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The dynamic structure factor S(q,®) of electrons in single-crystal Si was measured with 1.6-eV resolu-
tion by means of inelastic x-ray scattering spectroscopy for q|| [100], [110], and [111] with 0.37 <¢ <2.06
a.u. using synchrotron radiation from the DORIS storage ring. By utilizing the f-sum rule, S(q,®)
could be brought on to an absolute scale, so that also the static structure factor S(q) could be obtained.
The orientation-averaged features of the dynamic and the static structure factor, such as dispersion,
width, and shape of the spectra, could be brought in reasonable agreement with jellium calculation,
when we went beyond the random-phase approximation by taking into account both exchange correc-
tions via a static local-field factor and momentum-dependent lifetime in an on-shell approximation of the
self-energy. Results of fitting of the static local-field factor to the experiment are presented. The rich q-
orientation-dependent fine structure found in the experimental S(q,®) spectra either could be attributed
to the enhanced density of states on zone boundaries in the extended zone scheme, or could be under-
stood in terms of plasmon-Fano resonances, which are the result of a plasmon-band-induced coupling
between the continuum of electron-hole excitations and the discrete plasmon resonances. This interpre-
tation is supported by pseudopotential calculations within the limits of the two-plasmon-band model.

I. INTRODUCTION

It has recently been shown how synchrotron-
radiation-based inelastic x-ray scattering spectroscopy
(IXSS) provides valuable information about dynamic
properties of electrons in s-p metals and s-p semiconduc-
tors, ! ~¢ where the energy resolution and statistical accu-
racy could be made much higher than that achieved in
pioneering experiments,’ ~° which used conventional x-
ray sources. Thus many lattice-induced effects could be
found in the dynamic structure factor S(q,®), a quantity
which can be measured on an absolute scale by means of
IXSS, and which is the Fourier transform in space and
time of the ground-state expectation value of the time-
dependent density-density correlation operator. Lattice-
induced effects include the so-called zone-boundary col-
lective states (ZBCS’s), identified in IXSS results for Li
(Ref. 1) and Be,!° and the plasmon-Fano resonances
found in IXSS Specta of Si.!! Moreover, by utilizing the
potentials of coherent inelastic x-ray scattering, 2”14 we
have presented experimental evidence of the volume
—plasmon-band structure in Si, and have obtained esti-
mates of the magnitude of the plasmon-band gap'’ and
the shape of the bands near the Brillouin-zone bound-
ary.

The very promising IXSS results for Si gave rise to a
more systematic IXSS investigation of Si, presented in
what follows, where the aim of these measurements was
not only to look more systematically at lattice-induced
effects, but also to make a careful analysis of whether the
experimental data may give evidence of a breakdown of
the (exchange-corrected) random-phase approximation
(RPA). Such a breakdown was claimed in the mid-1970s
by several authors,!”!® since their electron-energy-loss
spectroscopy (EELS) results for Al and Si seemed to indi-
cate that the plasmon energy became nearly constant for
q >q,. (g, is the plasmon cutoff vector). Conversely,
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Chen, Meixner, and Kincaid!® obtained an overall agree-
ment of their EELS data for Si with an (exchange-
corrected) homogeneous electron-gas RPA calculation.
The tremendous difficulties of measuring S(q,w) with
EELS for larger ¢’s (¢ >gq.), due to the strong contam-
ination of the spectra by multiple-scattering events, make
the EELS results questionable for g >gq., so that con-
clusions drawn from these results remain a matter of de-
bate. Therefore, we decided to look carefully into the
dispersion of the S(q,) peaks of Si, especially for larger
¢’s. Theoretical predictions for the dynamic structure
factor of Si known so far are restricted to the plasmon
range (g <q,).2°"% For that reason we have supported
our conclusions, drawn from experimental results for
q >q., by a model calculation of the dielectric response
of Si taking into account local-field effects via the full
dielectric matrix. 23~

Deviations from the RPA should not only be recogniz-
able in the dynamic structure factor, but also in the static
structure factor S(q), whose Fourier transform, the radi-
al distribution function g (7), exhibits a strong unphysical
negative dip at r =0, when calculated within the limits of
the RPA. Therefore, we have utilized the fact that we
can measure the dynamic structure factor on an absolute
scale (by means of the f-sum rule), so that it is not
difficult to obtain the static structure factor by energy in-
tegration.

This paper is organized as follows. In Sec. II we
present some fundamental relations for the dielectric
response of solids, inasmuch as they will be utilized for
discussing the experimental results and for performing
model calculations. The experimental setup is described
in Sec. III. Section IV presents experimental results ob-
tained for S(q,®) and S(q), which are discussed in Sec.
V on the basis of model calculations, where we go beyond
the RPA and take into account the full dielectric matrix.
Final conclusions are drawn in Sec. VI.
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II. BASIC RELATIONS

First-order perturbation theory directly relates the
double-differential scattering cross section (DDSCS)
d?0 /dwdQ for inelastic x-ray scattering to the dynamic
structure factor S (q, ) via®

d’c/dodQ=(eye ) ri(o' /wy)S(q,) , (1)

where fiw, and #iw’ are the energies, e, and e’ are the po-
larization vectors of the incident and the scattered pho-
tons, respectively, fiw is the energy transferred to the
scattering system, q is the transferred momentum, and r,
is the classical electron radius. The dynamical structure
factor S'(q,w) is the Fourier transform in time and space
of the ground-state expectation value of the time-
dependent density-density correlation operator n,(r',r,#):

ny(r', 5, ) =(1| 38[r—r;(0)18[r' +r—r;(0)]|T) ,
j’j’
(2)

where the summation is over the electrons of the scatter-
ing system:
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S(q,w)=fffnz(r’,r,t)exp(—icot)

Xdt exp(—iq-r)drdr . (3)

The fluctuation-dissipation theorem?’ connects the

dynamical structure factor with the dielectric response
function £~ 1(q,0):

S(q,0)=—(#ig?/4m%e’n) Ime " !(q,0) , (4)

where n is the electron density.

