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The method for including strong correlation efFects in self-consistent electronic structure calcu-
lations in solids is presented. On the basis of the mean-field-type (Gutzwiller-type) approximation
the correlation energy functional is obtained, which depends on the partial electron density. In
turn, the variation of this functional yields the nonlocal efFective potential. Two possible variational
procedures are tested: variation of the functional over occupation numbers only and over both oc-
cupation numbers and linear-muflin-tin-orbital —atomic-sphere-approximation (LMTO-ASA) wave
function. The LMTO-ASA calculations for a number of 3d and 4d transition metals are carried out.
The results are compared with those for density-functional calculations. Quantitative estimates of
the correlation renormalization factor for the bandwidth "dynamical" narrowing in these metals are
presented.

I. INTRODUCTION

The density-functional (DF) method, especially its
local-density approximation (LDA) and spin-dependent
counterparts (LSDA), is the basis for realistic electronic
structure calculations in solids. In most cases the calcu-
lated cohesive energy and its derivatives, such as the pres-
sure at the experimental unit cell volume, elastic moduli,
and even phonon spectra are in excellent agreement with
the experiment. Nevertheless, a number of example of
LDA failure are known. They can be approximately di-
vided into three groups. The first case includes atom
and surface calculations where the main error arises due
to the wrong asymptote of the LDA potential —it falls
off exponentially instead of as 1/r The seco.nd case is
the band gap in semiconductors and dielectrics. Though
band dispersion is an auxiliary notion for the DF method
and formally it should not coincide with the experiment,
usually such a coincidence takes place in metals. The
strong discrepancy in band gap values also makes one
seek for LDA improvement. The third case is the case
of substances with strong electron on-site repulsion, e.g. ,
3d transition metals, transition metal oxides, high-T su-
perconductors (ITS's), and f metals. It is generally ac-
cepted that the first and second cases are mainly con-
nected with the wrong long-distance asymptote of the
LDA potential and various methods to improve it are
used: self-interaction corrected (SIC)-LDA, the corrected
gradient (GCA) method, the GW approximation, a com-
bination of LDA and Hartree-Fock methods. The third
case is directly connected with strong correlation effects.
The importance of such effects, when the electron on-
site repulsion U exceeds or equals the mean conductive
bandwidth TV, is well-known &om Hubbard or Ander-
son model investigations. Below, one of the possible ap-
proaches to the problem of incorporating strong correla-
tion efFects in ab initio calculations will be discussed.

Few techniques used for this purpose are known.

The most developed approach, widely tested for metal
oxides and HTS's, is the LDA+U approach. This ap-
proach is based on LDA calculations in the paramagnetic
phase and greatly improves results in phases with mag-
netic ordering in comparison with the LSDA approach.
This approach was first suggested for the impurity case
and it provided the true values of impurity level split-
ting, when compared with the results of photoemission
experiments. Later, ' it was used for finding excitation
spectra and gaps in regular crystals. One of the mer-
its of the LDA+U method is the accurate calculation of
U, which takes into account screening and exchange ef-
fects. But in the case of a paramagnetic regular crystal
the LDA+U method ground state energy should coincide
with that in the LDA approach.

The second approach, which below will be called
the short-range correlation (SRC) functional approach,
directly deals with the effective Hamiltonian of the Hub-
bard or Anderson model. The parameters of these Hamil-
tonians are calculated self-consistently with the wave
functions, which are the solutions of the Schrodinger
equation with an efFective potential. The ground state
energy calculated with the model Hamiltonian gains ad-
ditional corrections due to correlation effects. The cor-
relation energy obtained so far in turn is varied over oc-
cupation numbers or wave functions to obtain an efFec-
tive potential in the spirit of general DF theory ideas.
Such an approach was applied to finding excitation spec-
tra in the one-dimensional model and in the transition
metals Fe, Co, and Ni. The in8uence of correlations
on the equilibrium unit cell volume and bulk modulus
for transition metals in the paramagnetic phase was also
discussed in the &amework of this method. One of the
reasonable approximations for finding the correlation en-
ergy in the Hubbard model can be used. The "second
order in U" approximation was used in Refs. 5 and 6
meanwhile in Ref. 7 it was a variant of the Gutzwiller
approximation for d electrons, with the efFective re-
pulsion constant U = f,, + f&&

—2 f,&, where f&&, are the
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matrix elements of the Coulomb interaction between elec-
trons with angular momenta l and l'. Both LDA+U and
SRC approaches have their drawbacks and merits. The
drawback of the SRC approach is the indirect assumption
that the correlation effects are manifest mainly in occupa-
tion number variation; meanwhile the wave functions are
approximately the same in various atomic configurations.
The confirmation of this assumption for pure metals will
be discussed in Sec. III. The second item which demands
further development is the inclusion of screening effects
in the effective interaction Vp between electrons. The
problem can hardly be solved in terms of one-site inter-
action constants, but one of the possible approaches to
finding Vp is presented in Appendix C. But in contrast to
the LDA+U method the energy in the SRC approach is
a mean value of the full Hamiltonian in its ground state
even in the paramagnetic phase. A similar technique was
also used for finding the electronic structure of small
clusters of Pb atoms with a local ansatz, but the matrix
elements of the effective Hamiltonian were not calcu-
lated self-consistently, in contrast with the present ap-
proach.

Below we shall discuss just the paramagnetic phase
ground state in the &amework of the SRC approach.
In this case a number of interesting and yet unex-
plained effects exist even at the level of equilibrium lat-
tice properties, such as the bulk modulus and unit cell
volume. There is a well-known cusp for unit cell vol-
ume and bulk modulus values in the middle of the 3d
metal row; abnormally low bulk modulus values in in-
termetallic Zr2 Vi+ compounds with a strong depen-
dence on concentration x, abnormally low bulk modulus
in Smo 75Yo 25S in comparison with the Vegard law value,
bulk modulus decreasing in Mn-Cu alloys, etc. Indirect
indications, such as the appearance of magnetic order
under slight variation of parameters, make one feel that
in this case we deal with a manifestation of the effects
of strong correlations in the paramagnetic phase. The
present approach differs &om the preliminary version in
two respects. First, on-site correlations of both s, p and d
electrons are considered on an equal footing in the &ame-
work of the generalized Gutzwiller approach. Though in
the case of s and p electrons the screening effects give the
main contribution in correlation energy and on-site cor-
relation effects are negligible, as is shown in Sec. III, their
inclusion in the Gutzwiller-type wave function is impor-
tant &om another point of view. The on-site repulsion
interaction constants f&&, exceed the constant U, which
is the difference between sp and d constants, especially
for the "bare" Coulomb interaction (10—20 eV against
5—10 eV). Thus it is more profitable to leave the num-
ber of electrons at the atom unchanged, but to replace
the d electron with an s electron. As a consequence a
new internal degree of freedom appears, which is absent
in the homogeneous electron gas and. which is connected
with the difference between the repulsion of sp and d
electrons. For this reason only d electrons are usually
considered in the Hubbard model and the interaction of
these electrons is reduced to a constant U. The inclusion
of both d and sp electrons in the Hamiltonian and gener-
alized Gutzwiller ansatz permits one to realize the above-

