only description is mean-
ingful only if too fast spatial phase variations are ex-
plicitly excluded. This is in accord with recent ex-
perimental fj.ndings on NbSe3. To this aim, the sum-
mation over k in Eq. (6) has to be cut off at large
wave vectors (~k] ) k, ). This yields a finite value of
G(r) ~,—o k, . Restricting the summation over k in each
direction to the range (—k„+k,) in Eq. (3), one gets
G(r)~, o ——0.0613k,. Within the mean-field theory of
CDW, k is of the order (

Unlike the elastic term, the CDW-impurity interaction
energy cannot be expressed in closed analytical form. If
we set 8 = 0 in the right-hand side of Eq. (4) and insert
this expression in Eq. (1), we easily get the following ex-
pression for the energy gain from the impurity potential:

-1/32

u); s ——— n G(r—)~, .o.
2

Notice that this contribution comes &om the adjustment
of the local phase 8(r) and not from the tendency of
the average phase vga) to conform to the Huctuations of
the impurity potential in the domain 'V. However, as
suggested by Eq. (5), this zeroth order approximation
is meaningful only if the domain length L is suKciently
small and the relevant quantities can be expressed as con-
vergent expansions in powers of 02.

G( ) L—3 ) n
k—2 —ikr

k+0

The integral version of Eq. (2) reads

ii(r) = n, sf sir'a(r —r')n(r') sin]iir' is)n

+8(r )]. (4)

16m'

X/3
A E'

2

A diagrammatic technique was previously developed to
solve Eq. (4) by iteration. ' Simple expressions can be
obtained for the correlation function of the CDW order
parameter and the mean square value of 0, because only
zeroth order terms give nonvanishing contributions:

(expji[8(r) —8(r')])); = exp( —~r —r'~/L, ),
2 L8' = (8'); z) - (27r)'

III. EFFECT jDF LAR.CE-SCALE PHASE
ADJUSTMENTS

Using the explicit form (3) of the Green function in
Eq. (4), one can check by straightforward calculations
that the average over domain boundary of the phase gra-
dient vanishes, g d S V'8 = 0. Integrated over the domain
volume, Eq. (2) then gives

nS'(s)n) = n, rf si+n(r) sin]gr+ . gn+e(r)]

= 0.

In accord to the independent domain approximation used
in the derivation of Eq. (2), the above equation shows

that the force F exerted on the CDW by impurities in the
domain 17 vanishes (in the absence of an applied field ).
Notice, however, that Eqs. (4) and (8) must be solved self
consistently. By inserting the former into the latter, one
gets an equation determining @~, then Eq. (4) will give
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the optimum value of the local phase 8(r). Therefore,
the phase y(r) = @~ + 0(r) at each point will be fixed
(pinned CDW).

Klemm and Schriefferis showed by iterating Eq. (4)
that the force per domain I' (@),defined by Eq. (8), com-
puted for an arbitrary value of @, can be expanded in
Fourier series:

I" (@) = ) I" cos(mQ ~ 8 ),

where both amplitudes F and phases 8 strongly
dependent upon the particular impurity configuration.
Nevertheless, for sufficiently large domains (n;0 )) 1),
the Fourier coeKcients E can be estimated, within
uncertainty factors of order unity, by replacing them
with their root mean square values, and the latter can
be computed from the force-force correlations (I" (@ +
gi) E(@i));. The force-force correlation can be calcu-
lated either perturbatively, by expanding in powers of e,
or iterating Eq. (4). It can be shown that in the nth order
in s, each diagram contributing to (I"(g + gi) E(@i));

i/3 2 ' i3behaves as Q n,. e 02; so, the perturbation se-
ries converges for sufKiciently small values of 0 . Retain-
ing only the contributions with n = 1, 2 to the force-force
correlation, the expressions of the two Fourier coefBcients
in Eq. (9) can be obtained by performing calculations
similar to those of Ref. 13. Using the fact that, for arbi-
trary @, the force acting on the CDW in a single domain
is related to (the derivative with respect to @ of) the en-
ergy gained &om the impurity potential in the domain, 3

the lowest order contributions to the energy density can
be expressed as

va; p
—m; p s = u); p y = n, I"i cos(g~ + 6i z))