According to the local-field dielectric theory of Adler?®
and Wiser,?* the dielectric response function can be ex-
pressed in terms of a diagonal element of the inverse
dielectric matrix:

e~ (q,0)=(eg(q,,®))g&
=Bget+Tac)ob - )

G, G’, and G" are reciprocal-lattice vectors, where G
reduces q into the first Brillouin zone according to
q=q,+G. Within the limits of the self-consistent-field
theory,?® which is equivalent to the RPA, the matrix
Tg g~ is given by

|
TG,G”=[47re2/(q,+G’)2]lin%)2 (kvlexp[ —i(q,+G')-r]|k'v' ) {k'v'|exp[i(q, +G")-r]|kv)
=0y~
l:":v’
X[ folk'sv')— fo(k,v)]/[fiw+E(k,v)—E(K',v')+in] (6)

using the one-electron representation with Bloch states |k,v), energy E (k,v), and occupation number f o(k,v), where k
is the reduced wave vector and v the band index. If we neglect all local-field effects, the dielectric matrix becomes diag-
onal, so that we obtain the well-known Ehrenreich-Cohen?8 dielectric function

e(q0)=1+ lix%(417e2/q2)2 [{k’,v'|exp(iq-r) |k, v} *[ fo(K',v')— fo(k,v)]/[fio+E (k,v)—E(k’,v')+in] . (7)
n—

k,v
k', v

Our model calculation, presented in what follows, went
two steps beyond the RPA.

(1) We introduced the finite lifetime of electron-hole
excitations by adding

i[T(k',v')+T(k,v)] (8)

to the denominator of Egs. (6) and (7), respectively, where
I'(k,v) is approximated by the modulus of the imaginary
part of the on-shell self-energy =(p) of the corresponding
homogeneous electron system:

I(k,v)=|ImZ(p)|=L(p), p=02mE (k,v))'?. (9)

2(p) can be calculated using a scheme proposed by Quinn
and Terrell.? This way we neglect the off-shell contribu-
tions to the self-energy, a procedure introduced by Rah-
man and Vignale®® in order to explain the double-peak
structure of the dynamical structure factor. Although
this approximation has been criticized by Ng and Da-
browski, 3! it should, at least qualitatively, account for the
most important effect of finite lifetime on the dynamic
structure factor, namely the steep rise of I'(p) at a certain
critical momentum p,, where p, is the minimum quasi-
particle momentum which makes possible the decay of

[
the quasiparticle into a plasmon:

fio(g.)=(#*/2m)(p3—k}) , (10)

with the plasmon energy fiw(q,) at the plasmon cutoff
vector g, and the Fermi momentum ky. Adding the on-
shell self-energies to the energy denominator in Eq. (7) is
tantamount to a relaxation-time approximation that fails
to conserve the local electron number. We have removed
this defect in our model calculation of Sec. V A by using
Mermin’s*? formalism.

(2) We have exchange corrected'! the response function
of Eq. (5) by utilizing the static approximation G(q) of
the so-called local-field factor G (q,w) (Ref. 33) in

EG'G"corr( q,0)= BG’G" +(1—-G (q,»)) TG’G" (q, ) (11
and

(Ime™ l(q’ o) )corr = Im[ ( EG'G”corr( q,,® ) )c_;é ]

X[1/(1—G(q,0))] . (12)

We have used the numerical values of G(gq) from
Ichimaru and Utsumui.*
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III. EXPERIMENT AND DATA PROCESSING

The DDSCS of Si was measured at the Hamburger
Synchrotronstrahlungslabor (HASYLAB) using synchro-
tron x rays from the wiggler HARWI (“Harter Rontgen
Wiggler”), installed at the storage ring DORIS. The ex-
perimental station is described in detail elsewhere.3® The
major part of the horizontal divergence of the radiation
emitted by the wiggler is accepted by the first water-
cooled plane (511) Si crystal, and is then sagittally fo-
cused to 8-mm horizontal width onto the scattering sam-
ple by the second cylindrically bent (511) Si monochro-
mator crystal, which was segmented in order to prevent
anticlastic bending.*® The flux of useful 13.7-keV pho-
tons in a focus of 8 X8 mm? at the sample position was
3.8X10'2 s7!, with the DORIS storage ring operated at
3.7 GeV and 60 mA. The energy analysis of the scattered
radiation has been performed in inverse geometry using a
(12 00) spherically bent Si crystal, set to a fixed Bragg an-
gle of 86° by varying the primary energy, where disper-
sion compensation’” has been fully utilized. The overall
energy resolution obtained was 1.6 eV. The effective di-
ameter D =4 cm of the analyzer crystal and the sample-
to-analyzer distance defines an error Aq =0.04 a.u. (a.u.
means atomic units with i=e =m =1) of the momentum
transfer. The sample of 0.6-mm thickness has been inves-
tigated in transmission geometry.