mentioned mod. el: the most advantageous neutral config-
urations are now selected automatically and the amount
of charged configuration at every atom is also selected
by energy minimization. In this sense the U value forms
now in the process of the calculations. Secondly, the vari-
ational procedure is applied to variation over both occu-
pation numbers and wave functions. It permits one to
remove ad hoc assumptions and to make the approach in
principle self-contained and checked. The paper is orga-
nized as follows. In Sec. II the main topics inevitably aris-
ing when one is trying to distinguish the short-range cor-
relation energy contribution are discussed. These items
are the exchange and correlation contributions in met-
als, the values and form of the short-range interactions,
valence-core partitioning, the mean-field approximation
for the correlation energy of s, p, and d electrons, vari-
ational equations, and effective potentials. Expressions
for the correlation contribution in some limiting cases
are derived. In Sec. III linear-muKn-tin-orbital —atomic-
sphere-approximation (LMTO-ASA) results for 3d met-
als both in the middle of the row (V, Mn) and at the
end of the row (Cu, Ni) are listed. They are compared
with the DF results and with the results for their analogs
6.om the 4d row. The values of on-site repulsion and
band narrowing factor for these metals are presented. In
the Conclusion further generalizations of the method are
discussed, which seem to demand the introduction of a
model Hamiltonian with interaction between neighboring
lattice sites.

II. SHORT-RANGE CORRELATION ENERGY
FUNCTIONAL IN LMTO-ASA CALCULATIONS

As noted in Ref. 7, the value of the interaction constant

U = fqq+ f,, —2f,q,
&ws &ws rL

f~i = I@i(r)I' IA (r')I', +, ««'
0 0 P)

where r) and r& are the minimum and maximum val-
ues of r and r' and Pi(r) are the wave functions, can be
used. as an estimation of the importance of the on-site
repulsive correlations effects. In 3d metals this value in-
creases &om 1.5 eV in V to 7.5 eV at the end of the
row. In 4d metals it constitutes about 1 eV and approx-
imately coincides with that in the &ee electron gas. For
this reason the maximum effect will be in the middle of
the Sd row, as the number of electrons (holes) diminishes
at the end of the row. The aim of the developed tech-
nique is to incorporate this crude effect in the ab initio
ground state energy calculations. To be more concrete,
we shall start with the LMTO-ASA method, which is the
most "natural" for this purpose, as its wave function is
approximately factorized on the k-dependent coeKcient
Ai, l and r-dependent wave function Yi~(r")Pi(r) inside
each cell. Pi(r) is the solution of the radial Schrodinger
equation with a potential U(r):
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[T+U()]&()= «() &() = dpi(r)
dsi

where T is the kinetic energy operator and usually U(r)
is chosen to be the LDA potential. Complete factoriza-
tion would reduce the problem to a Hubbard model on
the lattice with known hopping integrals between various
sites and a model interaction Hamiltonian which can be
solved by various approximate methods. The correlation
energy thus obtained in turn depends on the occupation
numbers Qr, and functions «(r). Its variation over Qi
will bring about an efFective potential in addition to the
usual DF potential, which takes into account the on-site
repulsion. The weak (for d electrons) k dependence of the
MTO s introduces further approximations, but in princi-
ple the procedure remains the same.

A. LMTO-ASA basis set and efFective Hamiltonian

in terms of creation ck" and annihilation ck operators.
%'ith cL,k = P„ak&ck the Hamiltonian of noninteracting
electrons is

HD = g HL I I ckLckL ~

The electron density p(r) is expressed in the LMTO-ASA
as P & qi ~gP(r)/~i(r)/4mr2 with

qi = ) HkAI", kAI khLI h~~,
(L; )k

where
gP& (r) and h&k&, (r) are defined in Appendix A. The

number of electrons in state l is

QI = g) ) P ) P (& = g) + Q]

nP

It is also convenient to define the value Ql,

In the present work an energy-independent MTO ba-
sis set is used which is convenient for the variational
approach to the one-electron eigenvalue problem. The
MTO's smoothly match each other on the signer-Seitz
sphere with the radius R~s while the coefficients AkL can
be found &om the secular equation corresponding to the
minimum of the one-electron energy ED. In the LMTO-
ASA method the decomposition of the Bloch wave func-
tion 4k(r) = g& @kL,Ak& inside the unit cell is known
to be~4

.i' Yl, (i) k@kl.(r) = ) [« (r)~I.I + hl, , l.« (r)], (3)rL'

where L = (lm) and standardi4 LMTO coefficients hk&&,

are introduced. For convenience the expressions for the
hk matrix elements in terms of the «(Bws) values are
listed in Appendix A. The energy functional ED[4k&],
which has the minimum at the orthonormalized set of
4k, is a quadratic form in coefficients ak ——R'+"Ak..

QL, = (@0I~LI@0) ~L, = y ) .cktL, ckL,
k

(6b)

fu~ &i~, im. +i~~, i~m, c&~, ci~~, c&'~ac&~. (7)

with C, , = 1' Y,
' (0, rp)YI, M(0, p)Yi (8, rp)do

B. Gutzwiller approximation for the ground state
energy

which is close to q~ in metals.
Let us suppose for a while that only terms with R

in one and the same unit cell exist in the interaction
Hamiltonian and the matrix elements of the interaction
between the wave functions Eq. (3) are k independent.
Then the Hamiltonian has the form of a multiband Hub-
bard model with various interaction constants fii be-

tween'l

and l' electrons: H = H0+ H;„q.