—2/3

1+—I'2 cos(2'~ + 62 ~)

(»)

where I' = n E2(1 —82)/n and F22 = n 828 /n, 0
and m; ~ e are given by Eqs. (5) and (7), respectively.
The above equation shows that, besides the energy gain
m; z s [Eq. (7)] due to the adjustments of the local phase
0, the energy can be further diminished if the average
phase value @~ is properly adjusted to take advantage of
the fluctuations in the impurity potential in the domain
D: the optimum value of @~, that minimizing iU;
is just the value that ensures a vanishing force [Eq. (8)].
Setting 8~ = 0 in Eq. (10), the contribution to energy
'w'

p g coming IIrom optimizing the value of the average
phase @~ to the fluctuations of the impurity potential
in the domain 17, g~ + 8i ~ ——m (Ei ) 0) recovers the
FLR expression, derived from simple considerations on
a random walk, neglecting phase adjustments at individ-
ual impurities. 2 s While the expression (10) (eventually
extended to include also higher order harmonics) —ba-
sically, a result of perturbation theory allows us to
determine an optimum value of the average phase v/r~

within the domain V, it cannot be used to find the do-

main size I. If the sample is sufFiciently large and com-
prises many domains, the above argument indicates the
tendency of @~'s to be adjusted to values depending on
the impurity configuration in the various domains, fluc-
tuating, therefore, uncorrelated from one domain to an-
other. In accord with Eq. (1), these Quctuations in g~'s
yield an extra elastic energy m ~ y that cannot be de-
termined within the independent domain approximation
used above; nevertheless, it must be included in the total
energy for saxnples consisting of many domains. Employ-
ing the FLR method, ' one obtains

2

where o. is a numerical factor of order unity. Equa-
tions (6), (7), (10), and (11) give the various contribu-
tions to the total energy density associated to both short-
and. large-scale variations of the CDW phase deformed by
impurities. The inspection of these equations shows that
the terms related to the short-scale phase fluctuations,
GJ p Q and m, ~ g, do not depend on the domain size L;
nevertheless, 02 [and thence I, cf. Eq. (5)] must be small
enough to ensure a convergent perturbation series and
to justify thereby the truncation used in Eq. (10). To
check this approximation, we shall determine the value
of the domain length I p that minimizes the total energy,
by furthermore assuming that the second harmonic gives
a negligible contribution to Eq. (10). Using the value
n = 3/vr estimated by Fukuyama and Lee, one eas-

ily gets 02 = 0.248, corresponding to a domain length
L p = 1.079 LFpR ——0.929L, very close to the FLR
length LFLR = (2/n) n, s, and a ratio between the
amplitude of the second harmonic and that of the first
harmonic p = E2/(2Ei) = 0.287. These values could be
taken as indicating that the approximation used for eval-
uating the contribution to energy coming from adjusting
the average phase g gives results reliable within factors
of the order of unity. Accepting this approximation, the
various contributions to energy and average phase gradi-
ent, obtained from Eqs. (6), (7), (10), and (ll), read

~,)g = — n); pe = —n—, ~V'0~2 = 0.0153n, k, e,
(12)

~.i,~ = —0.833~;,,+ = —n, ' ~V'@~' = 0.00226''.1 —2/3

(13)

Because of the nonvanishing 02, the value found &om
Eq. (13) for the ratio of the ~m;~~ @~/m, ~ @ = 1.20 is
slightly smaller than the value 4/3 obtained within the
Lee-Rice approach. ' It is useful to compare the energy
gain and the average phase gradient, due to short- and
large-scale variations. Using Eqs. (12) and (13), one
easily gets me/tug ——0.68k Lo (tvq = m; i, q + to, ~ q,
t,
' = 0, @) and ~V'9~2/~Vg~2 = 0.14 k,Lo. For small s, Lo
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is much larger than the average spacing between impu-
rities n, On the other side, a phase-only description
is justified for k, 1/( and n, ~. ) (. The large value
of k L o thus obtained demonstrates that the short-scale
phase adjustments give the largest contribution to both
energy and phase gradient.

