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We propose a systematic method of analyzing pseudopotential transferability based on linear-
response properties of the free atom, including self-consistent chemical hardness and polarizability.
Our calculation of hardness extends the approach of Teter not only by including self-consistency, but
also by generalizing to nondiagonal hardness matrices, thereby allowing us to test for transferability
to nonspherically symmetric environments. We apply the method to study the transferability of
norm-conserving pseudopotentials for a variety of elements in the Periodic Table. We find that the
self-consistent corrections are frequently significant, and should not be neglected. We prove that
the partial-core correction improves the pseudopotential hardness of alkaline metals considerably.
We propose a quantity to represent the average hardness error and calculate this quantity for many
representative elements as a function of pseudopotential cuto8' radii. We find that the atomic
polarizabilities are usually well reproduced by the norm-conserving pseudopotentials. Our results
provide useful guidelines for making optimal choices in the pseudopotential generation procedure.

I. INTRODUCTION

Density-functional calculations performed within the
framework of the local-density approximation (LDA)
have been demonstrated to give accurate predictions of
many physical properties of solids. The introduction
of the pseudopotential approximation greatly simplifies
electronic-structure calculations by eliminating the need
to include atomic core electrons and the strong poten-
tials responsible for binding them. The introduction of
norm-conserving pseudopotentials by Hamann, Schluter,
and Chiang (HSC) led to greatly improved control of
transferability errors, and as a result the pseudopoten-
tial approach has since found a wide range of applications
in molecular and solid-state electronic-structure theory.
Nevertheless, transferability is still an issue in many
calculations, especially when uncomfortably large pseu-
dopotential cutoff radii have been dictated by the require-
ments of a modest plane-wave cutofF in the solid-state
calculation, and for atoms having shallow core shells.

A pseudopotential (PSP) is constructed to replace the
all-electron (AE) atomic potential in such a way that core
states are eliminated. The most important measure of
a pseudopotential is its transferability, which character-
izes the accuracy with which it mimics the real AE atom
in different atomic, ionic, molecular, or solid-state en-
vironments. Traditionally, the transferability of a pseu-
dopotential is characterized by two properties: (i) a com-
parison of the scattering properties of the AE and PSP
versions of the free atom or ion, as measured by the loga-

rithmic derivative of the wave function at some diagnos-
tic radius as a function of energy; and (ii) configuration
tests, which check if the pseudoeigenvalues and total en-
ergies track the AE ones for various excited states of the
&ee atom or ion. It is important to note that spherical
symmetry is implicit in both of these approaches, so that
neither is capable of giving information about transfer-
ability to anisotropic environments.

Scattering properties are certainly a signi6cant aspect
of transferability: poor scattering properties are indica-
tive of a poor pseudopotential. A major contribution
of HSC was to show that the norm-conserving condi-
tion automatically implies that not only the logarithmic
derivative, but also its energy derivative, is guaranteed
to be correct for the PSP at a reference energy, thus in-
suring that the AE and PSP scattering properties will
match closely over a large energy range. Thus, norm-
conserving potentials tend to have much better trans-
ferability for most elements. However, the matching of
logarithmic derivatives is not always suFicient to ensure
good transferability. Some potential sources of error that
will not show up in tests of scattering properties are (i)
electrostatic screening effects, and (ii) effects of nonlin-
earity of the exchange-correlation energy (important for
many alkali-metal elements). Errors of the former type
are usually easily eliminated by the choice of a "conser-
vative" cutoff radius, ' while those arising from core-
valence overlap can largely be corrected by use of the
frozen-core correction. Nevertheless, these examples il-
lustrate the dangers of focusing on scattering properties
alone.
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Configuration tests are certainly useful as a supple-
mentary criterion, but as mentioned above, they do not
control the quality of the PSP in a nonspherical target
environment. This will obviously be important for atoms
in surface, defective, molecular, or liquid environments,
to name just a few. Furthermore, it is difBcult to include
the configuration tests systematically as part of the PSP
generation procedure.

As LDA calculations are pushed in the direction of high
accuracy, PSP errors become less tolerable, putting tight
requirements on transferability. On the other hand, as
the calculations are pushed to larger system sizes, the in-
creased computational load requires that the PSP be as
smooth (soft) as possible. This has led to a tremendous
effort to optimize PSP softness. Unfortunately, trans-
ferability and softness are usually contradictory require-
ments. Especially for first-row elements, attempts to save
computational cost frequently result in the use of a PSP
with an uncomfortably large core cutoff radius. Because
of the above-mentioned electrostatic screening problems,
this strategy may result in a sacrifice of transferability,
which would be difBcult to detect using the conventional
methods. It is therefore of great importance to develop
improved measures of transferability that will allow for
improved control of PSP errors in cases like these. It
is especially desirable to develop methods that work di-
rectly at the atomic level, without the need for painstak-
ing comparisons of pseudo and AE results in molecular
and solid-state environments.

In this paper, we propose to use the linear-response
properties of a reference free atom or ion as a measure
of the transferability of a PSP. We calculate two kinds of
linear-response properties: a generalized chemical hard-
ness, and the dipole and higher-moment susceptibilities.
Chemical hardness measures the derivatives of electronic
eigenvalues with respect to changes of occupation. It was
recently proposed by Teter as an important measure of
PSP transferability, partly based on the idea that the
chemical potential and hardness have equal roles in de-
termining electron charge transfers. To some extent, the
hardness analysis is redundant with configuration tests
(of which it is a kind of differential version), but it is
more systematic and can be incorporated into PSP gen-
eration more easily. The concept of hardness is gen-
eralized in this paper to include also information about
the response to nonspherical perturbations. This is in
fact very important, and we shall see that the rearrange-
ment of charge in a p shell may dominate the error in the
hardness matrix. We further include the self-consistent
change of the wave functions in our calculations in or-
der to go beyond the frozen-wave-function approximation
(FWA) introduced by Teter. Finally, the dipole (and
quadrupole, etc.) susceptibility tests measure the ability
of the pseudoatom to imitate the correct AE behavior in
a local electric field (or field gradient, etc.), which may
result from an anisotropic solid-state or molecular envi-
ronment.