The Si data were processed as described in detail in
Ref. 2: The count rate of the detector at the exit slit of
the analyzer is related to the count rate of a detector
which monitors the beam leaving the double-crystal
monochromator, so that only relative values of the spec-
tral intensity are measured. After subtraction of both a
linear background (the relative spectral intensity at
fio=—10 eV) and the quasielastically scattered line
(which is assumed to be symmetric, so that its low-
energy-loss side can be mirror reflected to produce reli-
able values of its high-energy-loss side), the relative
values of the DDSCS were brought to an absolute scale
by means of the f-sum rule.? It must be mentioned that
the way we subtracted the quasielastically scattered line
produces a range of uncertainty between 0- and 5-eV en-
ergy loss. Whenever q is within a range of strong thermal
diffuse scattering, which means that q is near a
reciprocal-lattice vector G, the quasielastically scattered
line can be larger than the spectrum of the inelastically
scattered radiation by more than two orders of magni-
tude, so that a reliable subtraction of the quasielastically
scattered line turned out to be hopeless. This is the
reason why the IXSS measurements of S(q,w), as
presented below, for certain values of g, do not contain
all principal directions of q. Between 1X 10° and 2X10°
counts were collected in each channel at the peaks of the
spectra, which took between 10 and 20 min. In order to
focus attention on the main features of the spectral fine
structure, the spectra were smoothed by means of cubic
splines, where the algorithm used®® additionally provides
the first three derivatives. In Fig. 1, the result of smooth-
ing of the Si q||[111]; ¢ =1.25 a.u. spectrum is exemplari-
ly shown. In order to compare our IXSS results with the
corresponding EELS data'®!® and with theoretically cal-
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FIG. 1. Circles: Experimental data of S(q,w) of Si for q
parallel to [111] and ¢ =1.25 a.u., after background subtraction,
removal of the quasielastically scattered line, and scaling to ab-
solute values by utilizing the f-sum rule. Solid line: Cubic
spline interpolation of the experimental data.

culated dispersion relations, the position of the main peak
of the S(q,w) spectra has to be defined in a unique
manner. We have chosen the following center of gravity
method for this purpose: If I, was the absolute max-
imum value of the S (q,®) spectrum, we defined the peak
position 7w i by
20
C‘)peak=% 2 %[0)>(IV)+Q)<(IV)] ’

v=0

I,=[1+(v/60) 1 oy »

(13)

where #iw . (I,) and #w _(I,) are the energy losses corre-
sponding to I, on the high- and low-energy-loss flanks of
the S(q,w) spectrum, respectively.

Since we obtained S(q,») on an absolute scale, it was
also possible to obtain the static structure factor S(q) of
the Si valence electrons by integration with respect to o,
according to

S(q):waS(q,(o)da) . (14)

The most reliable values of S(q) have been obtained for
¢’s, where the measured spectrum has already reached
the linear background level for o <w;, where fiw; is the
energy of the Si Ly;; edge (99.2 eV), the onset of core con-
tributions to S(q,w). This was true for ¢ <1.78 a.u. In
the remaining case (g =2.02 a.u.), we have extrapolated
the valence electron contribution by fitting the spectrum
to an exponential, starting 10 eV below the Ly edge.
This procedure has also been used in the process of abso-
lute scaling of the spectra for ¢ >1.78 a.u. Therefore, a
larger error has to be attributed to S(q) for ¢ >1.78 a.u.
Moreover, for the same reason it does not seem to be
significant to aspire to experimental data of S(q) for ¢q
much larger than 2.0 a.u., though this is the g range of
S(q) around 2kg, which is of special interest for a corre-
lated Fermi liquid.
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IV. SURVEY OF EXPERIMENTAL RESULTS

In Figs. 2-5, measured S(q,w) spectra of Si for q
parallel to [100], [110], and [111], respectively, within a
range of 0.37<¢g =2.02 a.u., are presented, smoothed by
means of cubic splines. The spectra exhibit, especially for
larger ¢’s, a rich fine structure, far beyond experimental
error. The fine structure, and to a certain extent also the
peak position, depend on the q orientation. Even for
smaller ¢’s, additional peaks (shoulders) appear (see, for
example, the [100] spectrum for ¢ =0.59 a.u.), which
have not been observed in the EELS spectra of Refs. 18
and 19. The main peak position of the IXSS S(q,w) spec-
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FIG. 2. Cubic-spline-interpolated experimental S(q,®) spec-
tra of Si for ¢ =0.37, 0.45, and 0.53 a.u., and q orientations as
indicated.
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FIG. 3. Cubic-spline-interpolated experimental S(q,®) spec-
tra of Si for ¢ =0.59, 0.75, and 0.82 a.u., and q orientations as
indicated.