In the presence of an applied field, the collective co-
ordinate becomes time dependent, @~(t). Klemm and
Schrieffer investigated the dynamics of g~(t) by assum-
ing that 0@rp(t)/Bt is small with respect to the natural
&equencies of internal degrees of &eedom within the do-
main. Then, the internal deformations can be integrated
out and an efFective potential [whose truncated expres-
sion is given by Eq. (10)] is obtained; it depends only on
@~(t) and governs the dynamics of @~ (adiabatic approx-
imation). Within the same approximation used above, a
threshold field for nonlinear conduction can be found,
behaving as

E,h oc n, (E,/K) = n,'~ s . (14)

This functional dependence is of the type found. by Lee
and Rice, although they ignored the short-scale phase
variations.

IV'. DISCUSSIONS AND CONCI USIONS

We have presented the above results obtained analyt-
ically for the three-dimensional CDW weakly coupled to
a random distribution of quenched impurities. They will
be compared below with those obtained from numerical
simulation studies on the same system, ' as well as with
experimental data reported in CDW materials.

Abe found by numerical simulation on a related model
that the pinning of the CDW phase produces, for small
c, an energy gain m proportional to r and an average
phase variation among neighboring impurity sites propor-
tional to e. This is exactly the behavior m mg oc e

g/3 1/2 &/3 1/2
and n, ~Vp~z n, ~ ~V'H~z oc s expressed by
Eqs. (12) and (13) and demonstrates that the dominant
contributions come '&om the short-scale phase adjust-
ments. This e depend. ence is indeed at variance with
that expected within the FLR approach, but it does not
rule out the occurrence of large-scale phase adjustments.
However, because of the smallness of the contributions
originating &om the large-scale adjustments of phase to
energy, the formation of well defined phase coherent do-
mains appears unlikely to be put into evidence by numeri-
cal simulation, whose results are presumably also afFected
by finite size effects. This explains the puzzling results
found by Abe: it would be quite unrealistic to extract a
characteristic length (to be identified with Ls) f'rom the
extremely broad distribution of the domain size obtained
by numerical simulation. To a large extent, this also ap-
plies to the broad d.istribution for the threshold field Eqh
found by Abe; the latter was extracted in Ref. 6 by em-
ploying an indirect method, examining the dependence of
the lowest energy state found numerically on the average
phase, to which Eqi, is canonically conjugated (see also

below).
To find the phase configuration that minimizes Eq. (1)

by numerical simulation, Matsukawa replaced the con-
tinuous function p(r) by a discrete set (pp)~&iv~, in-
troducing a cubic lattice with NI, sites among which
¹ impurities are randomly distributed with the prob-
ability (concentration) c. As previously pointed out, s

the introduction of the artificial lattice prevents phase
variations on a length shorter than the artificial lattice
constant, d = (c/n;)i~s, or alternatively, Fourier compo-
nents with wave vectors larger than 2m/d, to be identi-
fied with the present cutoff parameter k . Making use
of Eqs. (12) and (13), the following expression of the
parameter r = —iU; ~/ur, i studied by Matsukawa is ob-
tained: r = (2+ 0.0443ci~ssz)/(1+ 0.0368c ~ssz). For
the samples with e = 1 and c = 1 studied by Mat-
sukawa —corresponding to a domain size n; / I0 46.7—this formula yields a value r = 1.97, in good agree-
ment with the value rNS 2.05 found numerically. For

