Magnetic transitions and nearly reentrant superconducting properties of H_0N_i,B_2C

M. S. Lin, J. H. Shieh, Y. B.You, W. Y. Guan, and H. C. Ku

Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China

H. D. Yang

Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan 840, Republic of China

J. C. Ho

Department of Physics and National Institute for Aviation Research, Wichita State University, Wichita, Kansas 67260 (Received 27 February 1995)

A low-temperature phase diagram $H(T)$ of the 7.8-K superconductor $HoNi₂B₂C$ (with an onset of 8.3 K) is generated through characterization of well-prepared samples by various experimental techniques including ac magnetic susceptibility, superconducting quantum interference device dc magnetic susceptibility, magnetic hysteresis, specific heat, and electrical resistivity measurements. The results yield a superconducting upper critical field $H_{c2}(0)$ of 3.5 kG, a lower critical field $H_{c1}(0)$ of 250 G, and a Ginzburg-Landau parameter κ of 3.5. A nearly reentrant deep minimum at 5.2 K with very small H_{c2} of 400 G and H_{c1} of 5 G are observed. Two distinct magnetic transitions are observed with an incommensurate magnetic ordering temperature T_m of 5.7–6 K and an antiferromagnetic Néel temperature T_N of 5.2 K. The magnetic entropy $\Delta(S_m + S_N)$ estimated between 2 and 10 K is 10.4 J/mol K. The effective internal field which causes the nearly reentrant behavior is 2 kG at 5.2 K.

I. INTRODUCTION

Relatively high superconducting transition temperatures T_c up to 23 K have been reported in the quaternary borocarbide RT_2B_2C compounds ($R = Sc$, Y, Th, U or a borocarbide RT_2B_2C compounds $(R = Sc, Y, Th, U)$ or rare earth; $T = Ni$, Pd, or Pt).¹⁻¹¹ The superconducting phase has been identified to be of the body-centeredtetragonal LuNi₂B₂C type with space group $I4/mmm$. The structure is a three-dimensionally connected framework with LuC layers alternated with $Ni₂B₂$ layers, where nickel is tetrahedrally coordinated by four boron atoms. ⁴

Among many nonmagnetic compounds in the Ni system, LuNi₂B₂C exhibits the highest T_c of 16.6 K, followed by $15-16$ K for YNi_2B_2C and metastable $\rm ScNi_2B_2C,$ 3^{-8} 7 K for ThNi₂B₂C,⁸ and no superconducting transition was found down to 2 K for $\text{LaNi}_2\text{B}_2\text{C}^8$. Band-structure calculations on $LuNi₂B₂C$ (Refs. 12,13) indicate a high density of states $N(E_F)$ at the Fermi level near the top of the almost-filled $Ni(3d)$ band, with only modest admixture from B and C. All characteristics are indicative of a good, three-dimensional metal. A strongcoupled phonon mechanism for the occurrence of superconductivity is deduced with a very large electronphonon coupling parameter λ , which is related to an unusual combination of electronic states at the Fermi level and a substantial contribution from the vibration of the light atoms.¹²

For compounds containing magnetic rare earth elements such as $R = Dy$, Ho, Er, and Tm, lower T_c values were observed due to the magnetic pair-breaking effect.³ In fact, $HoNi₂B₂C$ is the most intensively studied compound of the Ni-based system due to its nearly reentrant

behavior around $5-6$ K below the superconducting transition temperature T_c of 7.5–8 K.⁶ ' $^{1-17}$ However, the reported magnetic transition temperatures are ill defined. For example, while yielding consistently an antiferromag-For example, while yielding consistently an antiferromagnetic transition temperature T_N around 5 K,^{15,16} two neutron diffraction measurements give two different incommensurately modulated/spiral magnetic transition temperatures T_m of 8 K (Ref. 15) and 6 K (Ref. 16), respectively. Meanwhile, prior specific-heat measurements show vaguely two shoulders around 5.5 and 6 K, in addition to a T_N of 5 K. The temperature dependence of superconducting upper critical field $H_{c2}(T)$ is also ambiguous. The zero-temperature value $H_{c2}(0)$ of 4.5 kG, a local minimum at 5.2 K, and a local maximum at 6.2 K were obtained from field-dependent electrical resistivity measurements⁶ in contrast to 1.9 kG, $5-5.2$ K, and 6 K, respectively, from magnetic measurements on a single crystal.¹⁴