tra are plotted in Fig. 6 as a function of ¢, together with
the peak position in the corresponding EELS results of
Refs. 18 and 19, respectively. As can be derived from
Fig. 6, the orientation-averaged dispersion for g <1.0
a.u. of the respective main peak of the experimental IXSS
S(q,w) spectra is quite consistent with the EELS data of
both Refs. 18 and 19. For 1.0 a.u. <gq <1.3 a.u., the
IXSS peak positions agree better with the data of Ref. 19,
so that the tendency to zero dispersion, as found in the
EELS data of Ref. 18, could not be verified. The IXSS
S(q,w) data for ¢ > 1.3 a.u. are unique, since for these
large ¢’s EELS measurements are overloaded with
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FIG. 4. Cubic-spline-interpolated experimental S(q,®) spec-
tra of Si for ¢ =1.04, 1.25, and 1.45 a.u., and q orientations as
indicated.

multiple-scattering features, which are difficult to correct
for. In this g range, one observes a strong dispersion of
the peak position of S(q,w) after relative weak dispersion
between 0.8 and 1.4 a.u. In some cases, the peak position
of S'(q,®) is anisotropic, where there exists no clear order
of the peak positions with respect to the principal direc-
tions, even for ¢’s smaller than the corresponding free-
electron-plasmon cutoff vector g, =0.63 a.u. of Si.

In contrast to simple metals like Al,® the plasmonlike
resonances of Si for ¢ <g. are much broader; their full
width at half maximum (FWHM), as averaged over the
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FIG. 5. Cubic-spline-interpolated experimental S (q,w) spec-
tra for ¢ =1.78 and 2.02 a.u., and q orientations as indicated.
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FIG. 6. Dispersion of the Si S(q,w) peak positions of the
IXSS experiment for q parallel to [100], [110], and [111], respec-
tively, as indicated in the inset; dispersion of the Si S(q,®) peak
position of the EELS experiment of Refs. 18 and 19 for q orien-
tations as indicated in the inset. Dispersion of the jellium-
model-calculated Si S(q,w) peak position for different approxi-

mations as indicated in the inset.
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two q orientations [110] and [111], ranges from 4.4 eV for
q =0.37 to 5.8 eV for ¢ =0.59 a.u. The FWHM of the
spectrum for q||[100], ¢ =0.59 a.u., is still much larger,
namely 9.2 eV. The width of the S(q,w) spectra is not
rapidly increasing, as in the case of simple metals,® when
one goes from the (free electron) plasmon excitation
range (g <gq.) to the electron-hole-pair excitation range
(g >q.).

The shape of the S(q,®) spectra for g <gq, is highly
asymmetric in such a way that the low-energy-loss tail is
much more extended than the high-energy-loss tail. For
q||[110], a clear secondary peak with positive dispersion
arises within the low-energy-loss tail in the range 0.59
au. <g=<1.45 a.u., which is most pronounced for
g =0.59 a.u., and which will be attributed in Sec. VB to
an enhanced density of states near the (220) Bragg plane.
For larger ¢’s (g > 1.0 a.u.), the asymmetry of the spectra
turns around, so that the tail on the high-energy-loss
range is now much more extended than that on the low-
energy-loss side. For ¢ > 1.7 a.u., the shapes of the spec-
tra are mainly characterized by a broad plateau, which
drops off in the direction of higher-energy losses.

For all ¢’s, especially for g >gq,., the spectra exhibit a
large g-orientation dependence as far as their fine struc-
ture is concerned. The most prominent example is the
peak/shoulder around #iw=14 eV in the [111] spectra to-
gether with the extremely steep rise between 17 and 19
eV, when compared with the [100] and [110] spectra, re-
spectively. This structure will be discussed in terms of
so-called plasmon-Fano resonances!! in Sec. V C.

In Fig. 7, the static structure factor S (q), as derived by
energy integration of the dynamic structure factor
S(q,w), is presented, where the experimental error, plot-
ted at the orientation average of S(q), is composed both
of the statistical error of the S (q,w) measurement and of
the scaling error, which results from applying the f-sum
rule. The latter source of error is mainly responsible for

1.0 3
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FIG. 7. Static structure factor S(q) of electrons in Si ob-
tained from the IXSS experiment for q parallel to [100], [110],
and [111], respectively, as indicated in the inset. The error bars
refer to the orientation average. Jellium-model-calculated static
structure factor S(q) of electrons in Si for different approxima-
tions as indicated in the inset.
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the relative large error at ¢ =2.02 a.u., since in that case
the application of the f-sum rule needs the elimination of
the core contribution by extrapolation (see Sec. III). In
one case (g =1.45 a.u.), S(q) exhibits a q-orientation
dependence which is outside the experimental error.

V. DISCUSSION OF RESULTS,
COMPARISON WITH MODEL CALCULATIONS

A. Shape and dispersion of S (q,®) spectra,
jellium model calculations

In order to come to a consistent physical interpretation
of the experimental S (q,w) spectra, we started width jel-
lium model calculations of different degrees of approxi-
mation. The results of these calculations were compared
with experimental spectra obtained by averaging direc-
tional spectra for each g, taking into account their
different weights.

