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We calculate the transmission and absorption of electromagnetic waves propagating in two-

dimensional (2D) and 3D periodic metallic photonic band-gap (PBG) structures. For 2D systems, there
is substantial difference between the s- and p-polarized waves. The p-polarized waves exhibit behavior
similar to the dielectric PBG s. But, the s-polarized waves have a cutoff frequency below which there are
no propagating modes. For 3D systems, the results are qualitatively the same for both polarizations but
there are important differences related to the topology of the structure. For 3D structures with isolated
metallic scatterers (cermet topology), the behavior is similar to that of the dielectric PBG s, while for 3D
structures with the metal forming a continuous network (network topology), there is a cutoff frequency
below which there are no propagating modes. The systems with the network topology may have some
interesting applications for frequencies less than about 1 THz where the absorption can be neglected.
We also study the role of the defects in the metallic structures.

I. INTRODUCTION

Recently, there has been growing interest in the devel-
opment of easily fabricated photonic band-gap (PBG) ma-
terials these are periodic dielectric materials exhibit-
ing frequency regions where electromagnetic (em) waves
cannot propagate. The reason for the interest on PBG
materials arises from the possible applications of those
materials in several scientific and technical areas such as
filters, optical switches, cavities, design of more eKcient
lasers, etc.' Most of the research eIIort has been con-
centrated in the development of two-dimensional (2D)
and 3D PBG materials consisting of positive and
frequency-independent dielectrics' ' because, in that
case, one neglect the possible problems related to the ab-
sorption.

However, there is some more recent work on PBG ma-
terials constructed from metals ' which suggests that
those metallic structures may be advantageous in low-
frequency regions where the metals become almost per-
fect reflectors. In this paper, we study 2D and 3D metal-
lic PBG structures; in order to find the possible advan-
tages of metallic PBG materials, we compare their results
with the corresponding results for PBG materials con-
structed with positive and frequency-independent dielec-
tric constants. Also, by changing the scale of the struc-
tures, we find the frequency regions where metallic PBG
materials can be practically used.

We use the transfer-matrix method (TMM), recently
introduced by Pendry and MacKinnon, ' to calculate the
em transmission through the PBG materials. In the
TMM, the total volume of the system is divided into
small cells and the fields in each cell are coupled to those
in the neighboring cells. Then the transfer matrix can be
defined by relating the incident fields on one side of the
PBG structure with the outgoing fields on the other side.
Using the TMM, the band structure of an infinite period-
ic system can be calculated, but the main advantage of
this method is the calculation of the transmission and

reQection coeKcients for em waves of various frequencies
incident on a finite-thickness slab of the PBG material.
In that case, the material is assumed to be periodic in the
directions parallel to the interfaces. The TMM has previ-
ously been applied in studies of defects in 2D PBG struc-
tures, ' of- PBG materials in which the dielectric con-
stants are complex and frequency dependent, of 3D
layer-by-layer PBG materials, ' and of 2D metallic PBG
structures. In all these examples, the agreement be-
tween theoretical predictions and experimental measure-
ments was very good.

We use the following frequency-dependent dielectric
constant for the metal:

e(v)=1-
v(v i y )—

where v =3600 THz and @=340 THz are the plasma
frequency and the absorption coefticient. From the previ-
ous equation, it turns out that the conductivity is
o =v~y/2(y +v ). For frequencies smaller than about
100 THz, o. can be practically assumed independent of
frequency and equal to 0.22 X 10 (0 cm) ' which is very
close to the o. of Ti. However, the conclusions are simi-
lar for any other metal. The skin depth is
5=c(p,vo )

' /2~ where c is the velocity of light a..d p
is the magnetic permeability which is 1 in our case. So
for v=100 and 10 THz, the skin depth is 0.035 and 0.11
pm, respectively.

II. 20 STRUCTURES

In this section, we study 2D systems consisting of
infinitely long metallic cylinders parallel to the z axis, em-
bedded in air and forming a square lattice with lattice
constant a; the systems have finite thickness 1. along the y
axis and they are infinite along the x axis (similar systems
with dielectric cylinders have been studied in Refs. 7, 9,
and 12). The k vectors, of the incident em waves form an
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angle 0 with the y axis and their E field is either parallel
or perpendicular (s or p polarization) to the z axis. Each
unit cell is divided into 20X20 cells resulting in a conver-
gence of better than 3%.