&.["" ] = (~.l(T+ U)l~. )

+kL~~ LL' +kL'~k ~

LL'

with the normalization condition

g+v ~k gv X ev v
kL LI ™kI' ) okL kL

LL' L

A A A A

Expressions for Hk and 0 = O' R'+ in terms of the
matrix h are also listed in Appendix A. l@0) is the
ground state of noninteracting electrons and 8k is the
Fermi step function. It is also convenient to distinguish
in Eq. (4) terms corresponding to hopping onto other
sites:

k k x- k
TLL = HLLg g HLL

k

Starting with Eq. (4) the Hamiltonian can be expressed

A number of reasonable and carefully tested approx-
imations exist for finding the ground state energy with
a Hamiltonian of such a type. Below we shall use the
Gutzwiller approximation, which is a mean-Beld ver-
sion of the Gutzwiller-wave function approximation and
the saddle-point limit of the slave-boson method. In
most cases it has an accuracy of a few percent when com-
pared with quantum Monte Carlo calculations. ' The
many-body wave function in this approximation has the
factorized form

, ,U l@,),
R OR

UR = exp —) 7&OjR —) pI, &LR
I,

where O~R are two-particle operators and p~ are the
variational parameters. KDR = (@0lURURl4'0) is the
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normalization constant. For the s-electron Hubbard
model 0 = ning, to exclude states with double occu-
pation of the same atom. In the local ansatz proposed
by Stolhoff and Fulde, which is close in spirit to the
Gutzwiller approximation, several operators 0~ corre-
sponding to the most important correlations are taken
into account. It seems that the most natural choice of
0 consists in taking 0 equal to H;„q, as in this case
the functions 0"I4'o) are linear combinations of Lanczos
wave functions, which provide the best variational sub-
space for low-lying excitations. Of course, due to the
finite dimension of the subspace at each site, 2~' with
Nt = 2(2l + 1), any form of U with the necessary num-
ber of variational parameters is suitable, but in practice
only one or two parameters are used and in this case the
choice 0 = H;„q is preferable. The renormalization con-

Ql. = (@Inl, IC). (9)

For practical calculations it is convenient to expand U
over projection operators corresponding to n filled states
A; and m empty states g~".

P„ n),„(l—n„, ) . . (1 —n„).
The ground state energy is the Hamiltonian averaged
over the ground state wave functions and after subtract-
ing Eo = (4'pIIIpI4'p) the exchange-correlation energy
has the form

stants pL are found &om the condition of conservation
of electron numbers QL, [Eq. (6b)]:

Exc = —) .&ii (1 —&~&~ )(c~i,c~~)o+ —).A', t, (@l(n~. —Q~, )(n~. —Q~, ) I@)
kLL' L&L&

1 0
AtQL, +

2 ) At~~t~, t~, ~t'~, t'~, (@'Ict~ ct,~2ct~~, et~41@)~
L L=2,4

pm

where TLI, is defined by Eq. (5) and the renormaliza-
tion factor (I, arises in the Gutzwiller approximation as
the weight of averaging over all electron configurations,
except those with the L electron:

&: = —):TL,L, (1 —(I.b, )(ct',l, ci 1.)o
kLL'

+2).At (@l(Qt —Qt)(Qt —Qt )I@)

(I. = (@oIUiL U.r I@o), (12)
1 p 1 pQtz 1l+ ll~ ) l lma)2 Nl lm

where UqL and U2L do not contain L operators: U =
nr, Uil, + (1 —nl, )U21, The L ele.ctron in this approx-
imation is pairing with electron I' on the other lattice
site. ' For this reason only part of the one-electron en-
ergy Ho, corresponding to distant hopping, is presented
in TLL . On-site one-electron terms are not changed in
accordance with Eq. (9). The (L, is the measure of dy-
namical band narrowing due to correlations and the mean
occupancy of states with ek ( s~ is now (1+(t )/2 and
with s& ) s~ is (1 —(t2)/2 o(L, valu. es of about 0.5—0.7
correspond usually to a phase transition to the dielectric
or some other possible phase. As noted in a number of
works, the Gutzwiller approximation, which corresponds
to $t values independent of (s —p), is not reliable near
phase transitions. But, as we shall see in Sec. III, in 3d
metals the minimum (q value is approximately 0.9 in Mn,
i.e. , it is far Rom a possible Mott-Hubbard transition.
For the full interaction Hamiltonian, the U decomposi-
tion over operators P„ from Eq. (10) should be done
numerically, by finding the H;„z eigenvectors. But with
f ' = 0 and (nl, ) values independent of M, which is a
good approximation for metals with cubic symmetry, the
form of U is significantly simplified. In the last case, it
is convenient to deal with operators Qt = P nt and
their mean value is Qt = (Qt). The one-site contribution
to the correlation energy E' has the form

U =exp —&).A't (« —Qt)(Qt —Qt ) —).t tQt ~,
tti l

and decomposition of U operators over P„operators
can be done by hand (see Appendix B). All crude ef-
fects such as stronger repulsion of d electrons than s or
p electrons or the unprofitableness of charged configu-
rations are still present in U defined by Eq. (13). For
this reason U automatically selects configurations with
the total number of electrons equal to that in atom. The

2
term —

z Pt ftot ~~ corresPonding to exchange diagrams is
singled out and the rest are gathered in the correlation
energy term. It is worth noticing that exchange terms
are obtained from Eq. (11) at p = 0. In the case of
ftt » TIL,

At« —
I

-——I+&
I I

(14)p ( Qt5 (TL,I. I
2 L Ntj E ftt)'

In Fig. 1 the dependence of E; on Qg for the model with
Np-fold degeneration of bands and semicircular density
of states g(s) = 2WNg/m/1 —(e/W)2 is presented for
several ftt/W values. The maximum value of (—E;) is in
the middle of the row as it should be and V;t ——bE;/bQt
has maxima at the ends of the interval and is zero in the
middle of the row as in Eq. (15).
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Summarizing the above discussion we can note that as
soon as we started with Eq. (7) the correlation energy
of such a Hamiltonian can be found by various approxi-
mation methods, in particular by the Gutzwiller approx-
imation. In the paramagnetic case it is a functional of
Qi—the number of electrons with orbital momentum I.
These approximations can in principle be tested and the
accuracy of the approximations can be estimated. Most
problems arise at the moment when we try to form the
Hamiltonian in Eq. (7) &om the full long-distance inter-
action Hamiltonian.