In this work, we have characterized a well-prepared $HoNi₂B₂C$ polycrystalline sample through various experimental techniques including ac magnetic susceptibility, superconducting quantum interference device (SQUID) dc magnetic susceptibility, magnetic hysteresis, specificheat, and electrical resistivity measurements. A phase diagram of this quaternary compound is thus generated with reference to the temperature dependence of critical magnetic fields.

II. EXPERIMENTS

 $HoNi₂B₂C$ samples were prepared from high-purity elements Ho (99.9%, ingot), Ni (99.9% foil), B (99.9995% chips), and C (99.995% chips) with a stoichiometric ratio of $(1:2:2:1)$ under an argon atmosphere in a Zr-gettered arc furnace. The Ho, B, and C ingredients were wrapped in the Ni foil and arc melted carefully several times to ensure negligible weight loss and sample homogeneity. The as-melted samples were then wrapped in Ta foils and annealed under argon atmosphere in a sealed quartz tube at 1100'C for three days and then quenched in liquid nitrogen. Crystallographic data were obtained with a Rigaku Rotaflex 18-kW rotating anode powder x-ray diffractometer using Cu $K\alpha$ radiation with a scanning rate of 1° in 2θ per min. A LAZY PULVERIX PC program was employed for phase identification and lattice parameter calculation.

Electrical resistivity measurements (16 Hz) were carried out by the standard four-probe method in an RMC Cryosystems closed-cycle refrigerator down to 9 K and using single-shot cooling to 6.5 K. ac magnetic susceptibility measurements were made with a Lake Shore Model 7221 susceptometer/magnetometer down to 4.2 K in an ac magnetic field 0.¹ or 0.01 G (rms) at ¹ kHz. The ac signal can be biased by a dc magnetic field up to 1 T. dc magnetic susceptibility and magnetic hysteresis measurements were made with a Quantum Design MPMS or a Mu-metal shielded MPMS₂ SQUID magnetometer down to 2 K in an applied field from 1 G to 1 T. Specific-heat measurements were made with an adiabatic calorimeter from 1.5 to 20 K. The sample was thermally anchored to a copper block containing a germanium thermometer and a manganin wire heater, for which measurements were made separately for addenda correction.

III. RESULTS AND DISCUSSION

In preparing $HoNi₂B₂C$ samples, a minute amount of $Ni₂B$ impurity often prevails, ¹⁸ which can actually serve as the flux in growing $HoNi₂B₂C$ single crystals.¹⁴ For the annealed samples used in this work, the powder x-ray diffraction pattern in Fig. 1 reflects practically a single phase. The diffraction lines can be well indexed with the $LuNi₂B₂C-type structure having tetragonal lattice pa$ rameters $a = 3.516(3)$ Å, $c = 10.530(6)$ Å, and unit cell volume $V = 130.2(1)$ \mathring{A}^3 . The excellent sample quality is

FIG. 2. Low-temperature real and imaginary parts of ac magnetic susceptibilities $\chi_{ac}(T) = \chi'(T) + i\chi''(T)$ (0.01 G rms at ¹ kHz) for bulk sample. Three distinct transitions were observed.

attributed to the use of Ni foil as the wrap of the highpurity starting materials, followed by liquid nitrogen quench after annealing.

A. Superconducting and magnetic transitions

The low-temperature real and imaginary parts of ac magnetic susceptibilities $\chi_{ac}(T) = \chi'(T) + i\chi''(T)$ of the annealed HoNi₂B₂C bulk sample are shown together in Fig. 2, with 0.01 G (rms) ac field at ¹ kHz frequency. Three phase transitions around 7.8, 5.7, and 5.2 K can be identified from the imaginary part. The first one at 7.8 K corresponds to a superconducting transition as the transition is accompanied by a diamagnetic, superconducting real part signal. This is consistent with the transport data in Fig. 3, where the temperature dependence of electrical resistivity $\rho(T)$ shows a superconducting transition with 10% resistivity onset drop T_c (onset) of 8.3 K, 50% midpoint drop T_c (mid) of 8.1 K, and zero resistivity T_c (zero) of 7.8 K. The small extrapolated residual resistivity ρ (0 K) of 24 $\mu\Omega$ cm, along with the large metallic resistivity ratio $\rho(RT)/\rho(9 K)$ of 7.5, are indications of good polycrystalline sample quality. The $T_c = 7.8$ K for