Figure 1 shows the transmission and absorption of s-
polarized waves for a system consisting of metallic
cylinders with fi11ing ratio f =0. 1, a = 1.27 pm, and
L =2a. For 8=0' (solid lines in Fig. 1), there are two
gaps in the transmission separated by a sharp peak which
is located at around 125 THz. The lowest gap extends
from zero up to a cutoff frequency v, = 125 THz and it is
very sharp since there is —23 dB per unit cell drop in the
transmission at 50 THz. This cutoff frequency is an im-
portant feature of s-polarized waves propagating in 2D
metallic PBG structures which distinguishes them from
the corresponding case of 2D dielectric PBG structures.
The second weak gap (from around 125 to 200 THz) is
less sharp with —9 dB per unit cell drop in the transmis-
sion at 160 THz. The absorption [Fig. 1(b)] increases al-
most linearly with the frequency except for a sharp peak
at 125 THz. Note that there is a peak in the transmission
at around the same frequency. This is the result of the
fact that the wave can actually propagate through the
whole system while for frequencies inside the gaps the
wave is actually reAected, so one expects the absorption
to be smaller in the frequencies where the gaps appear.

Increasing the incident angle, the second gap tends to
disappear while the first gap survives and actually be-
comes wider; in particular, the cutoff frequency v, is 140
and 150 THz for 8=30' and 40, respectively. Also the
absorption [Fig. 1(b)] becomes smaller (especially at low
frequencies) as the incident angle increases.

The behavior of the transmission is different for the p
polarization. For 8=0' [solid line in Fig. 2(a)], there is
only a small drop in the transmission at around 115 THz;
this drop tends to disappear as the incident angle in-
creases while other sharper drops appear at higher fre-
quencies [see Fig. 2(a)]. In other words, the transmission
profiles for the p-polarized em waves propagating in me-
tallic PBG structures are similar to the profiles of em
waves propagating in PBG materials with positive and
frequency-independent dielectric constants. The absorp-
tion increases almost linearly as a function of frequency,
and in general it increases as the incident angle increases
[Fig. 2(b)].

In order to explain the previous results, we make the
plausible assumption that the cylinders form infinitely
long metallic plates parallel to the x,y plane with small
thickness separated by d. For s-polarized waves, the pre-
vious assumption leads to a simple waveguide model with
dimension d. In that case, the allowed propagating
modes are given by the relation

me

2d +en
(2)

where m =1,2, 3, . . . , c is the velocity of light in air and
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FIG. 1. Transmission and absorption for s-polarized em
waves propagating in a 2D square lattice consisting of metallic
cylinders with filling ratio f=0. 1 embedded in air; the lattice
constant is a = 1.27 pm and the thickness is L =2a. Solid, dot-
ted, and dashed lines correspond to incident angles 0=0', 30,
and 60', respectively.
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FIG. 2. The same as in Fig. 1 for p-polarized em waves.
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eo is the dielectric constant for the material which is be-
tween the metallic plates. So for so=1 and assuming that
d is roughly equal to the lattice constant, a =1.27 pm,
the lowest allowed mode is v& =118THz which is in good
agreement with the cutoff frequency of 125 THz for the s
polarization (Fig. 1). Also the previous formula [Eq. (2)]
suggests that the cutoff frequency depends on the dielec-
tric constant of the surrounding medium ( v, depends on

) which is also in agreement with the TMM results.
For the p polarization, the waveguide model does not ap-
ply and therefore no cutoff frequency is obtained in agree-
ment with the TMM results (Fig. 2). Note that the re-
sults are qualitatively similar to those obtained from the
electromagnetic theory of gratings. However, in the
case of gratings, one is dealing with just one layer of per-
fectly arranged metallic cylinders while in the present
case, we are studying cases with more than one layer as
well as cases in which defects have been introduced in an
initially periodic system.

