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We report detailed x-ray powder-di6'raction measurements on a sample consisting of —60% carbon

nanotubes and -40% carbon nanoparticles. These measurements demonstrate the existence of short-

range interlayer stacking correlations. Our calculations show that such correlations should not be ob-

servable in idealized models of nanotubes. The observation of short-range interlayer correlations can be

explained if many of the nanotubes and nanoparticles have polygonal cross sections, largely consisting of
Aat regions having graphitic interlayer correlations. This polygonization is almost certainly driven by

the van der Waals interactions responsible for the ABAB stacking in crystalline graphite.

I. INTRODUCTION

Carbon nanotubes' and nanoparticles may be formed
when an arc is struck between graphite electrodes in an
inert atmosphere. Transmission electron microscopy
(TEM) shows that nanotubes are long hollow cylinders
with inner diameters of -25 A. Single-wall as well as
multiwall' tubes have been observed, some of them
displaying fullerenelike caps on the ends. According to
the accepted "Russian doll" model, nanotubes consist of
graphite layers rolled up into closed concentric cylinders
[Fig. 1(a)].' Zhou et al. found that the radial compres-
sibility of a nanotube/nanoparticle mixture is comparable
with the c-axis compressibility of graphite and that nano-
tubes can be intercalated with Rb and K. These proper-
ties are not expected of Russian doll nanotubes, but they
are consistent with the so-called "scroll" model [Fig.
1(b)], in which a single graphite sheet, possibly containing
dislocation defects, is rolled up to form a multiwalled
tube.

Each of the cylinders in Russian doll nanotubes is
formed from a graphitic sheet that is rolled so that one of
its Bravais lattice vectors maps on the circumference of
the cylinder. ' Thus it is possible to start from any point
on a cylinder and then, through a succession of lattice
vector translations, to return to the same point having
gone once around the cylinder. It follows that the radius
of any given cylinder may be written as
R „=(1/2')[(na) +(mb) ]' where m and n are in-
tegers, a =2.45S A is the in-plane graphite lattice con-
stant, and b =+3a.

The helical angle of a graphite cylinder may be de6ned
as the smallest angle that any of its C-C bonds makes
with a plane normal to the cylinder axis. Thus the helical
angle of a Russian doll cylinder is given ' by
O=arctan(na/mb), modulo 60'. It is clear from Fig. 2
that tubes with |9=0' or 0=30' are special, since in these
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FIG. 1. Top views of (a) Russian doll and (b} scroll multilay-
er nanotubes. Local c and P directions are indicated.

cases —,
' of the C-C bonds are either perpendicular (0=0 )

or parallel (8=30') to the cylinder axis, resulting in a re-
peat period along the tube axis of a or b, respectively; we
shall refer to such tubes as nonhelical tubes. Nanotubes
with other values of 0 have all C-C bonds at angles other
than 0 or 90' to the cylinder axis, and the repeat period
is typically much larger than the graphite unit-cell size;
we shall call them helical tubes.

Russian doll and scroll nanotubes can be nonhelical or
helical. %ith few exceptions, it is impossible to construct
helical Russian doll nanotubes that maintain the same
helical angle from layer to layer with an interlayer spac-
ing d, reasonably close to that of disordered graphite.
Thus the generally accepted picture of helical Russian
doll nanotubes is that 0 changes from layer to layer so as
to maintain the interlayer spacing close to that of disor-
dered graphite. In scroll nanotubes d, is unrelated to 0,
but 8 must be the same for all layers (here meaning winds
of the spiral), unless there are dislocations.

Nanoparticles are assumed to have an onionlike struc-
ture, i.e., to be composed of large concentric fullerenelike
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0=20

FIG. 2. Side views of single wall nanotubes with different hel-
ical angles 0; 0=0' and 0=30 tubes are the only two distinct
nonhelical structures.

cages of carbon atoms. In such structures, each "layer"
must contain 12 pentagons in order for the structure to
close.

X-ray diffraction is an effective technique to study the
average structural properties of carbon nano-
tube/nanoparticle samples. We present here a detailed
analysis of measured x-ray-diffraction patterns for such a
sample. The analysis yields important information about
structural properties such as tube topology, interlayer
correlations, strains, and domain sizes. We also describe
calculations of powder x-ray-diffraction patterns for the
Russian doll and scroll models of nanotubes described
above. A comparison of the calculations with our data
reveals that these idealized models are oversimplified and
suggests that there are correlated Qat graphitic regions in
carbon nanomaterial.

A low-resolution TEM image of one of our samples is
shown in Fig. 3. About 60% of the sample consists of
long nanotubes with an average outer diameter of -400
A and the rest is polyhedral nanoparticles. No amor-
phous carbon, which is known to contaminate some
nanotube/nanoparticle samples, was observed.