C. The partition between on-site correlations and
LDA correlations

The first problem is the exchange diagram. Due to the
long-distance nature of the Coulomb interaction, the con-
tribution of neighboring unit cells is considerable both
in the &ee electron gas and in d metals. Several tech-
niques were developed for accurate calculations of such
contributions. ' But in any case the effective interac-
tion due to exchange is large and it embraces several
neighboring sites. On the other hand, we believe that
the main effect missed in the LDA is the correlation due
to the strong on-site repulsion. Thus we should either in-
crease the radius of effective interaction in our model by
the inclusion of nearest neighbors or use only the corre-
lation part of the energy in Eq. (11). The first variant is
more logical, but the second is simpler, and will be used
in calculations below. The exchange contribution will be
included in the LDA.

The second problem concerns screening efFects. As
shown in Sec. III, the SRC contribution E is quite small
in the &ee electron gas in comparison with the whole cor-
relation energy E" ~ of the homogeneous gas, which is
mainly due to screening effects. These efFects arise in the
particle-hole channel and are not included in the Hub-

bard model, which is a model of neutral electrons. To
imitate these effects it seems natural to use a screened
interaction

Vp(r) = exp( —Ar)/r; A' = min(p~, 4vrll(0)). (15)

II(0) is the polarization operator for the &ee homoge-
neous gas with the density P& Qi/A. It is evidently
unsatisfactory for calculating the screening correlation
energy E", where the dependence of II(u, k) on u
and k is important, but can be a reasonable approxi-
mation for the calculation of short-ranged E, . In essence
we adopted the saine point of view as in the work of
Steiner et al. , that the degrees of &eedom correspond-
ing to all the orbitals outside our minimal set Pi(r) are
integrated out and effectively cause screening of the ini-
tial Coulomb interaction. The results obtained are not
very sensitive to the choice of A, as can be seen from
Sec. III. For this reason no attempts were made to
fit A values. An example of the first-principles Vp cal-
culation is presented in Appendix C. It gives A in the
interval 0.5—1.0 for Cu, and 1.2—0.9 for Mn. But even
with Vp(r) the interaction cannot be cut down in the
boundaries of one unit cell. In real metals A is about one
a.u. and does not prevent the electrons near the Wigner-
Seitz boundary &om interacting with their counterparts
in the neighboring cells. As a consequence in Eq. (7)
terms arise corresponding to interaction with neighbor-
ing lattice sites. To check the independence of E' on A

the interaction with neighboring sites should be included. .
But the increase of the interaction radius strongly en-
larges the subspace dimension in Eq. (8) and to avoid it
the following suggestion was adopted. With the mul-
tipole moments neglected, the general Hamiltonian is
H;„t ——H; t, (R = 0) + Qn QpQrt/B with Qn. = Q, QiR, .
In any approximation which treats Q fluctuations at dif-
ferent pairs of sites as independent, E, = E;(0) + E,' "s.
On the other hand, E "I depends on the fiuctuations of
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the whole charge QR, which in this case is the same in a
metal and in the Bee gas of the same density. With this
assumption

Es + Ehom E8hom (16)

where E' and E h are calculated with the same inter-
action (15). The form of potential (15) is also convenient
for calculations, as it permits simple decomposition over
angular momentum.

Finally, some remarks are made concerning the k de-
pendence of MTO's. Due to this dependence some av-
eraging over k should be done to make the factoriza-
tion in Eq. (7) on Qi and the constants f&&, possible.
From consideration of the lowest-order perturbation the-
ory diagrams it is clear that exchange and correlation
terms contain various combinations of 4& and 0&. As
the exchange contribution is treated through the LDA,
the combination

I+i(r) I' = ) .0~1@( l'I«

was used to calculate f&&, , which is closer to the combi-
nation arising in the charge-charge correlation channel.

The third problem is the problem of core-valence par-
titioning for many-body interactions. As noted in Ref.
18, "any calculation, following core-valence partitioning
can never be better than the accuracy, with which the in-
teractions between core and valence electrons have been
treated. " In the LDA scheme the density of the corre-
lation energy s, (p (r)) is defined with the full density
p (r) which is the sum p (r) = p„(r) + p (r) of valence
p„(r) and core p, (r) densities. s, (p (r)) especially in 3d
metals difFers from s, (p„(r)) + s, (p, (r)). On the other
hand we seek for valence electron correlation e8'ects. The
easiest way to balance the conHicting items is to include
p, into the f'ree gas term in Eq. (16). The final expression
for the interaction energy is

is the minimization of Ep + E«over coefBcients akL of
the wave-function decomposition over the basic wave-
functions (t)(. In turn, the functions P( are the solution
of Eq. (2) with U(r) in the LDA approximation. Such
a scheme is often used in Hartree-Fock calculations by
LMTO or by linearized augmented-plane-wave (LAPW)
methods. O' Some remarks should be made in connec-
tion with such an approach.

D. EfFective potential in the SRC approach

The density functional can be introduced by various
approaches. We shall brieQy discuss one of the possibil-
ities, which is the consequence of a rather general mini-
mization principle. Let us suppose that we succeeded in
finding the exact interaction energy E~ t [sp'] in the field
of several external potentials V, through the set of collec-
tive variables sp' = ('kpls'l4'p) where leap) is the ground
state for the system of noninteracting electrons in the
external potential V„". sp; —— &'&

" . Then it is conve-
ei

nient to modify the initial ground state l@p) by adding
the terms g,. J;s; to Hp and subtracting them &om H;„q.

E = Eo[K] —).iso'+ Ant[so'~ J']~

where E;„t now depends on both sp; and J, , V, = V„+J;.
The s; mean value s; is

bE (bE t l bso'

and the independence of H on J; gives

0= —J;l +('bE;„t ) bso' bE' t
') b&

It is convenient now to choose

p(r)p(r )
2 lr —r'l

d rd r'+ s (p (r))p (r)d r

+E," p, + — + E; [Q„f,, ]
—E;" [Z], (18)

Z

s*(p) = -4(3/~p)'"

(~) = /&'«. (I ("))u(~)

and the usual approximation for homogeneous gas cor-
relations is taken for s, (p). E; is the correlation energy
&om Eq. (13) with f/&, which are calculated in the po-
tential (15). The corresponding term for the free gas was
calculated with f&&,

" from LMTO-ASA calculations of
the &ee gas.