For s-polarized waves, by decreasing the filling ratio f,
the cutoff frequency becomes smaller while the transmis-
sion increases for all frequencies; in particular, for
a =1.27 pm, 0=0', and I.=2a, v, is 100 and 125 THz
for f =0.03 and 0.10, respectively. By decreasing the
filling ratio, the distance d in the waveguide model de-
scribed previously [Eq. (2)] increases. So the cutoff fre-
quency decreases, in accordance with the TMM results.
Keeping the filling ratio constant, the transmission T de-
creases almost exponentially with thickness for all the
frequencies inside the gaps but the transmission at the
cutoff frequency remains almost the same.

Figure 3 shows the transmission and the absorption of
s-polarized waves as a function of the dimensionless fre-
quency va/c for 1.=2a,f =0.1, and 8=0'. In contrast
to the dielectric PBG materials, the results change as we
scale the dimensions of the structure. The dimensionless
cutoff frequency v, a/c is 0.42, 0.54, and 0.55 for
a =0.127, 1.27, and 12.7 pm, respectively. This indicates
that there is a convergence of the dimensionless cutoff
frequency to a constant value, so the cutoff frequency in
the microwave and millimeter regions can be predicted.
Comparison of the transmission for a = 1.27 and 12.7 pm
[dotted and dashed lines in Fig. 3(a)] shows that the peak
in the transmission at the cutoff frequency becomes
sharper as the lattice constant increases. The absorption
[Fig. 3(b)] becomes smaller as the lattice constant in-
creases; in particular, the absorption at va/c =0.2 is
0.31, 0.13, and 0.04 for a =0.127, 1.27, and 12.7 pm, re-
spectively. For a constant value of va/c, the ratio of the
skin depth to the lattice constant a is inversely propor-
tional to the square root of a (this is correct for frequen-
cies less than 100 THz). This means that, by increasing
the lattice constant, the part of the wave which
penetrates into the metal (this part is responsible for the
absorption) becomes smaller. So the absorption must be-
come smaller as the lattice constant increases and eventu-
ally it will be negligible in the microwave and millimeter
wave regions. Also, due to the fact that the penetration
of the wave into the metal becomes smaller on increasing
the lattice constant, the dimension d of the waveguide
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FIG. 3. Transmission and absorption of s-polarized em waves
propagating in a system similar to the one described in Fig. 1.
Solid, dotted, and dashed lines correspond to a =0.127, 1.27,
and 12.7 pm, respectively; 8=0 .

model [Eq. (2)] decreases and the dimensionless cutoff fre-
quently increases in accordance with the TMM results.

In the following part of this section, we study how the
transmission and absorption of s-polarized waves propa-
gating in the periodic 2D systems described previously
change on the introduction of defects in those structures.
A supercell with a size of 3a along the x axis has been
used and periodic boundary conditions are imposed at
the edges of the supercell along the x axis; the systems
are finite along the y axis with thickness L, =3a; a = 1.27
pm, f =0. 1 and k is along the y axis. Two kinds of de-
fects are introduced. First, by adding one cylinder in the
system (dotted lines in Fig. 4); in that case the transmis-
sion and absorption change slightly from the correspond-
ing values of the periodic case (compare solid and dotted
lines in Fig. 4). Second, by changing the radius rd of one
of the cylinders; the ratio rd /r (where r is the radius in
the periodic case) gives the amount of discrepancy from
the periodicity. For rd/r =0 (this corresponds to a case
where one of the cylinders is removed; dashed lines in
Fig. 4) there is a peak in the transmission due to the de-
fect at v=87 THz. The quality factor is defined as
Q =vd/(v+ —v ); vz is the frequency where the peak
appears and v+ and v are the frequencies above and
below vd where the transmission in 3 dB smaller than
that at vd. For rd/r=0, by increasing the lattice con-
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FICx. 4. Transmission and absorption for s-polarized em
waves propagating in a 2D square lattice consisting of metallic
cylinders with filling ratio f =0. 1 embedded in air; the lattice
constant is a = 1.27 pm, the thickness is L =3a, and 0=0 . A
supercell of width 3a has been used with periodic boundary con-
ditions at the edges of the supercell. Results for the cases where
one cylinder is added (dashed), one cylinder is removed (dotted),
and the perfect lattice (solid) are shown.

stant a, Q and the transmission at the top of the peak in-
crease, while the dimensionless frequency at the peak
does not change. In particular, for a =6.35 and 12.7 pm,
the transmission at the top of the peak is —26 and —20
dB, respectively, Q is 39 and 34, respectively, while the
dimensionless frequency of the defect is 0.38 in both
cases. Finally, we find that Q decreases sharply and vd
increases as rd lr increases. In particular, for a =1.28
pm and f =0.1, Q =2 and vd =91 THz when

rd lr=0. 05 while for rd lr=0. 1 there is only a small
shoulder instead of a peak at 100 THz.