The diffraction measurements were performed with a
Scintag XDS2000 x-ray powder-diffractometer using a
Cu Ko. tube and a wavelength A, of 1.54 A. The beam
width at the sample was -0.4 mm. The powder sample
was placed in a glass tube with very thin walls ((0.1

mm). The diffraction pattern of the empty tube was sub-
tracted from the data. Slits of 0.3 mm before the sample,
and 0.1 mm after the sample, were used in all the mea-
surements, except for the measurement shown in the inset
of Fig. 4, where 0.2/0. 05 mm slits were used. Resolution,
extracted from the widths of A120& Bragg reAections
measured under identical experimental conditions, was
included in our its to the experimental data.

III. EXPERIMENTAL RESULTS AND COMPARISON
WITH A MODEL OF DISORDERED GRAPHITE

The measured powder-diffraction pattern for the
nanotube/nanoparticle sample, plotted as a function of
the wave-vector transfer Q =(4'/X)sin(a/2), where a is
the scattering angle, is shown in Fig. 4. In agreement
with other measurements, ' it is similar to that of disor-
dered graphite. The main features are sharp, symmetric
OOI peaks which probe the interlayer spacing, and

II. EXPERIMENTAL DETAILS

Samples were grown by the arc discharge method. In
each case the cathode was a pressed graphite rod 6 mm in
diameter, and the 4 mm diameter anode was a composite
of graphite and silicon. The anode had a 1 mm diameter
hole —10 mm deep drilled in its center and packed with
—325 mesh 99.5% pure silicon powder. Energy-
dispersive x-ray analysis produced no evidence that Si
had been incorporated chemically or in elementary form
within the growth. The electrodes were adjusted so that
their surfaces were nearly parallel and —1 mm apart.
The chamber was evacuated to a pressure of —10 torr,
pumped for several hours, and then backfilled with
99.999% pure helium to an initial pressure of 500 torr. A
Miller XMT200 dc inverter was used as the plasma
power source. The high breakdown voltage necessary to
initiate the plasma was supplied by a separate high-
frequency arc starter. While an arc was struck between
the electrodes the anode was slowly fed into the plasma
using a linear motion mechanism. Nanotubes and nano-
particles formed at the center of the cathode.

Transmission electron micrographs were obtained us-
ing a Phillips EM430 operating at 300 kV. Specimens
were prepared by scraping material from the cores of the
cathodes onto holey, carbon formvar coated, copper
TEM grids. This technique produced an ample abun-
dance of nanotubes and nanoparticles that hung over
holes in the formvar coating, facilitating examination in
the TEM.
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FIG. 3. Low resolution TEM photograph of a part of the
sample used in our measurements. The area shown is approxi-
mately 36X46 pm .
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FIG. 4. The measured x-ray powder-diffraction pattern of
the nanotube/nanoparticle sample (noisy curve) and the results
of a calculation using the model of disordered graphite de-
scribed in the text (smooth curve). The inset shows the result of
a high-resolution measurement around the maximum of the 10
reflection, with the same calculation. The contribution from the
sample holder, which is flat, has not been subtracted from the
data shown in the inset.

sawtooth-shaped rejections associated with the two-
dimensional periodicity of the layers. '

Structural information is contained in the shape of the
observed scattering, rather than simply in the positions
and intensities of the peaks. " Therefore an important
observation is that the widths of the 002 and 004 peaks
are not resolution limited. For carbon nanotubes and
nanoparticles, there are two likely sources of the ob-
served broadening. One possibility is particle size
broadening, which should definitely be observed since
TEM shows that the tubes have an average radius of
-200 A. Another possible source, often overlooked, is
strain-broadening resulting from a distribution of d spac-
ings which varies more slowly than 1/r . ' These sources
of broadening can be distinguished because they have
different dependences of peak width on Q. For the case
of domain size broadening, the full width at half max-
imum (FWHM) is

yg =2(m ln2)' jNd, ,

where N is the number of layers. Note that y& is in-
dependent of the order of the reAection. On the other
hand, the width for strain broadening is given by

yd= b(d, ),m.l

d,'
where I is the index of the reflection and h(d, ) is the
FWHM of the distribution of interlayer spacings. Here
the width depends linearly on the order of the reAection.

We have separated these contributions by fitting the
002 and 004 peaks to convolutions of Lorentzian and
Gaussian line shapes (Fig. S). The measured resolution
function is Gaussian and we assume that the particle size
broadening is also Gaussian. The width of the fitted
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FIG. 5. 00l peaks fitted to the line shape described in the text
(a) 002 peak. (b) 004 peak.