At this stage the energy is expressed as a functional
of density, occupation numbers, and wave functions
(through f&&, ). To close the iteration loop we need a po-
tential to calculate these quantities. The natural choice

bsp;
'

as such a choice gives several advantages. First, quan-
tities depending on s; can be calculated either by direct
averaging over the ground state of noninteracting elec-
trons or by the variation of the whole energy over the
external potential. Secondly, in the case of the approxi-
mate expression E,.„~

' for E;„t ——E;„~ '+ 4, this condi-
tion automatically minimizes the L value. The procedure
was used for 6nding a closed expression for the density
functional through the set of skeleton diagrams for E;„q.
In this case s; is the electron density n(r) and J; is the DF
potential. The Luttinger functional for the "dressed"
Green function is another example, where s; corresponds
to G(k, ~), J; corresponds to the self-energy Z(k, ~), and
E;„t is symbolically expressed through the set of skeleton
diagrams. The same principle is used in alloys to create
the cluster decomposition of the &ee energy in cluster
variation method and similar approaches. Below it will
be used for finding the arm of the DF-like functional in
strongly correlated systems.
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Thus, if we believe that in our system the interac-
tion of certain collective variables is of importance, we
should introduce the corresponding potential, in partic-
ular, V;t ——hE;/hQt in the case of the Hubbard system.
In a rigorous sense the functional thus obtained is not a
density functional, as it depends on partial density pt(r)
(or its integral Qt), but it is created following the usual
procedure, described above. It should truly reproduce
not only the density p(r), but also occupation numbers
Ql.

There are at least two possibilities to create the ef-
fective potential: to vary over occupation numbers and
over the wave function Pt(r). Let us first consider the
case of the variation only over Qt. In this case Pt(r)
can be taken as the solution of the Schrodinger equa-
tion in a suitable potential, for example, in the potential
U(r) = V~(p ) + V ()o ) + V, (p ). After variation of Eq.
(18) over Qt with ~Pt(r)~ from Eq. (17), we obtain the
secular equation for akL..

).&@~L( )IT+ V~+ V*l@L )&kL

apVap

V = V' —Vshom+ V~-cl c

V&
——

&
r pcr

&
rdr, (24)

U(r) = V~(r) + V (r) + Vyt(r) +. V,
" —V;"

@s Rws

Vrt( ) = —
o ]It (r') I'dr',

Qt ~fttr O

(25)

and (h were defined previously. Equations (18), (21),
(23), and (24) are the basic equations for the first variant.

In the second variant the variation over Qt should make
the secular equation for akL and the variation in Pt(e, r)
the potential in Eq. (2). We shall follow the procedure
used in the LMTO-ASA method for the DF approach.
In the latter case Eq. (2) can be obtained if we vary
ExLCD+ over the function Pt(z, r) and afterwards fix s by
any reasonable condition, for example, by the condition
(22). In the SRC approach we obtain in Eq. (2)

LI

+(V;, + V, —V'" )akL ——ekakL, (20)

with the ~pt (r') ~2 from Eq. (17). For a L we obtain the
secular equation

where

Vrr(r) = Z„,i/r d- f p(r ')/~r ——r'(d r',

) [+LL' + (VL~LL' ( LL'))]ukL' sk+kL
Ll

with

(26)

V (r) = —[3/~to (r)]'
(VLL ) = ) (W )LL, hL L VftPhPL"L (W+ )L,L

cxP(L;)

and
and V is the value of the correlation contribution to
the chemical potential averaged over a unit cell: V
1/0 1 p,,(p, +Z/A)d r. The constant V,t is the contribu-
tion due to on-site repulsion and V;" = bE;" /hZ.
Rewriting Eq. (20) with Eqs. (2) and (3) we obtain

gl~l —) sk~k+Lk+Lk V1Ql + ) qt Vf[
k cxP

Vf l ) r Vf I r l

(27)

) [HLL, + (V;l —V;" + V, —tj,"t)hLL ]akL = sk'akL
L'

k ev v v
hLL akLakL Ok

——0
vk

(22)

to diminish nonlinear corrections. With the same condi-
tion we obtain &om Eqs. (2) and (21) after summation
over k

'1t~t = ) &k~k+Lk+Lk VtQt
k

(23)

where Vj are the shifts between the SRC potential and
U(r) averaged over the unit cell volume with the ~@t ~

Vg value can be considered as a measure of spectrum de-
formation in comparison with the LDA approach:

where p, t W (P p p iL hLL+„p, hL„L, )W + and

p, P = J' Pt (r)p, (p )gP&(r)dr. The st value in Eq. (2)
usually is chosen in such a way that

Equations (18), (21), and (23) for the first variant and
(18), (25), and (26) for the second variant make the self-
consistent scheme which will be used below for transition
metal ground state energy calculations.

III. RESULTS AND DISCUSSION

Paramagnetic phase ground state energy calculations
by the LMTO-ASA method were carried out for the 3d
metals V, Mn, Ni, and Cu and the 4d metals Nb and Tc.
In a sense, these metals are the most significant: Mn is in
the middle of the row and the correlation e8'ects due to
on-site repulsion should be revealed most completely. As
is well known, Mn paramagnetic state calculations give
the value of the equilibrium unit cell volume 00 and bulk
modulus B with an error extraordinary for this approach,
when compared with the experimental ones: 15'%%uo in Ap
and approximately three times in B. Of course, the
Mn ground state at T = 0 has a complex antiferromag-
netic structure and antiferromagnetic phase calculations
give experimental B values, though 00 values are still
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TABLE I. Unit cell equilibrium volume 0 (a.u. ) and bulk module B (Mbar) calculated by various
methods. Values in the LSDA and CGA columns are taken from Ref. 23. The experimental values
taken from Ref. 23 are given for comparison. Values in the LDA and SRC columns are the results
of the present work.

Metal

V
Mn
Ni
Cu
Nb
Tc

0
LSDA
89.2
71.6
69.6

123.8
100.1

0
CGA
93.1
79.6
75.2

130.5
104.2

0
LDA
92.5
76.2
71.8
77.4

133.1
105.1

0
SRC
99.8
83.4
86.0
76.8

134.1
107.2

0
expt.
94.6
85.6
73.8
83.0

121.5
96.8

B
LSDA

2.0
3.1
2.9

1.8
3.1

B
CGA

1.9
2.8
2.5

1.7
2.8

B
LDA

2.2
2.8
1.5
1.3
2.8
3.4

B B
SRC expt.