III. 30 STRUCTURES

We study first 30 systems consisting of isolated metal-
lic scatterers embedded in air (cement topology ' ). Fig-
ure 5 shows the transmission and absorption of em waves
propagating in a simple cubic (sc) lattice consisting of
metallic spheres with filling ratio f =0.03. The system is
infinite along the x and y directions while its thickness
along the z axis is I.=4a and the incident waves have k
along the z axis. The results for both polarizations are
the same due to the symmetry of the lattice. For the

FICx. 5. Transmission and absorption vs the dimensionless
frequency va /e for em waves propagating in a 3D sc lattice con-
sisting of metallic spheres with f =0.03, I. =4a, and 0=0 .
Solid and doted lines correspond to a = 1.27 and 12.7 pm.

present as well for all the following cases, each unit cell is
divided into 10X 10X 10 cells, which gives a convergence
of better than 5% for the periodic cases and better than
15% for the defect cases. There are two drops in the
transmission [Fig. 5(a)]; the first one at around
va lc =0.45 and the second (and sharper one) at around
0.85. k parallel to the z axis corresponds to the I -X
direction in k space; in that case we expect the first gap to
appear at the edge of the zone (at the X point) for va Ic
about 0.5 which is slightly higher than the frequency
where the first drop in the transmission appears in that
direction [Fig. 5(a)]. Due to the small filling ratio, there
is no full band gap since the gaps in difFerent directions
do not overlap. We find similar results for fcc, bcc, and
diamond structures with isolated metallic spheres or
cubes. So, for the cases where the metal forms isolated
scatterers, the results are similar to those for the dielec-
tric PBG materials. The present results for the isolated
metallic scatterers are in agreement with the results of a
recent work in which monolayers consisting of metallic
spheres with radius between 10 and 100 nm were studied.

From Fig. 5, we can also find what happens as we scale
the dimensions of the system, assuming that the filling ra-
tio of the system remains the same. By comparing the re-
sults for two lattice constants a = 1.27 and 12.7 pm (dot-
ted and solid lines in Fig. 5), we find that the transmission
is almost the same for both cases as long as va/c is less
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than about 0.55. For higher frequencies, the transmission
of the a = 12.7 pm case is slightly higher than the one for
the a = 1.27 pm case. The absorption, however, is always
smaller for the a =12.7 pm case. By increasing the lat-
tice constant, the frequency decreases and the absolute
value of the dielectric constant of the metal [see Eq. (1)]
becomes larger; this means that the metal rejects more
(and absorbs less) of the power. This is the reason that
the absorption decreases as the lattice constant increases.
Also, for any lattice constant, there is a drop in the ab-
sorption at frequencies where there is drop in the
transmission as a result of the fact that only the first few
layers of the material contribute to the absorption.

We now turn to the more interesting case of structures
in which the metal forms a network; we shall refer to this
case as a network topology. ' Figure 6 shows the
transmission and absorption for a system consisting of
metallic tetragonal rods connecting nearest neighbors in
a sc lattice (see Ref. 28 for more details about this struc-
ture). The system is infinite along the x and y directions
while its thickness along the z axis is I. =4a; the lattice
constant is a =1.27 pm and the filling ratio is f =0.03.
For incident waves along the z axis (in that case, the re-
sult are identical for both polarizations), there is a sharp
drop of the transmission from zero up to a cutoff frequen-
cy v, = 105 THz', the drop at v= 30 THz is 15 dB per unit
cell. There is also a smaller drop (4.5 dB per unit cell) of