As a first step, we used the response function £ ~!(q, )
of Eq. (5) for an empty lattice in Eq. (4), where a small en-
ergy width for all one-electron states of 0.03 a.u. has been
allowed. This procedure is equivalent with utilizing the
well-known Lindhard’s analytical jellium-RPA dielectric
function. In Fig. 8 these calculations are compared with
experiment for three different exemplary g values with
g >gq,. Itis evident, and has already been found for Li,?
Be,> and Al,° that there is a distinct discrepancy between
calculation and experiment for all three g values. In all
cases, the peak position of the RPA calculation is at
much larger energy losses, and the overall shapes of the
calculated spectra are much more asymmetric than the
experimental ones. This fact is also demonstrated in Fig.
6, where the experimental (main) peak positions are com-
pared with the jellium-RPA-calculated peak positions,
which are far from experiment, except for the calculated
data for ¢ =0.45 a.u., which agree quite well with experi-
ment as far as the peak position is concerned. Even for
this g range, the jellium-RPA calculation cannot account
for the relatively large widths of the experimental spec-
tra. In the next step of the approximation, we have used
the exchange-corrected dielectric matrix of Eq. (12) for
an empty lattice, where the static approximation G (g) of
the so-called local-field factor G (q,w), as calculated by
Ichimaru and Utsumi** and shown for the electron densi-
ty of Si [#,=(3/47n)!/3*=2] in Fig. 9, has been applied.
One can see that this correction shifts the peak position
in the right direction. A further step to an overall agree-
ment between model calculation and experiment, as far as
the general shape and the peak position are concerned,
could be achieved by introducing, in addition to the ex-
change correction, an energy- (momentum-) dependent
lifetime in the sense of an on-shell approximation of the
imaginary part of the self-energy I'(p), as pointed out in
Sec. II. The self-energy for the electron density of Si
(r,=2) has been calculated by means of a scheme, pro-
posed by Quinn and Terrel,?® and shown in Fig. 10. As
can be seen in both Figs. 6 and 8, the addition of a life-
time correction to the exchange-corrected jellium RPA
leads to a better overall agreement between model calcu-
lation and experiment. For example, even the most im-
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dynamic structure factor (q,w) of Si, q orientation averaged for
q values as indicated. Dashed curves: jellium-model-calculated
S(q,w) curves for different approximations as indicated in the
inset.

portant characteristic of the overall shape of the experi-
mental spectra for ¢ =1.78 a.u. [Fig. 5(c)], namely both
an asymmetry, which is opposite to the typical asym-
metry of uncorrected RPA spectra, and a broad plateau,
which drops in the direction of increasing energy losses,
are well reproduced by the calculation. To some extent,
this is also true for ¢ =1.45 a.u.

Looking more closely at Fig. 6, one can realize that,
for 0.5 a.u.<q <1.0 a.u., the corrections applied to the
RPA are not sufficient to shift the peak position in such a
way that complete agreement with the experiment could
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FIG. 9. Solid line: Local-field correction factor G(q) of jelli-
um for the electron density of Si, r, =2, according to an analyti-
cal expression of Ref. 34. Squares: Experimental values of G (q)
for Si, obtained by fitting the peak position of orientation-
averaged experimental S(q,)’s to theoretical ones (lifetime and
exchange-correlated jellium RPA), where G (g) has been varied.

be achieved. On the contrary, for 1.0 a.u.<q <1.8 a.u,,
the RPA is overcorrected, whereas the correction is again
far from sufficient for the ¢ =2.02 a.u. spectrum. One
might be tempted to attribute this behavior to a wrong
choice of the so-called local-field factor G (gq), especially
since this choice among other published G (g)’s was rath-
er arbitrary. Therefore, we have tried to find experimen-
tal values of G (gq) that fit best the model-calculated peak
position of S(q,w) to the orientation-averaged experi-
ment, where both the experimental and calculated peak
positions are defined according to Eq (13). The result of
this fitting procedure is plotted in Fig. 9, and exhibits
quite an unusual behavior, especially around g =k
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FIG. 10. On-shell approximation of the imaginary part I'(p)
of the self-energy of jellium for the electron density of Si, r, =2.



11728

(kr=0.96 a.u. for r,=2). Moreover, the enhancement of
G (q) above 1 near g =2k is much more pronounced in
the experiment than in the theoretical values that we
have chosen, although this statement is supported by
only one measured value. It should be stressed that there
exist other theoretical calculations, for instance in Ref.
39, where G (g)=2 near g =2kp. Nevertheless, the re-
sults of this fitting procedure should not be overestimat-
ed, since lattice effects could be of rather large impor-
tance. We will evaluate recent S(q,w) measurements on
Li (Ref. 2) and Al (Ref. 6) in the same manner, add more
measurements near ¢ =2k, and publish the results else-
where.

Apparently, there are many features in the S(q,»)
spectra, especially the strong q-orientation-dependent fine
structure for g >gq, and the large and q-orientation-
dependent width of the spectra for g <gq., which must be
directly related to band-structure effects and which will
be discussed in what follows. In addition to a strong q-
orientation dependence of the overall shape of the S(q, )
spectra, two features of the spectra, which are visible
only for a particular q orientation, and which have al-
ready been mentioned in Sec. IV, should be exemplarily
interpreted as a lattice-induced fine structure.

B. Energy-gap-induced fine structure
of S (q,®), pseudopotential calculations

In Figs. 2-5, the [110] spectra exhibit a secondary
peak (shoulder) around 12.5 eV for 0.59 a.u. =g =<1.25
a.u. The dispersion of its peak position #iw(q ), defined by
a zero of the third derivative, is given in Fig. 11 together
with a plot of the following relation:

fio(q)=[#2q(2P —q)/2m]+E, /2 , (15)

which fits the experiment best with P =0.88 a.u. and
E,=4¢€V.