2 (n, Lo 11.7), a value rNs 1.95 was ob-X/3

tained in Ref. 7 by taking the average over seven sam-
ples with c = 0.5 and one sample with e = 1. It is
again very close to the value r = 1.91 deduced &om the
present analytical formula. For c = 3, a small domain
size n, I0 5.2 is obtained, indicating that the present
approach marginally applies, because the statistical fluc-
tuations come into play. This is reflected in the differ-
ence between the values found analytically and by nu-
merical simulation, r = 1.80 and rNS ——2.0, respectively.
Besides the parameter r, which saturates for small e at
the value 2 and not at 4/3, expected if only large-scale
phase variations were present, it would be interesting to
study the average phase variation, for which we expect

—g/3 &/& y/3 &/&
a depelldence n, ~ ~V'(p~z n, ~ ~V'e~z cx sc
While the c dependence could be observed with greater
difficulty, because of the small exponent of c, the linear
dependence on c of this quantity, giving a more direct
confirmation of the role played by short-scale phase ad.—

justments, is expected to be easily observed. Unfortu-
nately, this prediction of the present analytical approach
cannot be compared with numerical simulation, because
results on the average phase variation among adjacent
impurity sites were not reported in Ref. 7.

Agreement with numerical simulation results for the
quantities mentioned above was also found. in Ref. 8.
More interesting is therefore that, unlike the approach
of Ref. 8, the present one can also explain [cf. Eq. (14)]
why the threshold field for the onset of collective conduc-
tion —extracted in Ref. 7 (unlike in Ref. 6) by directly
computing the dc current —is proportional to c . The
inspection of Eqs. (12), (13), (14) reveals that, contrary
to the usual claim, ' the total energy gain, due to the
CDW pinning, is not related to the threshold field. To
initiate the CDW sliding, the latter has to supply only an
energy of the order of the energy gain ~ivy

~

resulting from
the adjustment of the average phase conforming to the
fluctuations of the impurity potential in Fukuyama-Lee
domains. An important consequence of this fact is that,
not very far above the threshold, the depinned CDW has
a nonuniform phase. The sliding of a nonuniform CDW,
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dragging short-scale phase deformations —a result de-
rived here within an analytical treatment —should have
important implications for understanding the behavior
found in experiments on CDW materials for E Eqh .
Owing to the fact that the sliding CDW cannot relax in-
stantaneously at experimental scale, combined with the
spatial inhomogeneity inherently present in real samples,
a nonuniform CDW phase is very likely associated to a
variety of phenomena (hysteretical behavior, metastabil-
ity) reported in many CDW materials in the regime near
threshold. ~ Obviously, for samples consisting of many do-
mains, this mechanism fully supports their bulk genera-
tion. Because of the large energy involved [~tvs~ )) ~ivy~,
cf. Eqs. (12) and (10)], the sliding of a uniform CDW
can be expected only far above the threshold (E )) Eti ).
The threshold field was obtained in Refs. 6 and 8 &om
the point where the local minimum of the tota1 energy
as a function of the average phase (computed for the
whole sample) disappears. In this case, as shown in
Ref. 8, the field has to supply an energy of the order of
the total energy gain obtained by deforming the phase,

Thi»s why the result E
obtained in Ref. 8 was found in accord to that of Ref. 6,
but at variance to that of Ref. 7.

On the other side, the good agreement with all the find-
ings of numerical simulations enumerated above, along
with the experimental findings on narrow band noise
usually displaying a strong fundamental &equency peak
and higher harmonic peaks of diminished amplitude, ~ as-
sociated to Eq. (10) and the terms neglected thereis-
could be taken as justifying the method employed to com-
pute the contribution to energy of the large-scale phase
adjustments by truncating the corresponding Fourier se-
ries [Eq. (10)]. This agreement could also suggest that
the coupling between phase coherent domains (ignored
in the present analytical treatment) do not qualitatively
alter the static CDW properties.

One should remark that the randomness of impu-
rity distribution is essential in determining this physi-
cal behavior. A long time ago and in a diferent con-
text, a model similar to the present one was investi-
gated, in which the elastic term in Eq. (1) has the form
W, i = (K/2) P~ .