the transmission between 110 and 160 THz. By increas-
ing the incident angle, the cutoff frequency moves to
higher frequencies (v, is 120 and 130 THz for 8=30' and
60', respectively); so the first (and sharper) gap survives
for any incident angle but the second (and smaller) disap-
pears, on increasing the incident angle. As in the case of
isolated metallic scatterers, the absorption increases as
the frequency increases and it has maxima at the frequen-
cies where the transmission has a maximum. But the ab-
sorption is in general higher for the case of the network
topology [compare Figs. 5(b) and 6(b)]. Since the skin
depth for frequencies around 100 THz is much smaller
than the thickness of the metal, we can assume that the
absorption is proportional to the surface area of the met-
al. But, for the same filling ratio, the surface of the metal
is higher in the network topology, so the absorption will
be higher for the network topology. As in the case of s-
polarized em waves in a 2D system, we can use the same
waveguide model to predict the cutoff frequency, but in
contrast with the 2D case the waveguide in the 3D case is
bounded for both polarizations, so we expect the same
cutoff frequency for both of them; the predicted cutoff
frequency [Eq. (2)] is 118 THz for d = 1.27 pm which is
very close to the cutoff frequency found by the TMM
(v, =105 THz).

Figure 7 shows the transmission and absorption as a
function of the dimensionless frequency va/c, for metal-
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FIG. 6. Transmission and absorption for s-polarized em
waves propagating in a 3D sc lattice consisting of metallic
tetragonal rods connecting nearest neighbors with f=0.03 and
L =4a; a = 1.27 pm. Solid, dotted, and dashed lines correspond
to 0=0', 30, and 60, respectively.

FIG. 7. Transmission and absorption vs the dimensionless
frequency va/c for em waves propagating in a diamond lattice
consisting of metallic cylinders connecting nearest neighbors
with f =0.04, L =4a, and 0=0'. Solid, dotted, and dashed
lines correspond to a = 1.27, 12.7, and 127 pm, respectively.
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lic circular rods connecting nearest neighbors in a dia-
mond structure (more details about this structure can be
found in Ref. 4); the filling ratio is f =0.04, the thickness
of the system is L, =4a, and the incident angle is 0=0'.
For a =1.27 pm there is a peak of the transmission at
around va/c =0.7 which separates two relatively small
gaps. By increasing the lattice constant the transmission
at the peak increases sharply; in particular, the transmis-
sion at va /c =0.7 is —40, —16, and —4 dB for a = 1.27,
12.7, and 127 pm. A peak of the transmission inside the
second (higher) gap appears as the lattice constant in-
creases; but that gap does not survive as the incident an-
gle increases, in contrast with the first gap which survives
for any incident angle. The absorption has the same
behavior as in the sc case with network topology, but it is
in general higher for the diamond case [compare the solid
lines in Figs. 6(b) and 7(b)]. This is due to the higher sur-
face area of the metal in the diamond case. However, as
the lattice constant increases, the absorption becomes
smaller; the absorption at va/c=0. 5 is 0.83, 0.24, and
0.03 for a =1.27, 12.7, and 127 pm; so we expect that the
absorption will be negligible in the microwave and mil-
limeter regions. The cutoff frequency for the diamond
case is different from the sc case (v, a/c =0.44 and 0.7
for sc and diamond, respectively). Using a similar
waveguide model as in the sc case and assuming that the
size of the waveguide is given by the distance between the
point ( —,', —,', —,') a and the z =0 plane (which is 3a/4), we
find that the predicted cutoff frequency is 0.67, which is
very close to the cutoff frequency of 0.60 calculated from
the TMM.

In general, 3D metallic PBG structures with network
topology exhibit a cutoff frequency for both polarizations
below which there are no propagating modes. This
feature puts them in the same category with the s-
polarized waves propagating in 2D metallic PBG struc-
tures. But the features of 3D metallic PBG structures
with isolated metallic scatterers are similar to the
features of the dielectric PBG structures as well as to the
features of p-polarized waves in 2D metallic PBG struc-
tures (for all the cases in this category there is no cutoff
frequency).