)

-

9]
A

iy

L

10

Si [110]

|

— theory Eq. (15)
| 00000 experiment

i“

o

L -

secondary peak position (eV

i

0 SR
0.4 8 1.2 1.6
q (at. units)

FIG. 11. Squares: Experimental energy position of the
secondary peak of S(q,w) for q parallel to [110]. Solid line:
Calculated energy position of the secondary peak for q parallel
to [110], according to Eq. (15) with P =0.86 a.u.; E, =4 eV.
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It has been shown in Ref. 5 that a dispersion relation of
this type is a signature for spectral features caused by an
enhanced density of those wunoccupied states, whose
extended-zone-scheme k vectors end on a plane

P-k=P?, P|q, ' (16)

so that the maximum of w(q) is obtained for ¢ =P. E, /2
is a constant energy offset, which accounts for an energy
gap of magnitude E, on the plane P-k=P2 Looking at
the Si band structure, one easily finds that the enhanced
density of states on the 220-type Bragg plane in the ex-
tended zone scheme, together with the corresponding
Bragg-plane-induced energy gap, can be made responsible
for the secondary peak in the [110] spectra. The corre-
sponding states are those of the lowest band of Si between
X and T, so that Ex—Er, (EI«0 is the bottom of the

valence band) should determine the maximum-energy loss
on the dispersion curve of the secondary peak position.
According to a most recent linear muffin-tin orbital
(LMTO) band-structure calculation for Si,** Ex—E r, is

13.0 eV, which is exactly the maximum experimental
peak position 13.0 eV in Fig. 11. Furthermore, the value
of P in Eq. (15), which fits best the experimental peak po-
sitions, is very near to |G,,,/2/=0.865 a.u. and E, =4
eV is nearby the energy gap at the X point, which is 4.3
eV in Ref. 40, another strong indication of the validity of
the above interpretation.

Finally, we have performed a local-pseudopotential cal-
culation of S(q,w) for q||[110],g =0.59 a.u., by using the
Ehrenreich-Cohen?® relation, Eq. (7), for the dielectric
function with Brust’s*’ empirical pseudopotential
coefficients ¥ (111)=—0.105 a.u., ¥(220)=0.02 a.u.,
and V(311)=0.04 a.u. The calculated result has been
both exchange corrected according to Eq. (8), and life-
time corrected according to Eq. (9) using the values of the
imaginary part of the self-energy of Fig. 10. The result of
this calculation is presented in Fig. 12. The secondary

] Si q=0.59 at. units

theor.
00000 experim. [110]

20 30
energy loss (eV)

FIG. 12. Rhombs: Experimental S(q,w) for Si for q parallel
to [110]; ¢ =0.59 a.u. Solid curve: Pseudopotential-calculated
S(q,w) of Si for q parallel to [110]; ¢ =0.59 a.u. by using &(q,»)
according to Eq. (7); pseudopotential according to Ref. 41.



52 DYNAMIC AND STATIC STRUCTURE FACTOR OF ELECTRONS. . ..

peak at 11.4 eV is well reproduced by this calculation,
where its position is insensitive against a variation of the
static local-field factor G (q), whereas the position of the
main peak depends strongly on G (g). In this calculation
we have chosen G (q)=0.4 in order to fit the experimen-
tal main peak position, where this value of G (g) is nearly
three times larger than that given in Ref. 34, but very
near the experimental value plotted in Fig. 9. Note that
this overcorrection of exchange leads to a much broader
main peak compared with experiment. Nevertheless, the
good agreement between calculation and experiment with
respect to the secondary peak position is again an indica-
tion that this feature can be understood quite well in
terms of the Si band structure, where no local-field
effects, as represented by Eq. (6), must be invoked.