1.5 1.6
1.8 1.3
1.1 1.8
1.9 1.1
2.7 1.8
4.2 2.8

Data from Ref. 24.

lower than in experiment. But small additions of im-
purities or variations of either temperature or pressure
make the paramagnetic ground state with the fcc struc-
ture; meanwhile, the variation of either 00 or B' at such
a transition does not exceed 10%. For example, the in-
terpolation of results on B(T) dependence in Mnq Cu
alloys gives a B value at x = 0 close to that in the
antiferromagnetic phase. Thus the problem of unusually
low values of B and the difference in 0 in the paramag-
netic state still exists and below it will be argued that
one of the possible explanations consists in the inBuence
of strong electron correlations. Qualitatively, the efFect
was discussed in Ref. 25. In V, the values of the "Hub-
bard" constant U from Eq. (1) are less than that in Mn
and the number of d electrons is less too. Both these fac-
tors diminish the value of correlation effects and V LDA
calculations reproduce experimental values fairly well. In
Cu the U value is extremely large, but the number of d
holes is small and a reasonable technique should bring
on small correlation effects. Ni is a strong ferromagnet
and large correlation effects are expected. Nb and Tc
are the V and Mn analogs and again the accurate ap-
proach should give tiny corrections to the LDA values.
Brie8y, Mn is the metal where correlation effects should
give noticeable corrections to the LDA, and the other
metals can be considered as a test for the disappearance
of correlation effects.

In Table I the results of LDA and SRC calculations are
listed and compared with the experiment and the results
of other authors. The calculations were performed with a
&ozen core. In all the metals the constant A in the poten-
tial from Eq. (15) was chosen to be 1.0 without attempts
to fit it. For comparison, in Mn for A = 1.0, 0.5, and 0.3
we obtain 0 = 83.4, 86.8, and 87.7 and B = 1.8, 2.0, and
2.1, though the f&&, values change by a factor of two. For
A = 1.0 and 0.5 we obtain 0 = 86.0 and 81.1 in Ni and
0 = 76.8 and 75.8 in Cu. Both variants for preparation
of the effective potential were tested. In Mn and V and
4d metals Nb and Tc they give similar results, but in Ni
and Cu the erst variant fails, as the inhomogeneity of the
d function in these metals is strong and the "smeared"
constant potential of the first variant significantly differs
&om the LDA and the potential of the second variant.
The results, listed in Table I, were obtained with Eqs.
(18), (25), and (26), i.e. , in the second variant. Ao and

TABLE II. The renormalization factor g~ [Eq. (12)],
correlation energy E; (a.u. ), and its volume derivative
p, = —dR;/dA (Mbar) for some transition metals.

Metal
V

Mn
Ni
Cu
Nb
Tc

0 (a.u. )
96.4
85.8
79.2
79.2

128.6
103.9

(.
0.975
0.971
0.973
0.996
0.987
0.985

4
0.983
0.978
0.981
0.997
0.992
0.988

0.956
0.898
0.853
0.985
0.989
0.977

Es
-0.096
-0.184
-0.112
-0.007
-0.035
-0.066

pc
0.047
0.159
0.034

-0.061
-0.003
-0.005

B values were obtained by least-square fitting of results
obtained for 0 values in the vicinity of 0O. The general
trends coincide with the above-mentioned consideration
of the correlation effect significance. To clarify the mech-
anism of increasing 00 and smearing of the bulk modulus
B we present in Table II the values of E; [Eq. (13)],and
its volume derivative p, = dE;/dA—, obtained by nu-
merical difFerentiation of E, (0). In addition, the values
of (~ parameters are presented, which show the extent
of the band "dynamical" narrowing and the significance
of correlation effects in accordance with Eq. (13). For
noninteractive electrons (~ = 1.0. These quantities add
very little to the LDA results in all the metals except
Mn. In Mn p shifts the equilibrium volume by approx-
imately 10 a.u. , when added to the LDA results. The
strong dependence of E; on 0 and large (~ value in Mn
appear to approve the following mechanism of B soften-
ing: the strong dependence of correlation energy on the
unit cell volume 0 permits this value to play the role
of an adjustable parameter, i.e. , the correlation function,
proportional to ((Q —(Q~)) ), changes so that it partly
recovers the increase in total energy and as a consequence
the metal becomes more pliant. The increase of kinetic
energy Tlk&(l —

(& ) —due to (~ moves the equilibrium
volume to larger values, similarly to the ferromagnetic
case as the increase is smaller for larger B~s values. In
this connection it is interesting to compare quasiparticle
spectra in the SRC and LDA. In Fig. 2 the Mn electronic
structure obtained by both methods is presented. Both
electronic spectra are quite similar.

In Table III values of V &, V;", and V~ &om Eq. (20)
are listed. It is worth noticing the small values of the
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0.4
ELE(:TRONIC STRUC'TURE of Mn

0.3-

0.2-

0.1—

0-

FIG. 2. The dependence of rz (a.u. ) on
k along symmetry lines in Mn. Solid line
represents LDA and dashed line represents
SRC calculations.

-0.1—

-0.2-

-0.3
0 W

homogeneous gas on-site correlation potential V;" . It
correlates with the small value of the correlation on-site
energy E'" in the homogeneous gas in comparison with
its whole correlation energy E",which is mainly due to
screening effects. For example, for the density 7/85 a.u.
that approximately corresponds to Mn, E'" = —0.02
a.u. Meanwhile E," = —0.36 a.u. All the values in
Table III were obtained with the P~(r) calculated in the
LDA potential. The Vi in this case is completely deter-
mined by the difFerence in'correlation LDA potential of
the inhomogeneous gas and the sum of the homogeneous
gas potential and correlation potential due to on-site re-
pulsion V&. In V, Nb, and Tc V,&

is small, as all the
Hubbard-like correlations are small. But even in Mn this
quantity is small in spite of large values of correlation
energy E;. It is in agreement (Q~ -- Ni/2) with the de-
pendence of V;& Rom Eq. (14) and is also supported by
numerical calculations in a semicircular model for small
U. As a result, the values of energies corresponding to the
center of gravity for subbands with a particular l are prac-
tically the same as in the LDA. These values are listed
in Table IV. They practically coincide in SRC I (varia-
tion over Q& only) and SRC II approaches [variation over
both Ql and P~(r)] This means . that the main effect is
due to the variation of occupation numbers. On the con-

trary, in Cu, the correlation energy value is small, but the
potential V&', is large, though it turns out to be smaller
than expected &om comparison with the U value. But
in Cu the difFerence between the correlation potential of
the inhomogeneous gas and that of the homogeneous gas
is noticeable and partly compensates the large V'& values.
Nevertheless, the difFerence between SRC I and SRC II
is large. All the data are presented at one and the same
unit cell volume O. Of course, equilibrium volumes in the
LDA and SRC difFer. As a last example, in Table V the
values of f&&, parameters for various A values are listed
for V, Mn, Ni, and Cu. Though these values strongly
depend on A, the U value Eq. (1), which is the measure
of correlation efFects, is approximately constant. More-
over, though absolute values of E, vary strongly with A,
which is quite natural, p varies much less. Summariz-
ing the presented results, we can note that strong on-
site electron correlations cause large correlation energy
corrections in the middle of the d-metal row and these
corrections bring the values of the calculated equilibrium
unit cell volume and bulk modulus to their experimental
values.