FIG. 1. Powder x-ray diffraction pattern of annealed $HoNi₂B₂C sample.$

FIG. 3. Low-temperature electrical resistivity $\rho(T)$.

HoNi₂B₂C is 8.8 K lower than the $T_c = 16.6$ K for nonmagnetic $LuNi₂B₂C$. Judging from the systematic variation of T_c with Ni-Ni in-plane distance $d = a / \sqrt{2}$ (a is the tetragonal lattice parameter) for the nonmagnetic compounds $RNi₂B₂C$ ($R = Sc$, Lu, Y, Th, or La),⁸ the T_c depression due to the magnetic pair-breaking effect at $d = 2.468$ Å (for HoNi₂B₂C with $a = 3.516$ Å) can be estimated as ΔT_c (Ho) = T_{c0} (Ho) – T_c (Ho) = 15.8 K–7.8 $K=8 K$,⁸ or about 90% of the observed T_c depression as compared with $LuNi₂B₂C$. If the magnetic pair-breaking effect is in the framework of the Abrikosov-Gor'kov theory with ΔT_c proportional to the de Gennes factor $(g_J - 1)^2 J(J+1)$, where J is the total angular momentum and g_J is the Landé g-factor,¹⁹ then using $\Delta T_c(H_0) = 8$ K and the calculated Fermi-level density of states $N(E_F)$ of 4.8 states/eV cell or 0.8 states/eV atom for $\text{LuNi}_2\text{B}_2\text{C}$,¹³ a small exchange-coupling parameter $|J|$ of 8.1 meV between conduction electron and localized $4f$
moment is derived by using the formula moment is derived $\Delta T_c = [\pi^2 N(E_F)/6 \times 2k_B] |J|^2 (g_J - 1)^2 J(J+1).$ The tetragonal crystal-field efFect (CEF) is neglected for the present crude estimation. The same $T_c(d)$ curve with $\Delta T_c / T_{c0}$ proportional to the de Gennes factor can also be used to predict the superconducting transition temperature of $\text{DyNi}_2\text{B}_2\text{C}$ using T_{c0} (Dy) of 15.3 K at $d = 2.498$ A (for DyNi₂B₂C with $a = 3.532$ Å).^{8,20} The calculated $T_c(Dy) = 3.1 \text{ K}$ is indeed close to T_c of 3.8 K observed in our preliminary study²⁰ and is higher than the previously reported T_c onset around 2 K.⁶

The two other transitions observed at 5.7 and 5.2 K from ac magnetic susceptibility data are apparently related to the long-range Ho^{3+} magnetic ordering through the Ruderman-Kittel-Kasuya-Yosida indirect exchange interaction. The real part ac signal indicates a nearly reentrant behavior starting from the magnetic ordering temperature T_m around 5.7 K, reaching to a small positive peak at the antiferromagnetic Néel temperature T_N of 5.2 K, then dropping sharply back to diamagnetic signal below T_N .¹⁷ No nearly reentrant behavior can be detected from the resistivity measurement due to the lowtemperature limit of 6.5 K. However, these two magnetic transitions can be clearly corroborated by lowtemperature specific-heat data $C(T)$ as shown in Fig. 4. Two distinct transition peaks were observed at 5.7 and 5.2 K, respectively. The expected specific-heat discontinuity at T_c would be of the order of mJ/mol K, and is too small to be observed in the presence of large magnetic contributions. Strictly speaking, there should be four contributions to the total heat capacity $C = \gamma T + \beta T^3 + C_m + C_N$, corresponding to the electronic, the lattice, and the two magnetic transition components, respectively. By employing the literature data for nonmagnetic $LuNi₂B₂C$ (Ref. 21) as the base line representing the electronic and lattice terms, the magnetic entropy between 2 and 10 K can be derived as $\Delta(S_m + S_N) = \int [(C - 0.019T - 0.00035T^3)/T]dT = 10.4$ J/molK. Additional contributions to the magnetic entropy below 2 K and above 10 K are relatively insignificant, judging from the data in Fig. 4. The small difference between 10.4 J/mol K and $S_N = R \ln 3 = 9.12$

FIG. 4. Temperature dependence of specific heat $C(T)$. Two distinct magnetic transitions were observed.