This paper is arranged as follows. In Sec. II we review
the concept of chemical hardness and introduce the for-
mulation for calculating both spherical and nonspherical
hardness. We also outline the calculation of the dipole

and higher-order polarizabilities. In Sec. III, we present
calculated chemical hardness matrices and polarizabili-
ties for some representative atoms chosen from different
parts of the Periodic Table. We discuss the general trends
in the hardness matrix, and the effect of the frozen-
core correction. We also proposed a quantity based on
the hardness matrix to characterize the pseudopotential
transferability. Finally, we conclude our results in Sec.
IV.

II. THEORY

A. Chemical hardness

Bc'

2Bf (2)

Thus, the hardness matrix measures the first-order
change of an energy eigenvalue resulting from a first-
order variation of an occupation number, while allowing
the total number of electrons to vary. Application of the
Hellmann-Feynrnan theorem to Eq. (2) yields

The term hp/h f~ consists of two parts: one due to the
change of the screening potential with variation of the oc-
cupation number for fixed wave functions, and one arising
from relaxation of the wave functions. Teter made the
approximation of omitting the second term, but both are
included here.

Frequently, one is interested only in the case where
the occupations of the states comprising a given shell are
kept equal. For example, one may consider an excita-
tion in which one transfers an 8 electron to the p shell,
increasing the occupation of each p state by 1/3. This en-
sures retention of spherical symmetry of the charge den-
sity and potential, and is implicit in all of the analysis,
which is usually carried out with an atomic pseudopo-
tential program. In this case, different m components
remain degenerate and the treatment is simple. In real
situations (in molecules, at surfaces, etc.), atoms may
have very anisotropic environments, so that nonspher-
ical changes of electron occupation become important.
This prompts us to consider also changes of occupation,
which lead to nonspherical changes of density and screen-
ing potential. We will use the index I to refer to density
or potential changes having angular character Yg~(O).

Teter defines the chemical hardness matrix H, ~ within
the LDA as

1 02E[pj
2 Of;Bf~

'

where E is the Janak functionalii and f; is the occu-
pation number of the ith state. Since the eigenvalue
e; = OE/Bf;, we have
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Thus, we shall not restrict ourselves to spherically sym-
metric (L = 0) perturbations, but will consider the gen-
eral L g 0 case.

For this purpose, it is useful to generalize from the
concept of an occupation number f; to the concept of
an "occupation matrix" or "density matrix" f,~, to be
defined shortly in Eq. (5). This generalization, previ-
ously introduced in other contexts, ' makes the hard-
ness analysis more complete. While f,~ is diagonal in the
atomic ground. state, or in a basis of energy eigenstates
of a perturbed system, it may be nondiagonal in a more
general representation of a perturbed system such as an
atom in a defective environment.

In our calculations, we use first-order density-
functional perturbation theory in the framework of
I DA, following the scheme formulated by Mahan and.
Subbaswamy. In the remainder of this section, we will
give a detailed formulation of the calculation of the gener-
alized hardness matrix elements with general occupation
matrix f;~ Bot.h the FWA and the full self-consistent
hardness are to be discussed. Then, we sketch the calcu-
lation of the dipole and higher susceptibilities, which is
straightforward after the machinery needed to calculate
the hardness elements has been set up. All the energies
are expressed in Rydberg units.

p(r) = ). f I.M n I.M(r) .

Here

f LM = ) C(LM; lm, l'm') f i
men'

BE
~nLM—

and the generalized hardness matrix

1 B E
KYPLL MM

2 gf gf

Within the framework of I.DA, application of Eq. (3) to
the latter yields

IInPLL'MM'
2

dr dr' n LM(r) ivh„, (r, r')

with C(LM; lm, l'm') being the Clebsch-Gordon coeffi-
cients, and n LM(r) = n (r) YLM(A) with n (r)
B„~(r)R i (r). In this notation, it is natural to intro-
duce the generalized Kohn-Sham eigenvalues

B. Generalized hardness
Here, the kernel is

6p(r')
/ifPL'M'

(io)

The ground-state atomic charge density n(r) of a
system can be expressed using occupation numbers f,
through

(4)

However, if one wants to express a perturbed or excited
atomic charge density in terms of (both filled and empty)
Kohn-Sham orbitals of a reference ground-state atom,
then, in general, the occupation numbers turn out to be
nondiagonal, so that the total charge density should be
expressed as

p(r) = ) f, @,*(r)Q, (r)",

BVh„,(r)
~h~c(» r ) =

~ (,)

IInPLL'MM' —IIa*.PL ~LL' ~M, —M' (i2)

Moreover, mh, can be decomposed into angular and ra-
dial terms as

with Vh„, (r) being the Hartree and exchange-correlation
potential.

YVe now make use of the spherical symmetry of the un-
perturbed. reference configuration. The eigenvalue e LM
is then only nonzero for I = M = 0 and n = n', I = l'.
As for the hardness matrix, the spherical symmetry im-
plies

where f;~ = f,b;~ only in the ground state. The most gen-
eral result of a perturbation is thus obtained by allowing
for nondiagonal terms f;~ to exist. ' Taking this into
account, we arrive at a more general form of the hardness
matrix. As we shall see, this provides a natural way to
test the transferability of a PSP to nonspherical environ-
ments.