IV. CONCLUSION

Metal
V

Mn
Ni
CD
Nb
Tc

Vshom
C

-0.03
0.03
0.11
0.14
-0.03
0.08

V,,
-0.38
-0.30
-0.22
-0.14
-0.28
-0.28

V'p
-0.41
-0.41
-0.33
-0.24
-0.30
-0.35

V,q
-0.35
0.33
2.86
2.71
-0.14
0.11

V,
-0.05
-0.22
-0.36
-0.38
0.11
-0.05

V„
-0.49
-0.54
-0.62
-0.62
-0.41
-0.49

Vg
-0.92
-0.52
1.63
1.42
-0.41
-0.41

TABLE III. The values (in eV) of the free electron gas
potential V'", correlation potentials V &, and differences in
values of potentials Vj [Eq. (24)] between the LDA and SRC.
0 values are the same as in Table II.

In this paper a method for incorporating strong corre-
lation efFects in ab initio ground state energy calculations
is presented. Starting Rom a "Hubbard-like" Hamilto-
nian we obtain the correlation energy in the Gutzwiller
approximation as a functional of partial occupation num-
bers Q„Qz, and Qg. The exchange energy is considered
in the LDA approximation and the part of the correla-
tion energy due to particle-hole pairs is taken as that
in the homogeneous electron gas of the same density.
With these assumptions, the functional (13) and (18),
which can be considered as a generalization of the DF,
is obtained. Two possible LMTO-ASA-based approaches
are considered: the variation of coefficients in the wave-
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TABLE IV. Energies (in a.u. ) corresponding to the center of gravity for subbands with various
l. Unit cell volumes are the same as in Table II.

V
Mn
Ni
Cu
Nb
Tc

-0.156
-0.200
-0.241
-0.247
-0.150
-0.179

LDA
8'p

-0.081
-0.123
-0.166
-0.171
-0.076
-0.098

&d

-0.071
-0.099
-0.119
-0.146
-0.080
-0.100

-0.170
-0.213
-0.253
-0.261
-0.161
-0.191

SRC I
Gp

-0.101
-0.138
-0.165
-0.176
-0.088
-0.111

E'd,

-0.090
-0.112
-0,100
-0.124
-0.091
-0.112

-0.167
-0.216
-0.265
-0.269
-0.158
-0.200

SRC II
8'p

-0.095
-0.143
-0.193
-0.210
-0.084
-0.123

E'g

-0.085
-0.116
-0.140
-0.235
-0.086
-0.122

Calculations on the basis of Eqs. (18) and (21).
Calculations on the basis of Eqs. (18) and (26).

function decomposition over MTO's only and the vari-
ation of both coefBcients and MTO's. Both approaches
give similar results for all metals but Ni and Cu, where
the second approach is more favorable. The SRC results
are close to the LDA DF results for the majority of transi-
tion metals except Mn. In the latter case the equilibrium
unit cell volume and bulk modulus are significantly im-
proved when compared with the experiment. We consider
mainly ground state calculations and in this way we differ
&om analogous work, where the attention was focused
on the excitation spectra of strongly correlated systems.
The use of the Gutzwiller approximation instead of the
approximation of Ref. 8 is the other difference &om Ref.
6.

Let us discuss perspectives of the present approach.
This work appears to be only the first step towards sub-
sequent incorporation of correlation effects in electronic
structure calculations. Further improvement should take
into account the screening effects and efFects due to repul-
sion simultaneously. For these purposes, as is seen &om
Secs. II and III and Appendix C, the form of the model
Hamiltonian should include both the interactions with
the neighboring sites, and as a consequence a cluster ap-
proximation for E' is needed. Calculations of the charge
distribution around an impurity show that the charge is
completely screened by first neighboring atoms and thus
the size of the cluster need not be extremely large. Ei-

ther extended Gutzwiller or other approximations, such
as the coupled-cluster method (CCM)2 can be useful for
treating on-site correlations and screening effects on the
same footing. Moreover, the effects of screening appear
to dominate in investigation of excitation spectra. For
example, the comparison of the spectra with experiment
for Fe-Ni systems shows that the "first-principles" U
should be significantly diminished to reproduce the ex-
periment. While we confine ourselves to a one-site model
Hamiltonian and one-site cluster, these efFects can hardly
be considered self-consistently.
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APPENDIX A: LMTO-ASA MATRIX ELEMENTS

Below, the LMTO-ASA formulas used in the present
work are listed for references and definition. The h,IL,
matrix in Eq. (3) is expressed in terms of the matrices
~(—), A, p, and matrix of structure constants S":

Metal
V

Mn
Mn
Mn
Mn
Ni
Ni
CU.

CU.

CU.

Nb
Tc

A

1.0
1.0
0.5
0.3
0.0
1.0
0.5
1.0
0.5
0.0
1.0
1.0

f-
3.14
2.61
4.76
6.90

11.67
2.44
4.58
2.39
4.58

12.05
2.49
2.44

f~~
2.02
1.95
4 44
6.44

11.44
1.80
4.10
1.71
3.67

11.56
1.55
1.80

f.~

2.75
2.44
5.31
7.87

13.27
2.92
5.68
2.96
5.64

13.94
1.94
2.22

fdd
3.85
6.10
9.87

12.51
20.27
9.67

13.78
10.90
14.79
25.11
1.94
2.97

U
1.49
3.83
3.92
3.67
5.50
6.17
?.00
7.37
8.09
9.28
0.55
0.97

TABLE V. The values (in eV) of interaction constants f&&,

and Hubbard constant U [Eq. (1)j for some values of the
screening constant A in Eq. (15).

h" = ~(—) —ASg
1 —jSg

(A1)

14'~R —Rws 4—
IR

I4'&R Rws4')R

(l + 1)4'lR Rwsg'~R
(dl +) =-

(l + 1)4'IR Rws4~R

4i(+) = PER+ ~(+)PiR, (A2)