C. Plasmon-Fano resonances, pseudopotential
calculations

As already mentioned in Sec. IV, the [111] spectra ex-
hibit a very specific structure for ¢ =0.59 a.u., when
compared with the [100] spectra. This fine structure be-
comes especially transparent for ¢ =1.25 and 1.45 a.u,,
where a peak (shoulder) is visible around 14 eV connected
with a steep rise around 18 eV. For smaller ¢’s, the much
smaller width of the [111] spectra, as compared with the
[100] spectra, is evident. But the common origin of these
differences only becomes intelligible when the differences
[111]—[100] of the normalized spectra are plotted, as
shown in Fig. 13. This difference is characterized by a
valley-peak structure, with a nearly g-independent zero
passage between 17.0 and 18.5 eV, and an amplitude
which is decreasing with increasing g. One can also find
a similar behavior for the [110]—[111] differences, slight-
ly masked by the energy-gap-induced fine structure of the
[110] spectra described in detail in Sec. V B. This way it
becomes transparent that the [111] direction plays a spe-
cial role for the dynamic structure factor of Si. What
makes the [111] direction outstanding in Si? It has al-
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FIG. 13. Experimental differences of S(q,®) curves between
[111] and [100] q orientation for different g values as indicated
in the inset.
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ready been pointed out by Sturm*? that the diameter of
the first Brillouin zone of Si in the [111] direction is
smaller than 2q,, so that higher plasmon bands, as pre-
dicted by Saslow and Reiter, ?* should exist and should be
well-defined elementary excitations. But the strong
plasmon damping in Si, due to interband transition,
prevents a direct experimental verification of the band
splitting at the (111) Brillouin-zone boundary,* as can
also be seen in Fig. 3. We found no indication of a split-
ting of the plasmon resonances® for ¢ =0.59 a.u.,
q|I[111] [this q is very near the (111) Brillouin-zone
boundary], where this splitting should be 1.5 eV.*?
Moreover, py;;, the Gy;;th Fourier coefficient of the Si
valence electron density, is nearly one order of magnitude
larger than the Fourier coefficients belonging to the next
following reciprocal-lattice vectors.** Therefore, um-
klapp processes, whose strength scales as pg, should be
visible mainly at the (111) Brillouin-zone boundary, both
with respect to the collective plasmon excitation and the
continuum of the electron hole excitation, as demonstrat-
ed for a two-band model in Fig. 14: On the one hand,
plasmon bands with an energy gap at the zone boundary
are generated by backfolding the plasmon branch into the
first Brillouin zone. Moreover, these plasmon bands be-
come damped by interband transitions, when the
electron-hole-excitation continuum is folded back into
the first Brillouin zone. This has already been shown by
Saslow and Reiter?® and by Pandey et al.*’ On the other
hand, as a consequence of the umklapp processes con-
sidered by Sturm, Schiilke, and Schmitz,!! the first
plasmon band also continues into the higher zones of the
repeated zone scheme, as shown in Fig. 14. This means
that the first plasmon band, a discrete excitation, is cou-
pled by the lattice-induced charge fluctuations to the con-
tinuum of the electron-hole-pair excitations. According
to fundamental relations of coupled quantum-mechanical
systems, such a coupling leads to so-called Fano reso-
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FIG. 14. Illustration of the effect of umklapp processes on
the electron-hole-excitation continuum and on the plasmon ex-
citation branch in the repeated zone scheme of a two-plasmon-
band model. kg is the Brillouin-zone-boundary wave vector.
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valley-peak structure on top of the spectrum of the con-
tinuum part of the excitation, where the zero passage of
the added part is roughly at the peak position of the
discrete excitation. This is exactly what one can see in
Fig. 13, where the zero passage of the peak-valley struc-
ture is just in the energy range of the first plasmon band,
which is shown in Fig. 2. Therefore, it seems justifiable
to explain the fine structure found in the [111] spectra, as

S(q,a))=(ﬁq2/411'2e2n ) Im{ - 1/8GGcorr+(EGOcorrSOGcorr/EéGcorr)[ _(EG’G”corr)O_Ol ]} [ 1/(1-G (q))] ’

where we have suppressed the arguments q, and @ in the
elements of the dielectric matrix. The first term in the
{ ] brackets represents the short-wavelength electron-
hole-pair excitations. The second term in the { } brackets
couples the long-wavelength collective excitations
[represented by (£g:Grcorr)oo ] to the electron-hole-pair
excitation continuum, where the complex coupling factor
f6(Q,,0)=¢€goEog /€5 can produce a valley-peak fine
structure typical of a Fano resonance, whenever
fc(q,;®) has a negative imaginary part, since
Re[ — (€' corr)oo.] becomes negative for 0> w,(q,).
Additionally, a negative real part of fg(q,,®) can
account for a plasmon antiresonance due to
Im[ —(€g:gcorrJoo' - We have calculated the elements of
the dielectric matrix according to Eq. (11) by using the
empirical pseudopotential of Brust*' (expansion of the
pseudo-wave-function into 59 plane waves) thus obtaining
S(q,») by means of Eq. (17) within the limits of the
two-plasmon-band  model, both for ql[111]
[G=(2m/a)(1,1,1) in Eq. (17)] and q|[100] [G=
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FIG. 15. Triangles: Experimental S(q,w) of Si for q parallel
to [111]; g=1.25 awu. Solid line: Two-plasmon-band
pseudopotential-calculated S(q,) of Si for q parallel to [111];
q =1.25 a.u. by using T'gg- of Eq. (6); pseudopotential accord-
ing to Ref. 41.
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plasmon-Fano resonances. This interpretation is addi-
tionally supported by calculations!"?? of the dynamical
structure factor S (q,®) according to Egs. (4), (5), (6), and
(12) within the limits of the so-called two-plasmon-band
model,?> which means that we neglect all non-diagonal
terms in the dielectric matrix of Eq. (6) except €go and
gog With G=2m/a(1,1,1). By doing this, one ends up
with the following relation:!!

(17

(27 /a)(1,0,0)] in each case with ¢ =1.25 a.u. The values
for the local-field factor G (g) are from Ref. 34. The re-
sults of these calculations, convoluted with the experi-
mental resolution, are presented in Figs. 15 and 16, to-
gether with the corresponding nonsmoothed experimen-
tal spectra. In Fig. 15, the structure typical for plasmon-
Fano resonances is well reproduced by the calculations,
although its position on the energy scale is shifted by
roughly 2 eV to larger energy losses when compared with
experiment. As already stated in connection with Fig. 12,
the dispersion of the plasmon resonance are not exactly
restored by the local-pseudopotential calculations. Nev-
ertheless, one can easily verify that the two-plasmon-band
model can account, on the one hand, for the appearance
of the plasmon-Fano-resonance structure for q|[111],
due to the large value of p,;; (see Fig. 15), and, on the
other hand, for the absence of this structure for q||[100],
due to the zero of p,, for the diamond structure (see Fig.
16). We have already shown in Fig. 13, where the experi-
mental differences between the q||[111] and the q|[100]
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FIG. 16. Squares: Experimental S(q,w) of Si for q parallel to
[100]; ¢=1.25 a.u. Solid line:  Two-plasmon-band
pseudopotential-calculated S (q,w) of Si for q parallel to [100];
g =1.25 a.u., by using Tg.g~ of Eq. (6); pseudopotential accord-
ing to Ref. 41.
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spectra were plotted, that the appearance of plasmon-