We assume spherical symmetry of the unperturbed
reference atom. Instead. of working in the explicit
atomic representation f;~ = f„i „i, we find it con-
venient to work in a representation (nn'//'LM) in which
LM are labels of total angular momentum, and L
= Il —l'I, Il —l'I + 2, ... , l + /' following the usual angular-
momentum addition rules. Introducing the condensed
notation o. = nn'll', we have

~h- (r r') = ).~h..(«') YLM(~) YLM(~')

where

Svr r b V„. h (r —r')
m (r, r'& =hxc( ~ ) 2L + i &L+] + (i4)

1
HnP L—

2
dr dr r r n (r) mh„, (r, r )f ~p(r')

P

and r+ and r+ are the smaller and larger of r and r',
respectively. Note that the exchange-correlation term,
being local, is independent of L Thus, H pL in. Eq. (12)
becomes
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The density variation due to the variation of occupa-
tion numbers consists of two terms:

~~(r)
b

= n (r)+An (r) . (i6)

dr dr'r r' n (r) v)hl„~(r, r') np(r') (l7)

The erst term arises from the explicit dependence of den-
sity on the occupation numbers, while the second involves
relaxation of the wave function with changes of occupa-
tion. We will refer to the neglect of An as the FWA,
while the eÃect of the Ln term will be referred to as the
"self-consistency" (SC) correction. The FWA part of the
hardness matrix is relatively easy to calculate, and its di-
agonal case has previously been done for almost all atoms
in the Periodic Table. The SC correction is treated us-
ing density-functional linear-response theory, regarding
the change of f as an external perturbation.

We start with the calculation of the FWA hardness.
From Eqs. (i5) and (i6), it is easy to see that it may be
written as

and An = Ln in the immediate context, where o. is
the index of the state whose occupation is being varied.
However, the discussion given below is general, and the
indices nlm will henceforth be taken to refer to arbi-
trary occupied wave functions that respond to the per-
turbation. ) We do not actually need to calculate y itself;
instead, it is sufBcient to specify an iterative algorithm
for calculating its action upon the arbitrary perturbation
[Eq. (20) in our case].

The procedure is as follows. For the moment, we
assume that the first-order density change An~~l(r) is

known. The corresponding change Av„& (r) in the(L)

screened Kohn-Sham potential is then given by

(22)

This induces a Grst-order change in each Kohn-Sham
wave function satisfying

1

2
dr r'v~~) (r) np(r),

where v is the linear-order change of potential due to
the FWA variation of density with respect to f L,M. It
is given by

where Ro, e i, and @ i (r) are the unperturbed Kohn-
Sham Harniltonian, eigenvalue, and eigenfunction, re-
spectively, while Ae i and Ag i (r) are the corre-
sponding first-order changes. Decomposing Eq. (23) into
angular and radial parts, one Ands

v(L) dr'r" v)lh(r, r') n (r') .

The SC correction to the hardness arises because the
presence of v (r ) induces a change An (r) in the charge
density. The latter is computed self-consistently, treating
v (r) as though it were a bare potential perturbation.
According to a theorem by Eaves and Epstein, for a
closed-shell atom, the first-order induced charge density
has the same angular character as the perturbing poten-
tial. Within LDA (with spin-polarization neglected) the
ground state is always isotropic (equal population of each
m character of any given shell), so this theorem applies.
To linear order, we can write

I,+L
A@~lna (r) = ) C(LO; lm, l'm)AR~i j' (r) +&'~ (0)

1' =
I
l —L

I

(24)

where the C(LO; lm, l'm) are Clebsch-Gordon coefFicients
and the radial functions AB„ii (r) are the solutions of the
radial part of Eq. (23),

d' ll(l'+ i)+ 2 + Vion(r) + Vh~c(r) —enl AB~lli (r)

= [Ae-i- —Av-r(r)1 &-i(r) (25)

A ."'()= d' "~"'( ') ."'(') (20)

where y~+~ (r, r') is the linear susceptibility in radial coor-
dinates for perturbations of angular character L. Thus,
the self-consistent correction is given by

SCaa ~L=—

(2i)

The determination of the linear susceptibility
)(r, r') follows closely the modified Sternheimer ap-

proach discussed by Mahan and Subbaswamy. In what
follows, we consider the density response An~ )(r)
An~+~ (r)Ygo(O) to a general perturbation v~ l (r)
v~ ~(r)YL,o(O) of angular character L. (We have v = v

This inhomogeneous equation is solved numerically on
a radial mesh following Ref. 14. Finally, the change of
density resulting from Eq. (24) is

An~ (r) = ) AA
&&, (r) B (ri)D(ll', L),

n, l, l

(26)

f i = P f i and D(ll', L)
C (LO; lm, l'm). Iterative solution of Eqs. (22), (25),

and (26) thus gives the self-consistently screened density
change AnI+l(r) resulting from the perturbation v~+)(r)
in Eq. (20).

Before closing this subsection, we comment briefly on
the case of diagonal hardness, f,~

= f;b;~, so that one con-
siders only conventional occupation numbers f; = f i
The hardness matrix is then



52 CHEMICAL HARDNESS, LINEAR RESPONSE, AND. . . 11 797

1 0 E
H„)

2 ~fntm &fn'l'm'
(27)

previously in Eqs. (22)—(26). The polarizability in angu-
lar channel L is then

Since the charge density associated with Q„~ has angu-

lar character ~Yi (A)~ = P& p C(LO; lm, lm) YLp(A),
with L even, one finds

2lmin

H„i = ) C(LO; lm, lm) C(LO; l'm', j'm') H pL, .

with pi and p~ being the dipole and quadrupole suscep-
tibility, respectively.

(28) III. RESULTS

Here the sum is over even L only, I;„is the smaller of
I and 1', n = nnll, P = n'n'l'/', and H pL, are given by
Eq. (15). Thus, all of the diagonal hardness matrix el-
ements are contained. as special cases of the generalized
nondiagonal ones introduced earlier. Similar equations
relate the FWA and SC contributions separately. Note
that the diagonal formulation only covers variations of
the screening potential or density of even L (monopole,
quadrupole, etc.), whereas the generalized formulation
is capable of treating variations of any angular charac-
ter. In fact, perturbations of dipole (L = 1) character
are likely to be the most important nonspherical pertur-
bations in many molecular and solid-state environments,
especially at surfaces and other defects where inversion
symmetry is lacking. Therefore, in what follows we will
concentrate on comparisons of the AE and PSP nondiag-
onal hardness elements H pL„with special emphasis on
the I = 0 and L = 1 cases.