&l (yi —pi), the summation being over
the nearest neighboring sites, y~ = p(Rz), and the cen-
ters responsible for the phase distortions are supposed to
occupy the sites of a lattice ~ The various quantities
computed below for this case will be specified by the in-
dex "reg." By taking the continuum limit, justified in
the weak coupling limit the solution of that model can
be obtained by minimizing with respect to k the following
expression —which is exact in thermodynamical limit-
of (d~@s: tories/(nqQ a )'

( 2 ) 1 ~e 1 ~ E(k)
k 2 k K(k) k K(k) '

where a is the lattice constant, e = E;/(eQ a ), K and
E are the complete elliptic integrals of the first and sec-
ond kind. The phase at site j is expressed by
C'p + am(j ~c/(kQa); k) —Qaj, where Pp is an arbitrary

constant and am is the elliptic function amplitude. The
minimization of u, @, with respect to k, yields an equa-
tion determining k as a function of i, but because Pp is ar-
bitrary, all phase &p~

's remain undetermined (nonpinned) .
In the weak coupling limit (i «1), the following lead-
ing contributions can be obtained: u„s ———e /4, r„s =
—W;"~/~,'~' ——2, ~V'&p„s~2 = Qe/~2; that is, results
similar to those expressed by Eqs. (12) for the case of
random centers. They demonstrate, once more, that the
leading contribution to energy, phase gradient and the
parameter r is brought about by the local adjustments
of phase and not by slow phase variations . Because of
the regular distribution assumed in deriving these ex-
pressions, there is no mechanism to stabilize large-scale
variations of phase, which remains, therefore, nonpinned;
this contrasts to the case of random impurities, where the
fluctuations of impurity potential can sustain large-scale
phase variations, that are responsible for the existence
of optimum values of the average phase in extended do-
mains.

A series of experiments was recently carried out in
order to understand the nature of impurity pinning in
doped niobium triselenide. This material is of spe-
cial interest because the band structure resulting &om
hybridized electronic orbitals of Nb and Se atoms deter-
mines the formation of two independent CDW's. ~ The
detailed analysis of the threshold field data led to a
quadratic conce nt rat ion dependence E&h oc x for the
two CDW's, in both Ta Nbq Se3 and Ti Nbq Se3
samples, in accord to Eq. (14). A subsequent high-
resolution x-ray study on Ta-doped NbSe3 found that
the real-space correlation function obtained &om the
measured scattering intensities decays exponentially with
large characteristic lengths in all directions, in agree-
ment with the theoretical result [Eq. (5)]. These lengths
could be identified with those of the Fukuyama-Lee do-
mains: they are much greater than the impurity spacing
and scale with the inverse of the Ta concentration and
with temperature as the square of the CDW gap. The
largest e value for both Ta- and Ti-doped samples, for the
two CDWs, deduced by fitting the experimental data is

1, so that it falls in the range where the present
results apply.

Despite the fact that this behavior found experimen-
tally agrees with the Lee-Rice prediction for Eth and I0,
the phase adjustment found here is more complex than
described by Lee and Rice. Lee and Rice studied the
deformation of the CDW order parameter around a sin-
gle impurity and evaluated both the energy gain &om
impurity potential and elastic energy cost accompany-
ing this deformation. By implicitly assuming a large
phase adjustment (~ vr) at the impurity site, they cor-
rectly observed that, for weak coupling (corresponding

-X/3to sn; k, (( 1), this process involves an elastic energy
that exceeds the accompanying energy gain, rendering
thereby the strong pinning impossible. Based on this
reason, they claimed that "the phase assumes its value
at infinity everywhere" (cf. Sec. II of Ref. 3) and consid-
ered only slow coherent variations of phase over large re-
gions; this claim turns out to be in congict to the present
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analysis, revealing that short- and large-scale phase ad-
justments coexist.