Fano resonances in the experiment is not restricted to

g =1.25 a.u., but is found in the q||[111] spectra for the
whole range G,;,/2<gq <3G, /2 (see Fig. 14), even if
the typical valley-peak structure is not directly recogniz-
able. This experimental finding is nicely proved by corre-
sponding calculations of the above differences, as shown
in Fig. 17, at least qualitatively: for all ¢’s within the
above range, the calculations, performed within the limits
of the two-plasmon-band model, account for a valley-
peak structure typical of Fano resonances. Moreover,
the agreement between experiment and calculation is not
only qualitatively. Thus the experimental g dependence
of the relative peak position of the peak strength and of
the zero passages are well reproduced by the calculation,

J

a_l(q,co)=1+lin})(47re2/qZ)E[fo(p+q)—fo(p)]/[E(p+q)—E(p)——‘hco+i17] ,
e P

where E(p) and f,(p) are the energy and occupation
number, respectively, of the momentum eigenstate |p).
One can easily verify that this approximation is far from
the experiment. The corresponding Hartree-Fock radial
pair-correlation function g (), extracted from S (q) via

g(n=(01/2n7?) [ [S(q)—1][sin(gr)/qrlq*dq (19)

and shown in Fig. 18, reflects the repulsive action of
Pauli’s principle for electrons with parallel spins together
with the complete neglection of Coulomb correlation.
Especially for smaller ¢’s the RPA S(q) much better fits
the experiment, whereas for kp<q <2kp only the
exchange-corrected jellium S (g) satisfactorily approaches
the experiment, at least its orientation average. The cor-
responding pair-correlation functions are shown again
Fig. 18. The large negative part of g(r) for the RPA is
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FIG. 17. Calculated differences of S(q,w) curves between
[111] and [100] q orientation for different values of g, as indicat-
ed in the inset.
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even though the absolute position of the zero passages are
at lower-energy losses in the experiment by roughly 2 eV,
as already commented upon in connection with Fig. 15.

D. Static structure factor, jellium model calculations

In Fig. 4, we confront the experimental values of the
static structure factor S(q) with calculations according
to the different approaches within the limit of the jellium
model, as already partly discussed in Sec. V A. The
Hartree-Fock model completely neglects dielectric
screening, and takes into account only Pauli’s exclusion
principle, so that one has to insert the following jellium
response function € ~'(q, ) into Eq. (4):

(18)

[
consistent with deviations of the RPA from experiment
for g > k. As already mentioned in Secs. III and IV, the
onset of the core contribution around 70 eV prevents reli-
able values of S(q) for g >2kg, so that the question
whether there exists a somewhat oscillatory behavior of
S (q) must be left unanswered.

VI. CONCLUSIONS

The comparison of the experimental dynamic and stat-
ic structure factor for electrons in Si single crystals with
various theoretical models has led to the following con-
clusions.

(i) The plasmon resonances of Si shown by the mea-
sured dynamic structure factor for g <q, are much more
damped by interband transitions than corresponding
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FIG. 18. Pair-correlation function g(r) obtained from

jellium-model-calculated static structure factors of Fig. 7 for
different approximations, as indicated in the inset.
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features in the case of simple metals.

(ii) As already stated for simple metals, and also in the
case of Si, the Hartree-Fock approximation and the RPA
cannot appropriately describe the gross features of the
short-range correlation of electrons, as measured with the
dynamic structure factor for ¢ >g,.

(iii) Only by taking into account both the exchange
correction to the dielectric functions via a static so-called
local-field factor, and lifetime effects via the on-shell ap-
proximation of the imaginary part of the self-energy, the
short-range electron correlation can be appropriately
considered, so that the overall features (peak position and
dispersion, width, and shape) of the orientation averaged
S(q,w)s and the g dependence of the orientation-
averaged S(q)’s are correctly represented. A fitting of
the local-field factor to the experiment seems to be
reasonable.

(iv) The dynamic structure factor of Si exhibits a much
stronger q-orientation dependence of the peak position,
width, and shape of the spectra than the simple metals in-
vestigated so far. Some of the g-orientation-dependent
fine structure can be understood as being directly related
to an enhanced density of states at zone boundaries in the
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extended zone scheme, in good agreement with pseudo-
potential band-structure calculations.

(v) As a consequence of ion-lattice-induced local fields,
a volume plasmon-band-structure arises, which should be
especially pronounced for q||[111], since in that direction
g, is smaller than the half-diameter of the Brillouin zone.
However, direct evidence of the plasmon-band splitting is
prevented by the strong interband damping of the
plasmon resonances. But it could clearly be demonstrat-
ed that, as a consequence of the plasmon-band structure,
the coupling of the electron-hole-pair excitation continu-
um to the discrete plasmon excitations leads to plasmon-
Fano resonances, whose existence could be experimental-
ly proved and whose characteristics could be well de-
scribed within the limits of a two-plasmon-band model.
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