C. Polarizability

VL, (r) = r YL,p(A), (29)

and the linearly induced density change is

dn~ ~(r) = /dr'r' + y~ ~(r, r') . (3O)

This is evaluated using the same iterative procedure given

The polarizability of an atom measures its response to
an external electric field. The dipole (L = 1), quadrupole
(L = 2), and higher (L ) 2) polarizabilities are defined as
the derivatives of the Lth induced charge moment with
respect to an electrostatic potential of form r YLp(O).
For good transferability, it is important that the pseu-
doatom have polarizabilities similar to those of the all-
electron atom. We can expect the lower-moment polar-
izability to be more important, so we focus on the dipole
and quadrupole susceptibility in what follows. Tests of
the non-self-consistent polarizability of HSC pseudopo-
tentials have previously been performed for a large num-
ber of closed-shells atoms and ions by Bachelet et al. "
Here, we extend the tests to other atoms and also include
the SC correction.

The formulation and calculation of the polarizability
is straightforward ' using the machinery developed in
the previous subsections. The perturbing potential is
taken to have the form

In this part, we present our calculated hardness ma-
trix elements for a set of representative atoms. We begin
with all-electron atoms, surveying the characteristics of
the hardness matrix and the basic trends as a function
of position in the Periodic Table. We concentrate first
on argon, making the comparison between the AE and
PSP hardness matrix, discussing sources of error, and in-
troducing our format for presenting results in a system-
atic fashion. Next, we discuss trends as one goes across
the Periodic Table, and evaluate the importance of the
Louie-Froyen-Cohen (LFC) semi-core correction and the
eKects of varying the core radius. We will then propose a
method to extract the most important information from
the large number of hardness elements. Finally, the cal-
culated AE and PSP polarizabilities will be presented at
the end of this section.

The results reported here are restricted to potentials of
the HSC type. We believe that these results can be taken
as indicative for the whole class of norm-conserving HSC-
like PSP's, ' ' ' provided comparable cutoK radii are
chosen. For Kleinman-Bylander, 20 ultrasoft, 2i or other
approaches to PSP construction that deviate significantly
&om the original HSC method, addition investigation
may be appropriate.

A. Hardness matrix for all-electron atoms

Before studying the transferability of PSP's with ref-
erence to the hardness matrix elements H;~, we first need
to understand the behavior of H;z for all-electron atoms
in order to obtain some physical intuition. In Table I,
we show some matrix elements of the generalized hard-
ness for three characteristic AE atoms in the Periodic
Table. Silicon and argon are taken in the ground-state
neutral configuration, while for sodium we choose an ion-
ized valence configuration 38 3p ' in order to ensure
that the p electron is bound. The total self-consistent
hardness H = H + H is broken down into
frozen-wave-function approximation and self-consistent-
correction pieces as discussed in the previous section. For
some elements, the FWA contribution is further sepa-
rated into Hartree (h) and exchange-correlation (xc) con-
tributions, H = H" + H"'. The matrix elements
can be identified by quantum numbers o. = ninil&li,
P = n2nzl2lz, and L. Since the principle quantum num-
bers n are obvious in most cases, we will usually omit
them and write the indices simply as lili, l2l2', L.

From Table I, we see that H typically dominates,



11 798 FILIPPETTI, VANDERBILT, ZHONG, CAI, AND BACHELET 52

TABLE I. Calculated all-electron hardness matrix el-
ements of three representative atoms Na, Si, and
Ar. Both frozen-wave-function approximation (FWA) and
self-consistent (SC) contributions to the total hardness ele-
ments are listed. For some matrix elements, the FWA hard-
ness is broken down into Hartree (h) and exchange-correlation
(xc) contributions.

Na(3s' 3p '
) Si(3s 3p ) Ar(3s 3p )

ss, ss;L = 0
FWA
SC
Total
ss)pp)L = 0
FWA
SC
Total
pp pp'L = o
FWA (h)
FWA (xc)
FWA
SC
Total
sp, sp) L = 1
FWA (h)
FWA (xc)
FWA
SC
Total
pp pp L = 2
FWA (h)
FWA(xc)
FWA
SC
Total

0.1906
-0.0166
0.1741

0.1562
-0.0144
0.1417

0.1625
-0.0374
0.1251

-0.0131
0.1120

0.0367
-0.0319
0.0048

-0.0014
0.0033

0.0164
-0.0374
-0.0210
-0.0031
-0.0242

0.3923
-0.0931
0.2992

0.3437
-0.0737
0.2700

0.3260
-0.0197
0.3063

-0.0586
0.2477

0.0766
-0.0203
0.0563

-0.0306
0.0257

0.0321
-0.0197
0.0124

-0.0018
0.0106

0.6142
-0.1684
0.4457

0.5668
-0.1444
0.4224

0.5465
-0.0197
0.5268

-0.1240
0.4028

0.1275
-0.0212
0.1063

-0.0560
0.0504

0.0536
-0.0197
0.0339

-0.0068
0.0272

and the self-consistent correction H is only about
20 —30% of H .Nevertheless, this is clearly large
enough that complete neglect of H is unjustified. It
is also obvious from the table that H are mostly
positive, while the H are negative. For the diago-
nal elements (e.g. , excluding esp, sp; I = 0)), this can
be understood as follows. From Eq. (17), the Hartree
part of H can be seen to have the form of the
Coulomb self-energy of a particular charge distribution
n (r) YL,M (0), which must be positive. On the other
hand, the exchange-correlation contribution is negative
because bV„,/bn in Eq. (14) is negative. Typically, the
Hartree term dominates and H j.s posjtj. ve. Regard-
ing H, note that Eq. (21) can be interpreted as evalu-
ating the second-order energy change of the system when
the external potential of Eq. (19) is applied; the total en-

ergy must go down when the wave functions relax, so
that H must be negative.