A recent study of the high-resolution x-ray scatter-
ing intensities in NbSe3 samples lightly doped with
tantalum demonstrated that two lengths —identi6ed
with the Fukuyama-Lee domain size and the amplitude
correlation length —are necessary to analyze the x-
ray line shape. The large-scale phase variations over
Fukuyama-Lee domains are not the only ones occurring
in the system. More rapid phase variations also exist;
only phase fIuctuations within a length that could be
identi6ed with the amplitude correlation length are sup-
pressed. This experimental ending is fully consistent to
the picture emerging &om the theoretical analysis pre-
sented in Sec. II. Apart &om the cutofF k, i

( ()
imposed within the framework of the phase-only theory,
the spatial variation of 0 has no characteristic length.

The nature of CDW pinning in NbSe3 doped with both
tantalum and titanum was a subject of controversy.
BriefIy, the theoretical estimations showed that the en-
ergy gained by short-scale phase adjustments is substan-
tially larger than that gained by large-scale phase ad-
justments within FLR domains, whereas the experimen-
tal threshold field data scale with the square of impurity
concentration. The former was interpreted by Tucker
as evidence for strong pinning, while the latter was taken
by Thorne and McCarten as a con6rmation of the Lee-
Rice mechanism of weak pinning. The present results
could clarify this controversy. As shown here, even in
the weak-coupling limit, the largest contribution to en-
ergy comes indeed &om short-scale phase adjustments
(~xos~/~to~~ = k, Lo )) 1). However, in the same limit,
the threshold field obeys Eq. (14) (i.e. , of Lee-Rice type);
E&h needs not supply an energy equal to the difference be-
tween the energy of the pinned and uniform CDW states
(= ~uje~), but a much smaller amount, of the order of the
energy gain (~xo~~), obtained by optimizing the average
phase.

&uther support for the presently proposed interpreta-
tion comes &oxn the recently observed +Q/ —Q asym-
metry of the diffuse satellite lines in the x-ray patterns
("white-line" efFect). s As discussed elsewhere, the
contribution to the scattering intensity of the white-line
efFect is proportional to the quantity (cos(QR + Os));
(denoted by y

i in Sec. VII of Ref. 8), whose value plays,
therefore, a key role in its observability. If only large-scale

phase variations were present, (cos(QRs+0&. )); = No
would necessarily be a small quantity and the white-line
effect could not be observed (No ——n;Lo » 1 —num-
ber of impurities per phase coherent domain). For small
e, Eqs. (12) and (13) yield a considerably larger value

(cos(QR. +Os)); = 0.031k,n, e = k, n, No, such
that the white-line effect could be observed even for small
c. Although no microscopic estimations of the parameter
e were reported, it is likely that small values of this pa-
raxneter characterize (at least) some of materials &om the
large class of the quasi-one-dimensional CDW materials,
where the white-line effect was observed. Therefore, in
accord to the previous suggestions, ' this effect should
be interpreted as giving evidence for the occurrence of
local deformations of CDW phase correlated with im-
purity positions. However, the observability of this effect
does not necessarily rule out the occurrence of large-scale
phase adjustments.

At the present phenomenological level, no notable dif-
ference exists between a charge and a spin-density wave

(SDW). Therefore, the present analysis can also be ex-
tended without difBculty to the latter. Subtracting
the possible effect of residual defects, a dependence of
the threshold Beld for SDW depinning proportional to
the square of the concentration of Sb substituting As
atoms in the Bechgaard salt (TMTSF)2 As Fs was found
experimentally, 2 in accord to Eq. (14), expected to ap-
ply because of the weakness of the SDW-impurity cou-
pling. Unfortunately, a direct experimental evidence of
local adjustments of the SDW phase could hardly be ob-
tained.

In conclusion, the present analytical study has demon-
strated that both short- and large-scale adjustments of
the phase exist in a CDW weakly coupled to impuri-
ties and are important to understand the statical CDW
behavior revealed in experiments performed on CDW
systems as well as the results usually less transpar-
ent physically —obtained by numerical simulations. A
quantitative description of the CDW dynamics requires
the inclusion of the effects, neglected here, of the cou-
pling among phase coherent domains as well as the con-
tribution of metastable states. It would be interesting
to investigate to what extent the present ideas could be
extended to other related phenomena, e.g. , the pinning
of the vortex structure of type-II superconductors.
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