We also studied the effect of the introduction of defects
in a periodic lattice. We use a sc lattice consisting of me-
tallic tetragonal rods connecting nearest neighbors (net-
work topology) with f =0.03 and a =1.27 pm, and the
surrounding medium is air. A supercell has been used
with width 2a along the x and y axes and periodic bound-
ary conditions are imposed at the edges of the supercell;
the system is finite along the z axis with thickness I. =3a.
A defect is introduced by removing part of the metal—
which is included in a sphere of radius rd centered at one
of the crossing points of the rods in the second layer.
Figure 8 shows the transmission and absorption for such
a defect structure and incident waves with k parallel to
the z axis; a = 1.27 pm. Once again the results are identi-
cal for both polarizations due to the symmetry of the
structure. For rd /a =0.15, a small peak in the transmis-
sion appears at around 31 THz; the quality factor is very
small (Q =3) and the transmission at the top of the peak
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FICx. 8. Transmission and absorption for em waves propaga-
ting in a 3D sc lattice consisting of metallic tetragonal rods con-
necting nearest neighbors with f=0.03, L =3a, and 8=0 . A
supercell of width 2a has been used with periodic boundary con-
ditions at the edges of the supercell. The part of the metal
which is included in a sphere with the center at one of the cross-
ing points of the rods at the second layer and radius rd has been
removed. Solid, dotted, and dashed lines correspond to
td /a =0, 0.15, and 0.5, respectively.

is also small (
—37.2 dB). Apart from the frequency re-

gion around the defect, the transmissions of the defect
and the periodic structures are almost the same [compare
the dotted and solid lines in Fig. 8(a)]. For rd/a =0.5
(dashed line in Fig. 8), there is a peak in the transmission
at higher frequency (60 THz) which is even wider and
with higher transmission at the top of the peak. So one
can adjust the frequency of the defect inside the gap by
just changing the volume of the removed metal; the
higher the amount of the removed metal, the higher is
the frequency where the defect peak appears. Studies in
dielectric PBG materials' have shown that a defect band
emerges from the lower edge of the gap and approaches
the upper edge of the gap as the volume of the removed
dielectric material is increased. The behavior of the de-
fect band is similar in the present case, despite the fact
that the lower edge of the gap is actually at zero frequen-
cy. The absorption for rd /a =0.15 is almost the same as
the absorption in the periodic case except for a small
maximum at the frequency where the defect peak appears
(hardly noticed on comparing dotted and solid lines in
Fig. 8). However, the differences in the absorption be-
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FIG. 9. Transmission and absorption for em waves propaga-
ting in a defect structure similar to the one described in Fig. 8
with rd/a =0.15. Solid, dotted, and dashed lines correspond to
a = 1.27, 12.7, and 127 pm, respectively.

tween the rd/a =0.5 and the periodic cases (compare
dashed and solid lines in Fig. 8) are more obvious the
more prominent the peak of the absorption in the
rd /a =0.5 case at the frequency where the defect appears
(60 THz); since the light is trapped around the defect re-
gion, one actually expects that the absorption will be
higher in that case.

Figure 9 shows the transmission and absorption as a
function of the dimensionless frequency va/c for a defect
structure (similar to the one described in the previous
paragraph) with rd/a =0.15. As we mentioned earlier,
the results change as we scale the dimensions of the struc-
ture due to the frequency dependence of the dielectric
constant [Eq. (1)]. By increasing the lattice constant the
transmission at the top of the defect peak, Td, and the Q
factor increase by orders of magnitude; in particular,
Td = —37, —24, and —9 dB while Q =3, 29, and 137 for
a =1.27, 12.7, and 127 pm. However, the dimensionless
frequency of the defect, vda/c, increases slightly, reach-
ing a constant value at high lattice constants (vda/c
=0.1312, 0.1367, and 0.1369 for a = 1.27, 12.7, and 127
pm). The absorption at vda/c, on the other hand, exhib-
its more peculiar behavior. In general [see Fig. 9(b)],
there is a peak in the absorption exactly at vda/c (al-
though this peak is hardly noticeable for a =1.27 pm)
which becomes sharper as the lattice constant increases.
As we mentioned earlier (see Figs. 3 and 7), for the

periodic cases, by increasing the lattice constant the
overall absorption decreases. Similarly, in the present
case, for frequencies well above or below the defect fre-
quency, the overall absorption (we call it background ab-
sorption) decreases as the lattice constant increases. At
the defect frequency, however, the wave becomes more
localized as the lattice constant increases, because the
metal becomes a better reflector, so the transmission and
absorption peaks become sharper.