The matrix elements of these matrices are expressed
through the values of the wave functions at the Wigner-
Seitz radius p~R = p~(Rws). The matrices u( —), E, and
j have the diagonal form
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The H matrix can be expressed in terms of h":

k '2 kHLLi = s]h LL& + ALAN& + g hLLiisf~'(p~r&)hr&&r ~

((Qi —Qi)(Qi —Qi ))

= ) .C((&j) +~+&Fd(it —Q&)(~[~ —Qt')/~p (B5)
(i)

where the W matrix is defined. by the decomposition of
the overlap matrix 0:

k
OLL i br', ' + ) hr L gi (Prr )LLriL, q

R

(y,'„) = y,'(r)dr, O = WW+.
0

For brief designation the following definitions are used:

4'(") = &~(') « (") = &~(")
Ok

hgLr = hL, L,~,
1k k~LL' ~LL' ' (A4)

APPENDIX 8: CORRELATION ENERGY
CALCULATIONS IN THE GUTZ%'ILLER

AP PROXIMATION

For the case of equal occupancy for states with various
m but equal l, (n~ ) = Q~/N~, the coefficients of the
decomposition of the U operators [Eq. (13)] over P
[Eq. (10)] can be easily found: U = QC(n)P„~
where n is the set of numbers of electrons (i~) in s, p,
and d states:

Using the Wick theorem in averaging over the ground
state

~
@p) with the mean occupation numbers c~ = n~/N~,

we obtain for Kp in Eq. (8)

Kp ——) C((i)) F,F„Fg,
(i}

w, t

. , c, (1 —c,)~" (B2)

Equation (9) takes the form

Q)Kp ——) i)C((i H F,FpFg
(i}

(B3)

and for (~ in Eq. (10)

&~ =).C(( k)C(('k)F F F ', , (B4)
fi}

where the set (i') difFers &om the set (i) in one electron
added to i~. After solution of the system of Eqs. (B3) for
exp( —2@~) by the Newton method we find E; with Eq.
(B4) and

C((~j) = exp —7) f(( (i) —Q()(i) —Q) ) —) p)i)
l

(»)

At this step the p value changes in accordance with the
minimization algorithm and the procedure repeats until
self-consistency in p is gained.

AP PENDIX C: RENORMALIZED EFFECTIVE
INTERACTION

W(r, r', u) = V(r —r')

+ V r —rz II rz, r2, ~

xW(r2, r', u)d rid r2, (C1)

where II(ri, r2, ~) is the polarization operator and V(r-
r') is the Coulomb interaction. Usually only static inter-
action with ~ = 0 is considered. The main contribution
usually gives the RPA diagram for II, though vertex cor-
rections can change its value by up to 40%:

II(r i, r2, u) = ll" (r i, r2, u) + II (r i, r2, u)

) @Ak(r)@&k (r)@~k (r')@»(r')
A, p,kk'

x"k' OAk

&Ak &pk'
(C2)

where 4pk are the Bloch eigenfunctions corresponding to
the eigenvalue elk. In the I MTO method the low-lying
states v, in particular occupied states, have 4'„k(r) de-
fined by Eq. (3). The contribution to II from transitions
between these low-lying states is denoted by II . The
term II" arises due to transitions &om occupied states
to high-lying empty states. Estimation of II can be done
either by the matrix technique2s with a sufficiently large
number of empty states, or by a technique widely used
in nuclear physics for the same purposes and especially
convenient in I MTO method. In this technique II is
rewritten through the Green function:

11(r, r', ~) = ) &gk@„'k(r)4'gk(r')

& [+k(r r &Ak + ~) + Gk(r, r', sAk ~)],
(C3)

The main purpose of this article is the estimation of
correlation eKects due to Hubbard-type on-site repulsion
in solids. But in real solids Hubbard-type and screen-
ing correlations are mixed. For this reason the complete
solution of the problem demands calculations in a clus-
ter, which includes several lattice sites. But as the first
approximation we can omit interaction with the other
lattice sites (as usual in the Hubbard model) and use the
eH'ective Hamiltonian, with the e8'ective screened inter-
action, obtained in the spirit of the GW approach. In
the GW approach2 the effective interaction W(r, r', u)
1s
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and the Green function in the unit cell is expressed
through the combination of regular P(r) and irregular
P"'(r) solutions of the radial Schrodinger equation with
the Wronskian TVL equal to unity. The Green function
has poles at c~k.

where PI" obeys the boundary condition (C5). The sec-
ond term II can be calculated directly with the 4' k from
Eq. (3). It brings about the renormalization of constants

G(r + R, r + R', ~) = G"(r, r, u)) bR~

+ ). @aL,(r)&~I,R'I. (~)
RL,R'L'

x@~ I, (r'),

a"(, ', ) =) ' ' Y (-)V (-'). (C4)
WL, ((u)

Any combination of regular solutions can be added to
gP", but as was argued in Ref. 30 the choice matching
P"' to the boundary condition

with

0 0 0
V)$

— Vj) II) $ TV)

L' Ovk' 6 AkII)) —— aPka k a„*k a),k
Ak vk'

(C7)

(C8)

dP"'(r) dP(r)
dr/'-(r) „„ (C5)

Rws

l

P,'(et, r') dr',

(C6)

corresponds to the case when G" has no poles at low cu

and thus represents the contribution of high levels. For
this reason in a crude approximation we can use Eq. (C3)
for obtaining II at w = 0 and with G = G" from Eq.
(C5). The interaction W(r) thus obtained should be used
in all the calculations instead of V(A) from Eq. (15).
Comparing the two approaches we can estimate A as

The contribution &om Eq. (C6) turns out to be negli-
gible, especially in the middle of the row, in comparison
with that from Eq. (C8). Comparing the values obtained
&om Eq. (C8) with that calculated with the Vg &om Eq.
(15) we can estimate the equivalent A, though the V&(r)
dependence on r is different from that in W(r). The
equivalent A values are 1.0 for V, 1.2 for Mn, and

1.0 for Cu. With the suggestion that the vertex cor-
rections can diminish the II value by about 40'P0, 2s we
would obtain A = 0.9 in Mn and A = 0.5 in Cu. Thus
the reasonable f&&, constants correspond to V~ with A in
the interval 0.5 —1.0. The weak dependence of the results
on the A choice permits us to use any A in the vicinity of
that &om Eq. (C8) for the estimation of the magnitude
of the Hubbard-type correlation eKects.
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