Going from Na to Ar, we find that H increases
strongly, primarily because of the Hartree contribution
H" to H . This is in agreement with our intuition,
since the wave functions become much more localized as
one moves from left to right across the Periodic Table,
causing H" to increase sharply. In this sense, we can
refer to atoms (like Ar) on the right side of the Periodic

Table as "strongly electrostatic atoms" or "hard atoms, "
while those on the left side (like K) can be termed "soft."

Our results also indicate that the matrix elements of
H o™for L = 0 are significantly larger than those for
L ) 0. This implies that the diagonal hardness elements
defined in Eq. (28) are dominated by the spherically sym-
metric part of the response. A closer inspection reveals
that H" decreases strongly with increasing L, while H '
is smaller and, being a local operator, independent of
L. This gives rise to an overall small H for high
L. In a few cases where the valence wave function was

very weakly bound and delocalized, we have found that
H ' can even be larger in magnitude than H", resulting
in a small but n, eg~tige Ht t 1 We regard this as an un-

physical result that rejects the overestimate of exchange-
correlation effects by the I DA in the low-density tail of
the atom.

B. Argon: AE and PSP hardness

Having gained some understanding of the AE hardness
matrix, we turn now to a comparison of the PSP hardness
elements with the corresponding AE ones. We begin with
argon. In Table II we list values for some important
hardness matrix elements calculated for the AE and PSP
Ar+ ion in configuration 8 p d . The HSC PSP was
generated in this configuration, using a core radius r 1
a.u. We also show the relative errors for another valence
configuration, 8 p d

Comparing the AE and PSP results, we find very good
agreement for the L = 0 matrix elements. Norm con-
servation imposes the constraint that the L = 0 compo-
nent of the electrostatic potential in the PSP case should
match the AE one outside the core region. Consequently,
for small core radii the differences between AE and PSP
values of H" are essentially confined to I & 0 moments.
Actually, we find that the errors in H" are relatively
insensitive to a modest increase of core radius for hard
atoms like Ar.

Because of this constraint, while the Hartree contribu-
tion is large in magnitude, it may only incur a small error
in hardness. For Ar, the H"' are quite small and their
contributions to the error are not very significant. So,
for Ar, the agreement between AE and PSP hardness el-
ements is excellent in the spherically symmetric (L = 0)
channel. The relative errors for L & 0 channels are larger
( 20% for L = 1 and 4% for L = 2). However, since
their absolute magnitudes are small, they are not as im-
portant. As a result, the overall agreement between AE
and PSP hardness agrees is very good. We also checked
that changing the testing configuration affects the results
only very slightly.

In order to avoid presenting numerous cumbersome ta-
bles, we have converted the information into the form of
a bar chart as shown in Fig. 1. The heights of the bars
represent the values of the corresponding hardness ma-
trix elements. The columns indicate different contribu-
tions to a given hardness matrix element, whose indices
are labeled by the rom. The results for AE and PSP
atoms are placed side-by-side to facilitate comparison;
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hollow bars indicate AE results while dashed bars repre-
sent PSP results. The values for L & 0 elements, being
small, are magnified in the diagram. We believe the dis-
cussion is easier to follow by viewing such diagrams, so
all subsequent hardness results will be presented in this
way.

1.2 5.7do. 1 5.5dO. 5

AE (Ry) PSP (Ry) error (%%uo) error '(%)
ss, ss;I = 0
FWA (h)
FWA (xc)
FWA
SC
Total
pp pp L=0
FWA (h)
FWA (xc)
FWA
SC
Total
dd, dd;L = 0
FWA (h)
FWA (xc)
FWA
SC
Total
sp, sp;L = 1
FWA (h)
FWA (xc)
FWA
SC
Total
sp, pd;L = 1
FWA (/E)
FWA (xc)
FWA
SC
Total
pp, pp;L = 2
FWA (h)
FWA (xc)
FWA
SC
Total
dd, dd;I = 2
FWA (h)
FWA (xc)
FWA
SC
Total

0.6588
-0.0273
0.6315

-0.1421
0.4894

0.5876
-0.0230
0.5646

-0.1139
0.4507

0.3237
-0.0341
0.2897

-0.0380
0.2517

0.1365
-0.0244
0.1120

-0.0475
0.0645

0.0935
-0.0160
0.0775

-0.0331
0.0443

0.0586
-0.0230
0.0356

-0.0055
0.0301

0.0283
-0.0341
-0.0057
-0.0026
-0.0083

0.6562
-0.0308
0.6254

-0.1367
0.4887

0.5845
-0.0254
0.5591

-0.1092
0.4500

0.3234
-0.0344
0.2890

-0.0375
0.2515

0.1417
-0.0274
0.1144

-0.0342
0.0801

0.0987
-0.0178
0.0809

-0.0254
0.0555

0.0606
-0.0254
0.0352

-0.0037
0.0315

0.0286
-0.0344
-0.0058
-0.0022
-0.0080

0.39
12.98
0.97
3.80
0.15

0.53
10.24
0.97
4.17
0.16

0.10
0.81
0.24
1.24
0.09

3.84
12.12

2 ~ 13
27.91
24.25

5.56
11.12
4.41

23.23
25.30

3.33
10.24
1.13

32.48
4.60

1.03
0.81
1.49

15.29
3.76

0.41
13.09
1.01
3.26
0.07

0.54
10.51
1.00
3.44
0.11

0.12
1.81
0.29
1.37
0.05

3.91
12.25

2.05
27.45
21.17

5.87
12.03
4.58

22.75
22.54

3.31
10.51
1.43

31.92
3.87

1.09
1.81
0.96

23.91
8.88

TABLE II. All-electron (AE) and HSC pseudopotential
(PSP) hardness matrix elements for Ar. Two different elec-
tronic con6gurations are considered. The error is the per-
centage difference between PSP and AE hardness. Total
hardness (total) is decomposed into frozen-wave-function ap-
proximation (FWA) and self-consistent (SC) contributions,
while the FWA is further decomposed into Hartree (h) and
exchange-correlation (xc) contributions.