J/mol K, which is expected for the antiferromagnetic ordering of Ho^{3+} with a quasitriplet ground state (closely spaced doublet and singlet levels) in the tetragonal crystal ield,¹⁴ could simply be the consequence of the changeover from an antiferromagnetic state to the incommensurate modulated/spiral magnetic structure near T_m . Such a transition should be considered as an order-to-order process with a latent heat. In fact, the minor peak at $T_m = 5.7$ K can easily account for such a ΔS_m value. More importantly, the magnetic transition temperatures are consistent with the results of single-crystal neutron diffraction measurements,¹⁶ where a simple commensurate antiferromagnetic structure was observed with moments aligned in the tetragonal basal plane around 5 K and an incommensurate modulated/spiral magnetic transition was developed around 6 K with the ferromagnetic planes rotating from layer to layer along the c axis with a turn angle of 165°, and the neighboring moments along the a axis are rotated by approximately 104° .¹⁶ The persistence of the neutron satellite peaks up to 8 K from the powder neutron data may be due to the strong shortrange magnetic fluctuation.¹⁵

Identical results are obtained from the low-field (1 G), zero-field-cooled (ZFC), and field-cooled (FC) dc mass magnetic susceptibilities $\chi_g(T)$ as shown in Fig. 5. A powder sample with fine particle size of around 1 μ m is used to avoid any unwanted shielding signal and the complex Aux-pinning effect which are always observed for bulk borocarbide samples. The superconducting transition temperature T_c of 7.8 K was observed from the merging point of the ZFC and FC curves, which is also the onset deviation from the Curie-Weiss law, with a arge ZFC signal of -1.3×10^{-2} emu/g G and FC signal of -7.1×10^{-3} emu/g G at 2 K. Using x-ray density of 4.02 g/cm³, volume susceptibility percentages $4\pi\chi$ of 66% (ZFC) and 36% (FC) at 2 K are obtained for the powder sample, indicating good sample quality. Nearly reentrant behavior is also observed with a T_N peak of 5.2 K and T_m upturn around 6 K. The large positive χ_g value of 3.3×10^{-3} emu/g G at 5.2 K is still smaller than 4.1×10^{-3} emu/g G at T_c of 7.8 K.

FIG. 5. Low-temperature, low-field (1 G) dc mass magnetic susceptibility $\chi_{g}(T)$ for powder sample, measured in both fieldcooled (FC) and zero-field-cooled (ZFC) modes.

B. Superconducting upper critical field $H_{c2}(T)$ and lower critical field $H_{c1}(T)$

Several methods are used to determine the superconducting upper critical field $H_{c2}(T)$ and lower critical field $H_{c1}(T)$.

The low-temperature ac magnetic susceptibility $\chi_{ac}(T)$ in ac field of 0.¹ G (rms) at ¹ kHz with a dc-biased magnetic field of 100 G is shown in Fig. 6. T_c decreases from 7.8 K in the zero-field-biased case to 7.5 K in the 100-Gbiased case, or $H_{c2}(7.5 \text{ K}) = 100 \text{ G}$. T_m of 6 K and T_N of 5.2 K are observed. A small bump around 4.5 K was observed below T_N . Judging from the shape of the real part signal, these magnetic structures under applied field may be slightly weakly ferromagnetic.