IV. CONCLUSIONS

Using the transfer matrix method, we have calculated
the transmission and absorption of em waves propagating
in photonic band-gap structures constructed from metals.

For 2D systems consisting of metallic cylinders, there
is considerable difference between the two polarizations.
For p-polarized waves, the results are qualitatively simi-
lar to those in dielectric PBG systems. Propagating
modes are interrupted by band gaps appearing close to
the edges of the Brillouin zone. On the other hand, for
s-polarized waves, there is a cutoff frequency v, . There
are no propagating modes for frequencies between zero
and v„so the transmission has a very sharp drop in that
frequency range. Above v„ there is the usual behavior of
bands interrupted by gaps.

For 3D metallic PBG structures, the results are very
sensitive on the topology of the structure. Systems with
isolated metallic scatterers (cermet topology) exhibit simi-
lar behavior to that of dielectric PBG materials. But for
metallic scatterers forming a continuous network (net-
work topology), there are no propagating modes for fre-
quencies smaller than a cutoff frequency for both polar-
izations and for any incident angle. Note that for dielec-
tric PBG materials there is no cutoff frequency for both
types of the topology. We have shown that this behavior,
in both 2D and 3D cases, can be explained using a simple
waveguide model where the v, is predicted with good ac-
curacy. This cutoff frequency is well below the plasma
frequency and it is related to the structure of the system.

In all the periodic cases studied, the absorption can be
largely neglected for metallic PBG structures with lattice
constants a less than about 100 pm, which correspond to
frequencies below about 1 THz. So, for frequencies less
than about 1 THz, wide stop-bands filters constructed
from periodic metallic PBG materials can be used as al-
ternatives to similar filters constructed from dielectric
PBG materials.

By breaking the connections in the 3D metallic net-
works, defect states appear below the cutoff frequency,
resulting in a peak in the transmission. The smaller the
volume of the removed metal is, the smaller is the fre-
quency where the defect peak appears. As we explain in
the next paragraph, this is a very interesting feature of
the metallic PBG structure which, in connection with the
fact that the filling ratio of the metal can be less than
0.01, can be used in the construction of narrow bandpass
filters smaller in size than those constructed from dielec-
tric PBG materials. By increasing the lattice constant,
the Q factor and the transmission at the defect peak in-
crease by orders of magnitude while the dimensionless de-
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feet frequency remains almost constant. The absorption
at the frequency where the defect peak appears increases
as the lattice constant increases, an effect which may
create problems in some of the possible applications.

An important advantage of metallic PBG structures is
that they could be smaller in size and lighter than the
corresponding dielectric PBG materials. We can see that
in the following example. A narrow bandpass filter
operating at 323 GHz can be constructed using a metallic
PBG material with a defect structure similar to the one
described in Fig. 9; this metallic structure would have lat-
tice constant a = 127 pm (see solid lines in Fig. 9) and the
filling ratio of the metal is less than 0.03. For a similar
bandpass filter constructed from a dielectric PBG materi-
al, one needs a band gap at around 323 GHz; assuming
that the midgap frequency of a dielectric PBG material is
given by va/c =1, the lattice constant of the dielectric
PBG would be around 929 pm and the filling ratio of the
dielectric materials would be higher than about 0.1. So
the dielectric PBG material would be more than seven
times larger and heavier than the corresponding metallic

PBG material. Our calculations show that similar metal-
lic PBG materials can be constructed with filling ratios of
the metal less than 0.01, making them even more attrac-
tive for applications where the size or weight is a con-
sideration. However, one has to keep in mind that, in the
metallic case, there is also a considerable amount of ab-
sorption (see the solid lines in Fig. 9) which could be
completely neglected in the dielectric case. By decreasing
y in Eq. (1) (or, equivalently, by increasing the conduc-
tivity of the metal, cr), the absorption becomes smaller.
This means that the problem due to the absorption can be
avoided by using a superconductor instead of a metal.
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