C. From Ar to K

Argon is a rare-gas element. To explore the general
trends of the hardness matrix along the Periodic Table,
we further calculated the hardness matrix for atoms hav-
ing a wide range of properties.

We start with Si. To study the eKect of core radius r
on the quality of PSP generated. , we plot in Fig. 2 the
results for both small and large r indicated by dashed
and shaded bars respectively (values for r, are indicated
in the captions). The AE results are still plotted with
hollow bars. These results are for Si+ in configuration
8 p d . For small r„ the PSP hardness elements for Si
agree with the AE results very well. (The biggest errors
occur for I = I elements as for Ar. ) With the exception
of (dd, dd; L = 0) elements, a worsening of the agreement
in total hardness is evident in the L = 0 channel for larger
r, . (The d wave function is nodeless and very delocalized,
and thus insensitive to changes in core radius. )

One expects that increasing r, should always make the
PSP less transferable, but the sensitivity can be difFer-
ent for difFerent elements. In Fig. 3, we show a similar
diagram for oxygen, again using hashed and shaded bars
to represent hardness elements for a PSP with small and

h xc FWA SC total

ss, ss
i/g

L=p

//

L=O

I y/3

0.6
0.3
0.0
-0.3

L=P J~

sp, sp
L=1
(x3)

(x3)

PP PP
ll// i v~

(x5)

dd, dd
L=2

~ kg
(x5) I t/3

Vtl

FIG. 1. Magnitudes of some important hardness matrix
elements for Ar in con6guration 3s 3p ' 3d . The hol-
low bars represent the all-electron results while the' dashed
bars represent pseudopotential results at r, = 0.9 a.u. ,
r „= r q

——1.0 a.u. Diferent contributions are decom-
posed into different columns as, "h" (Hartree), "xc" (ex-
change-correlation), "FWA" (total hardness under frozen
wave-function approximation), "SC" (self-consistent correc-
tion), and "total" hardness. The I ) 0 hardness matrix ele-
ments are rescaled by a factor of 2L + 1 to make them more
clear.
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h xc FWA SC total

SS,SS
L=O

PP PP
L=O

0.4
0.2

e 0 0
-0.2

rJJ

I vrsws

dd, dd
L=O

sp, sp
L=1
(x3)

stan,
pcl

(x3)

I =2
I %3

(x5)

dCl, Cld
L=2
(x5)

~i~~& I N5

FIG. 2. Hardness matrix elements for Si+ in con6guration
s p d . Hollow bars represent AE results, while the dashed
and shaded bars represent PSP results at r, = 1.1 a.u. ,
r „=1.2 a.u. , r g

——0.8 a.u. , and r, = 2.3 a.u. , r,„=2.4
a.u. , r d,

——0.8 a.u. , respectively.

large r . We find that the eKect of increasing r is more
dramatic for O. A more complete picture of the effect of
r will be presented later.

We next focus on a couple of cases to characterize the
role of the LFC correction. In the following figures, we
use the shaded bars to represent PSP results with such
LFC correction. The results we presented are for K+
in s ' p ' d ' (Fig. 4) and Ti+ in configuration
sicko 2sd2 (Fig. 5). For K, we find that the LFC greatly
reduces the error due to the H ' contribution to the hard-
ness matrix elements even for the I = 0 channel. The
LFC-corrected hardness matrices are in good agreement
with the AE results. For Ti, the LFC successfully cor-
rects the noticeable mismatch between AE and no-LFC
results for I"' contributions to the (dd, dd; I = 0) and
(dd, dd; L = 2) elements. (The no-LFC total hardness in
the (dd, dd; I = 0) happens to match the AE one rather
closely, but only because of a fortuitous cancellation of
errors.

The hardness results obviously depend on details of
the PSP construction, but we note the following gen-
eral trends. In going from left to right across a row of
the Periodic Table, an increasing atomic number tends
to localize the core density closer to the nucleus and to
reduce the size of the core. Consequently, the overlap
between core and valence charge densities, which is the
source of the nonlinearity in the exchange-correlation po-
tential, gets smaller and smaller. Such an overlap, when
significant, is largely responsible for the errors in the
self-consistent contribution to hardness as well, i.e. , for

SS,SS
L=O

PP PP
L=O

h xc FWA SC total

0.8
04

l rem
-0.4

ss,ss
L=O

PP PP
L P

h xc FWA SQ total

0.2
0.1
0.0

— -0.1

Cld, ClCl

L=O
dd, dd

L='O

SP,SP
L= l

(x3)

ski, pcl

(x3)

PP PP

(x5) I Y~

dd, dd
L=2
(x5)

I VA%

sp, sp
L='1

(x3)

sp~pd

(x3)

PP PP
L=2
(x5)

dd, dd
L=2
(x5)

I ~
c~gw ——

l
~ ~

FIG. 3. Hardness matrix elements for 0 in con6guration
s p d ' . Hollow bars represent AE results, w'hile the
dashed and shaded bars represent PSP results at r, = 0.8
a.u. , r „=0.9 a.u. , r d,

——0.8 a.u. , and r, = 2.9 a.u. , r „=3.0
a.u. , r d, = 0.8 a.u. , respectively.

FIG. 4. Hardness matrix elements for K in con6guration
s '

p d . Hollow bars represent AE results, while the
dashed and shaded bars represent PSP results (r„=1.8 a.u. ,
r „=2.3 a.u. , and r,q = 1.2 a.u. ) without and with the LFC
partial-core correction, respectively.
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h xc FWA SC total

0.6
SS,SS 0.3

IM

PPiPP
L=o IM

dd, dd
Yg

L='O

-0.3

sp, sp
L=1
(x3)

'e
(x3)

I I/ASSIarm

PP PP
l V~

(x5) l VARI

L='2 IM g e
(x5) ~p~

4

FIG. 5. Hardness matrix elements for Ti in configura-
tion s p d . Hollow bars represent AE results, while the
dashed and shaded bars represent PSP results (r„=1.8 a.u. ,

r,„=2.3 a.u. , and r,q = 0.8 a.u. ) without and with the LFC
partial-core correction, respectively.