The field-dependent low-temperature ZFC dc mass magnetic susceptibilities $\chi_g(T)$ in various applied fields of 100, 500, and ¹ kG for bulk samples are shown collectively in Fig. 7. T_c decreases from 7.8 K in 1 G to 7.5 K in 100 G, 6.8 K in 500 G, and 6.⁵ K in ¹ kG applied field. T_m and T_N are almost field independent in these low applied fields. The small bump observed in ac magnetic sus-

FIG. 7. Low-temperature zero-field-cooled (ZFC) dc mass magnetic susceptibility $\chi_g(T)$ (100, 500, and 1 kG) for bulk samples.

ceptibility is reflected as a knee at 4.5 K for $\chi_g(T)$ in 100 G applied field. This bump is suppressed to 3.5 K in 500 G and is no longer observable in ¹ kG. Superconductivity is completely destroyed in 5 kG as shown in Fig. 8, where only the two unchanged magnetic transitions of T_m and T_N remain.

Constant-temperature magnetic hysteresis measurements provide more precise information on the temperature dependence of superconducting upper critical field $H_{c2}(T)$. As in Fig. 9, a $H_{c2}(T)$ value of 3 kG for 2 K is determined from the merging point of the hysteresis curve as indicated by the arrow. Similarly, H_{c2} is 1 kG at 4 K. Moreover, each $M(H)$ curve has a linear, nonhysteretic, paramagneticlike background due to simple commensurate antiferromagnetic structure with moments
aligned in the tetragonal basal plane.^{15,16} The exchange interaction is ferromagnetic in the basal plane with weak antiferromagnetic coupling mediated through the Ni layers.

Figure 10 yields higher-temperature H_{c2} values of 400 G at 5.2 K (T_N) and 300 G at 7 K $(> T_m)$. Finally, it is of particular interest to note that, more than the superconducting hysteretic behavior at 6 K (near T_m), a non-

FIG. 6. Low-temperature ac magnetic susceptibilities $\chi_{ac}(T)$ (0. ¹ G rms at ¹ kHz) in a dc-biased field of 100 G.

FIG. 8. Low-temperature dc mass magnetic susceptibility $\chi_{g}(T)$ in a higher field of 5 kG.

FIG. 9. Magnetic hysteresis curves $M(H)$ at 2 and 4 K $(*T_N*)$. Upper critical field H_{c2} and lower critical field H_{c1} are indicated by arrows.

linear magnetic background was present in Fig. 11. Meanwhile, a much enhanced H_{c2} of 2.2 kG was obtained at this temperature. This complex background is apparently due to the onset of the incommensurate modulated/spiral magnetic structure.

The temperature dependence of superconducting lower critical field $H_{c1}(T)$ can also be determined from the magnetic hysteresis measurements as shown in Figs. 9—11. The $H_{c1}(T)$ is defined as the deviation from linearity in the initial magnetization in each $M(H)$ curve in Figs. 9—11. The values thus obtained are 10 G at 7 K, 20 G at 6 K, ⁵ G at 5.2 K, 50 G at 4 K, and 200 G at 2 K.

C. Low-temperature phase diagram

Based on this work and the data analysis outlined above, the low-temperature phase diagram $H(T)$ of $HoNi₂B₂C$ is generated and given in Fig. 12. In terms of the temperature dependence of critical fields, the extrapolated $H_{c2}(0)$ value is 3.5 ± 0.5 kG while the extrapolated upper limit of $H_{c1}(0)$ is 250 \pm 100 G. The previously reported $H_{c2}(0)$ value of 1.9 kG from single-crystal magnetic data¹⁴ is apparently too low since a $H_{c2}(2 \text{ K})$ value of

FIG. 10. Magnetic hysteresis curves $M(H)$ at 5.2 K (T_N) and $7 K (> T_m).$

FIG. 11. Magnetic hysteresis curves $M(H)$ at 6 K ($\sim T_m$).

at least 3.0 kG was already observed experimentally from the hysteresis measurement. On the other hand, the $H_{c2}(0)$ value of 3.5 kG is less than 4.5 kG reported from resistivity data where the H_{c2} values are arbitrarily defined as the midpoint resistivity drop.⁶ The resistivity data may yield the surface critical field H_{c3} , which is the limit of field in which superconductivity can persist at the surface of the sample,²² rather than H_{c2} .

From $H_{c1}(0)$ and $H_{c2}(0)$, the Ginzburg-Landau parameter κ value of 3.5 is evaluated using the formula $H_{c2}/H_{c1} = 2\kappa^2/(ln\kappa + 0.5).^{23}$ As a comparison, κ values of 12–15 are reported for nonmagnetic, higher- T_c YNi_2B_2C and $LuNi_2B_2C$. 24,25 From the local minimum of 400 G at T_N of 5.2 K and the shape of the $H_{c2}(T)$ curve, a maximum effective internal field H_{int} of 2 kG is deduced. The relatively slow recovery of $H_{c2}(T)$ below T_N may be due to the incommensurate magnetic fluctuation where the neutron data indicate that the fluctuation is persisted down to lower temperatures.^{15,16}

The phase diagram with two magnetic transitions below T_c reported for $HoNi₂B₂C$ is indeed very similar to the previously reported pseudoternary $Ho(Rh_{1-x}Ir_x)_4B_4$

FIG. 12. Low-temperature phase diagram $H(T)$ (T_m , T_N , H_{c2} , and H_{c1}) for HoNi₂B₂C. The solid and dashed lines are for guiding the eyes only.

system²⁶⁻²⁸ with compositions around $0.25 < x < 0.5$. For example, the Ho(Rh_{0.7}Ir_{0.3})₄B₄ compound is superconducting at 5.5 K with two distinct magnetic transitions at 1.12 and 0.86 K from the specific-heat data. Nearly reentrant behavior is expected between these two magnetic transitions. True reentrant behavior was indeed observed for $0.075 < x < 0.25$. For example, superconductivity of 5.2 K Ho($Rh_{0.85}Ir_{0.15}$)₄B₄ was completely destroyed by a ferromagnetic ordering with Curie temperature T_c at 2.77 K.

IV. CONCLUSIQN

Well-prepared $HoNi₂B₂C$ samples were characterized by various experimental techniques including ac magnetic susceptibility, SQUID dc magnetic susceptibility, magnetic hysteresis, specific-heat, and electrical resistivity measurements. The results yield three distinct phase transitions: a superconducting transition temperature T_c of 7.8 K (with onset of 8.3 K), and incommensurate magnetic ordering temperature T_m of 5.7–6 K, and an antiferromagnetic Néel temperature T_N of 5.2 K. Furthermore, a low-temperature phase diagram of this nearly reentrant magnetic superconductor is generated in terms of temperature dependence of H_{c1} , H_{c2} , T_m , and T_N . From the extrapolated H_{c1} (0) of 250±100 G and H_{c2} (0) of 3.5 \pm 0.5 kG, the Ginzburg-Landau parameter κ value of 3.5 is derived.

ACKNOWLEDGMENT

This work was supported by the National Science Council of the Republic of China under Contract Nos. NSC84-2112-M007-003 and -038.