However, there is so much information contained in the
numerous matrix elements of the hardness matrix that
it becomes difFicult to decide whether a particular PSP
shows "good" or "poor" transferability. Thus, it is de-
sirable-to define a single quantity that can be used to
represent approximately the overall transferability of the
PSP. There is certainly no unique way to do this, since
the importance of different matrix elements depends on
the target application. Nevertheless, we propose one such
definition, which at least can be used as a starting point.

We define an average hardness error X as follows:

X = ) iU pL, (b,H pl. )
APL

(32)

Here LH is the difIerence between total AE and PSP
hardness matrix elements, and ~ pl, is a weight to be
defined shortly. Thus, X is just a weighted rms average
of the errors in the hardness matrix elements.

To fix the weights m pl. , we have adopted the fol-
lowing philosophy. We want X to represent an average
total-energy error that would occur as the PSP atom is
transferred to an ensemble of target environments, where
the distribution of target environments is characterized
by specifying the average occupation N~ and the typical
fluctuation in occupation g~, for each electron shell. In
the spirit of the hardness approach, we can estimate the
change in total energy of the atom as it is inserted into
a given environment as

a poor description of the rearrangement of the pseudo-
wave-functions. Provided that one takes small core radii
to minimize errors in the Hartree contributions, the de-
gree of core-valence overlap almost entirely determines
the PSP transferability. Rare-gas atoms thus have max-
imum transferability without LFC, while alkali atoms
need the LFC correction the most.

Moving along the columns of the Periodic Table, the
trends are naturally much weaker. In fact, the net pos-
itive charge seen by the valence electrons is nearly the
same. However, a slight increase of overlap occurs, along
with a corresponding loss of transferability of non-LFC
PSP, as one goes down the columns.

From our hardness matrix results, we can investigate
whether there is a systematic way to improve the PSP
transferability. The Hartree contribution can be im-
proved by imposing additional conditions on the pseudo-
wave-functions, e.g. , matching of the valence electrostatic
potentials for higher-order multiple moments. However,
it is not clear whether the gain in transferability would
justify the drawbacks of imposing additional constraints.
As regards the exchange-correlation terms, while some
other approaches have been tried, the LFC correction
seems to be the simplest and most efFicient method.

) H PL ~f I,M ~fPr, M .
cxPLNI

If each contribution' were statistically independent, one
would have

(DE) = ( L+ 1) ) H~&L8f~l. M 8f&I,M
APL

(34)

To make things simple, we assume that the fluctuation g~

is a function only of the average occupation %t and the
maximum occupation 2(2l + 1) of the shell. We choose
the form

gI = (2l + 1) +2fI(1 —fI), (35)

where fI is the fractional occupancy, fI ——%I/2(2l + 1).
The first term makes the fluctuation proportional to the
number of electrons that could be accommodated in the
shell; the second forces the fiuctuation to zero for either a
completely filled or a completely empty shell in a manner
that respects electron-hole symmetry. Making the addi-
tional rough approximation that 8f LM oc I)I rlI~ and

bf&IM oc I)I&rlI (where n = n n' l l' and the n sub-

scripts are suppressed) and replacing (H pl, ) by the AE
versus PSP error (AH pl. ), we arrive at the right-hand
side of Eq. (32) with

D. Average hardness errors ni~pL, = (2L + 1) gI. i)I rlI (36)

We have shown that it is useful to characterize the
transferability of a PSP in terms of its hardness matrix.

Thus, we have defined X through Eqs. (32), (36), and
(35), in such a way that it depends only on a specifica-
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tion of the reference electronic configuration (the Ni val-
ues). Our definition puts no weight on completely filled
or completely empty shells, and heavily weights partially
filled shells.

We would be the first to admit that the choices above
are largely arbitrary, but we believe they are reasonable
ones, and we proceed to use this measure to study the
effect of variations in core radius upon PSP transferabil-
ity. In Figs. 6 and 7, we show the calculated average
hardness error X for a set of six elements as a function
of r, = (r„+r,„)/2. Here, r,„—r„ is kept constant. We
do not change r,p, since it does not afFect X appreciably
for the atoms studied here (with no d electrons inside
the core). The hardness error X' (and the hardness it-
self) is much greater for first-row elements C and 0, so
they are plotted on a different scale. It can be seen that
the behavior of X difFers considerably between elements.
For K (with LFC correction), A is very insensitive to
r„and there is thus wide flexibility in the choice of an
appropriate r . For 0, C, and Ga, X increases in an ap-
proximately linear fashion as r is increased &om 1.5 to
3.5 au, while X increases more rapidly for Si and Ar as
r, is increased.

E. Pelarizability

In Table III, we show our calculated dipole (I = 1) and
quadrupole (I = 2) polarizability for some AE and PSP
atoms. Our AE results for rare-gas and closed-shell ions
agree very well with previous calculations. ' The re-
sults for the dipole polarizability are also in good agree-
ment with experiment. (Experimental values for higher-
moment polarizability do not appear to be available. )
For example, for the K+ ion, we find the dipole suscep-
tibility to be 5.74 a.u. , compared to 5.86 a.u. and 5.47
a.u. &om previous theory and the experiment, re-
spectively. Note that most of the results reported below
are for open-shell atoms or ions. It should be empha-
sized that in these cases, our results are a theoretical
fiction in that we assume symmetrized occupations (e.g. ,

co 40

3.0

cn 2.0
cd

0

0.0----
0.0 1.0 2.0 3.0 4.0

Core Radius (a.u.)