- ¹R. Nagarajan, C. Mazumdar, Z. Hossain, S. K. Dhar, K. V. Gopalakrishnan, L. C. Gupta, C. Godart, B. D. Padalia, and R. Vijayaraghavan, Phys. Rev. Lett. 72, 274 (1994).
- ²R. J. Cava, H. Takagi, B. Batlogg, H. W. Zandbergen, J. J. Krajewski, W. F. Peck, Jr., R. B. van Dover, R. J. Felder, T. Siegrist, K. Mizuhashi, J. O. Lee, H. Eisaki, S. A. Carter, and S. Uchida, Nature 367, 146 (1994).
- ³R. J. Cava, H. Takagi, H. W. Zandbergen, J. J. Krajewski, W. F. Peck, Jr., T. Siegrist, B. Batlogg, R. B. van Dover, R. J. Felder, K. Mizuhashi, J. O. Lee, H. Eisaki, and S. Uchida, Nature 367, 252 (1994).
- 4T. Siegrist, H. W. Zandbergen, R.J. Cava, J.J. Krajewski, and W. F. Peck, Jr., Nature 367, 254 (1994).
- ⁵H. C. Ku, C. C. Lai, Y. B. You, J. H. Shieh, and W. Y. Guan, Phys. Rev. 8 50, 351 (1994).
- ⁶H. Eisaki, H. Takagi, R. J. Cava, B. Batlogg, J. J. Krajewski, W. F. Peck, Jr., K. Mizuhashi, J. O. Lee, and S. Uchida, Phys. Rev. B 50, 647 (1994).
- 7J. L. Sarrao, M. C. de Andrade, J. Herrmann, S. H. Han, Z. Fisk, M. B. Maple, and R.J. Cava, Physica C 229, 65 (1994).
- ${}^{8}C.$ C. Lai, M. S. Lin, Y. B. You, and H. C. Ku, Phys. Rev. B 51, 420 (1995).
- ⁹Z. Hossain, L. C. Gupta, C. Mazumdar, R. Nagarajan, S. K. Dhar, C. Godart, C. Levy-Clement, B.D. Padalia, and R. Vijayaraghavan, Solid State Commun. 92, 341 (1994).
- ¹⁰R. J. Cava, B. Batlogg, T. Siegrist, J. J. Krajewski, W. F. Peck, Jr., S. Carter, R. J. Felder, H. Takagi, and R. B. van Dover, Phys. Rev. 8 49, ¹² 384 (1994).
- $^{11}P.$ J. Jiang, M. S. Lin, J. H. Shieh, Y. B. You, H. C. Ku, and J. C. Ho, Phys. Rev. 8 51, 16436 (1995).
- ¹²L. F. Mattheiss, Phys. Rev. B 49, 13 279 (1994).
- W. E. Pickett and D. J. Singh, Phys. Rev. Lett. 72, 3702 (1994).
- ¹⁴P. C. Canfield, B. K. Cho, D. C. Johnston, D. K. Finnemore,

and M. F. Handley, Physica C 230, 397 (1994).

- ¹⁵T. E. Grigereit, J. W. Lynn, Q. Huang, A. Santoro, R. J. Cava, J. J. Krajewski, and W. F. Peck, Jr., Phys. Rev. Lett. 73, 2756 (1994).
- 16A. I. Goldman, C. Strassis, P. C. Canfield, J. Zaretsky, P. Dervenagas, B. K. Cho, D. C. Johnston, and B. Sternlieb, Phys. Rev. 8 50, 9668 (1994).
- ¹⁷H. Schmidt and H. F. Braun, Physica C 229, 315 (1994).
- ¹⁸E. E. Havinga, H. Samasma, and P. Hokkeling, J. Less-Common Met. 27, 169 (1972); 27, 281 (1972). No superconducting transition down to 0.07 K was reported for $Ni₂B$ phase.
- ¹⁹A. A. Abrikosov and L. P. Gor'kov, Sov. Phys. JETP 12, 1243 (1961).
- 20 M. S. Lin and H. C. Ku, Physica C (to be published).
- ²¹S. A. Carter, B. Batlogg, R. J. Cava, J. J. Krajewski, W. F. Peck, Jr., and H. Takagi, Phys. Rev. 8 50, 4216 (1994).
- $22D$. Saint-James and P. G. deGennes, Phys. Lett. 7, 306 (1963).
- ²³C. R. Hu, Phys. Rev. B 6, 1756 (1972).
- 24M. Xu, P. C. Canfield, J. E. Ostenson, D. K. Finnemore, B.K. Cho, Z. R. Wang, and D. C. Johnston, Physica C 227, 321 (1994).
- 25H. Takagi, R. J. Cava, H. Eisaki, J. O. Lee, K. Mizuhashi, B. Batlogg, S. Uchida, J.J. Krajewski, and W. F. Peck, Jr., Physica C 228, 389 (1994).
- ²⁶H. C. Ku, F. Acker, and B. T. Matthias, Phys. Lett. 76A, 399 (1980).
- ²⁷K. N. Yang, S. E. Lambert, H. C. Hamaker, M. B. Maple, H. A. Mook, and H. C. Ku, in Superconductivity in d- and Band Metals, edited by W. Buckel and W. Weber (Kern- $\frac{1}{2}$
 $\frac{1}{2}$ forschungszentrum, Karlsruhe, 1982), p. 217.
- ²⁸H. C. Ku, P. Klavins and R. N. Shelton, Physica B 148, 117 (1987).