FIG. 6. Calculated average hardness error for Ar, Si, Ga,
and K as a function of core radius used in the PSP genera-
tion. The configurations used to calculate the average hard-
ness errors are Ar (3s ' 3p ' 3d ' ), Si (3s 3p ' 3d ' ), Ga

tial-core correction was employed only for K.

150

m 100
6$

50

0 ~tII ~
I

0.0 1.0 2.0 3.0 4.0
Core Radius (a.u. )

FIG. 7. Calculated average hardness error for C and 0 as
a function of core radius used in the PSP generation. The
configurations used to calculate the average hardness errors
are C (2s ' 2p ' 3d '

) and 0 (2s 2p ' 3d ' ). The LFC par-
tial-core correction was not employed.

s2p ~ p„~ p, ~ for C) that have little relation to the real
atomic ground state. Nevertheless, we believe it is mean-
ingful to compare AE and PSP polarizability calculated
in this way as a means of testing the transferability of
a PSP. We tend to prefer tests on ionized configurations
(e.g. , Si+ instead of Si) because we have found that shal-
low orbitals in neutral open-shell atoms sometimes give
such enormous contributions to the polarizability that
comparison becomes diKcult. All PSP's are built choos-
ing small core radii (e.g. , r„=1.1 a.u. for Si+), and for
K the LFC correction was used.

We first consider the all-electron results. To test the
effect of self-consistent screening, we report both FWA
and SC polarizabilities. All pseudopotentials are built
choosing small core radii, and for potassium, the LFC
correction is used. In all cases, the core polarizability
is included in the all-electron value. As a example, we
show the core contribution of K+ to its all-electron po-
lariz ability.

Looking at Table III, it is evident that only the
dipole polarizability is strongly affected by self-consistent
screening. The screening reduces the dipole polarizabil-
ity by around 40%, while the quadrupole susceptibility
is typically reduced by only about 3%%uo. Exceptions to
this pattern occur for some highly polarizable atoms like
potassium, for which the screening correction is still size-
able in the quadrupole channel.

Three factors contribute to the difference between PSP
and AE polarizability: (i) the core contribution; (ii) the
difference between unperturbed pseudo- and AE wave
functions inside the core region; and (iii) difFerences in
the first-order changes in the valence wave functions. Re-
garding (iii), the wave function changes are determined
in part by admixture of angular-momentum components
higher than those which are present in the unperturbed
reference configuration. For these components (typically
l & 3), no norm-conservation or tail-matching conditions
were imposed. Because the PSP usually contains no non-
local projectors for large l, these wave functions feel only
the local potential, which is usually set in a very arbi-
trary manner. This appears to be the most significant
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TABLE III. Comparison between all-electron (AE) and pseudopotential (PSP) dipole and
quadrupole polarizability in atomic units (e = 2) for selected ions.

Frozen-wave approximation
AE PSP error (%)

Self-consistent results
AE PSP error (%)

Dipole
K+
K+0.3 (

0.7)
C+ (s p')

+05
(

2 55)
Si+ (s'p')

+0.5
(

2.0 0.5)

T+ (
2 Odl)

Quadrupole
K+
K+0.3 (

0.7)
C+ (s p')
A+05 (

2 55)
Si+ (s p')

+0.5
(

2.0 0.5)

Ti+ (s2p d')

8.89
181.94
10.04
13.82
31.61
46.97
30.38
90.50

18.7
2530
16.4
38.2

107.5
220.1
107.4
301.8

175.76
10.16
13.93
31.82
45.12
29.60
90.61

2521
16.4
38.2

107.5
218.8
106.7
286.8

3.4
1.2
0.8
0.7
3.9
2.6
0.1

0.3
0.0
0.0
0.0
0.6
0.7
5.0

5.74
165.89

6.04
9.01

19.11
29.60
18.93
47.98

18.2
3044
16.8
37.8

108.2
228.5
108.9
319.9

164.83
6.04
9.02

19.19
29.97
19.12
48.26

3029
16.8
37.8

108.3
228.1
108.5
316.1

0.6
0.0
0.2
0.4
1.2
0.9
0.6

0.5
0.0
0.0
0.1
0.2
0.3
1.2

source of error in PSP polarizability. For example, we
have calculated the PSP polarizability of Ar both with
and without an f component in the nonlocal projector.
We find that the calculated values for both the dipole
and quadrupole polarizabilities' are about 15%%uo too small
when the f component of the projector is omitted. This
eKect was already noted in Ref. 17, where many other
examples can be found. All the results in Table III are
obtained using a PSP with a complete projector (up to
I =3).

The results in the table indicate that while the screen-
ing correction generally improves the agreement between
AE and PSP for the dipole susceptibility, the error in
the quadrupole susceptibility is almost una8'ected. Gen-
erally, we find a very good agreement between the self-
consistent AE and PSP results. However, it should
be noted that all results shown in the table were ob-
tained using a PSP generated from the same configura-
tion for which the polarizability calculation was made. If
we change the PSP reference configuration considerably,
larger changes in the calculated PSP polarizability may
occur.

flee the response of the PSP atom to external fields.
When used together with conventional criteria such as
norm-conservation and matching of eigenvalues and log-
arithmic derivatives, this approach allows a rather com-
plete characterization of PSP transferability.

We have applied the method to study the behavior
of Hamann-Schluter-Chiang pseudopotentials for many
atoms in the Periodic Table. As expected, the calcu-
lated hardness matrix indicates that the transferability
deteriorates as the core radius is increased. For some ele-
ments with relatively delocalized cores, we find strong ev-
idence for the importance of including the Louie-Froyen-
Cohen semicore correction. We propose a method for
reducing the large amount of information contained in
the hardness matrix to a single number. We suggest
that this quantity be monitored or included in the fitting
procedure when generating pseudopotentials, in order to
achieve the desired properties (e.g. , optimal smoothness)
without sacrificing transferability.
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