Gaussian component is the quadrature sum of the widths
of these two contributions. The Lorentzian component
of the 00l peaks results from the distribution of interlayer
spacings. With these assumptions we obtain X—55
(which gives R —190 A, consistent with estimates based
on an inspection of our TEM results), and b, (d, ) =0.044
A. Thus much of the width of the 00l peaks arises from
strain rather than finite-size effects. If we had assumed
that the width of the 002 peak was (apart from resolu-
tion) due solely to particle size effects, we would have ob-
tained X-17. Figure 6 shows the calculated distribution
of d spacings in our sample. It has a maximum at 3.42 A,
slightly lower than the previously reported value of 3.44
A. ' The tails of the distribution, which extend from
less than 3.3S4 A (the ordered graphite spacing) to more
than 3.5 A, are only roughly represented by Fig. 6, since
the assumption of a Lorentzian d, distribution is artificial
far from the maximum. This cannot have a large e6'ect
on the extracted values of N and b, (d, ), but would tend to
reduce the extent of the tails in Fig. 6.

While a great deal of information can be obtained from
the OOI peaks, it is impossible to learn anything about the
interlayer stacking since this involves in-plane correla-
tions of the graphite layers and Q has no in-plane com-
ponent for 00l peaks. In order to obtain information
about the interlayer stacking correlations we must look at
hkl peaks where h and/or k is nonzero. In crystalline
graphite the stacking sequence is ABC'S resulting in
sharp hkl peaks. On the other hand, if the graphite
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FIG. 6. The calculated distribution of interlayer spacings in
0

our sample. The vertical line is at 3.354 A—the interlayer spac-
ing in ordered graphite.

sheets are stacked turbostratically the hkl rejections
smear into uniform rods perpendicular to the plane of the
layers, indexed using only two indices hk. If the sample
is polycrystalline, these rods manifest themselves as
asymmetric peaks with sharp onsets on the low Q side
and broad tails on the high Q side as recognized by War-
ren. ' The broad bumps that we observe in the high Q
tails (Fig. 4), centered at the hkl powder peak positions of
ordered graphite, represent intensity modulations along
the hk rods reAecting a tendency for adjacent layers to be
aligned as in ordered graphite. ' ' Intensity modulations
are also evident in the diffraction pattern published in
Ref. 10, but they were not explicitly mentioned in that
paper.

Because the diffraction data shown in Fig. 4 look very
similar to those expected for disordered graphite with in-
terlayer correlations, ' we have fitted our data using the
formalism for disordered graphite developed in Refs.
14—16. Within this model the diffracted intensity of an
hk reAection is proportional to'

Izk(g) = AC(g)f (Q) 1+cos —m(h —k)
2
3

X J d(P —cos(I'I, (gcos'P)E(gsin%'),
0 2

where q( is the angle between Q and the c direction,

2(gqo)'~ [(ym/ln2)'~ +1.8ym ]

is the normalization factor, C(g) is the polarization fac-
tor, f(Q) is the atomic scattering factor for carbon,

—(x —qo) ()n2/) ) 1.8y

y +(x —qo)

is the intensity distribution across the rod (see Ref. 16),
and

P(r)=

(Refs. 14 and 15). In these equations qo is the two-
dimensional reciprocal-lattice vector for the hk reAection,
y is the width of the reciprocal-lattice rod given by
1/y =De '~ where D is the characteristic domain size
of the layers, and P(r) is the probability that the in-plane
component of the separation of a pair of adjacent layers
is r. This function is determined by the model of the
stacking of the graphite layers. For instance, if P(r) is in-
dependent of r, corresponding to random stacking, s =0
and F=1.

Since an inspection of Fig. 4 suggests that there are in-
terlayer stacking correlations in our sample, we have
parametrized our data using the simplest model that in-
cludes such correlations. Within this model, if a particu-
lar layer is said to occupy position 2, then the next layer
has probability p of being shifted or rotated by a random
amount, while the probabilities of occupying positions B
and C are both equal to (1 —p )/2; longer-range correla-
tions are neglected. Hence,

2 1 —pp+ [5(r—r~ )+5(r—rc)], (4)
ab B C

where ab/2 is the area of the unit cell, and r~(rc ) is the
in-plane component of the offset of the B(C) position
from the A position.

The calculated intensity was modified to reAect varia-
tions in the effective scattering volume with Q, and the
effects of sample container absorption. Due to the small
sample volume and small sample absorption coe%cient,
absorption by the sample itself was negligible. Thus the
hk profile can be described with only four adjustable pa-
rameters: (i) a constant background, (ii) an overall scale
factor, (iii) the probability that a pair of adjacent layers is
randomly aligned (p), and (iv) the characteristic dimen-
sion of a planar domain (D).

The best fit combining 00l and hk rejections is shown
as the smooth line in Fig. 4, while the data are shown as
the noisy line. From our fit we find that the probability
of graphitic stacking, (1—p), is —18%. Differences be-
tween the calculation and the experimental curve are due
to uncertainties in the background and in the sample con-
tainer thickness, and also due to the simplicity of the
model, i.e., the neglect of variations in p among different
particles, non-nearest-neighbor correlations, etc. In fact
the small bump in the 10 peak line shape, not described
by the model, suggests that (1—p) is larger than 18% for
many of the particles in our sample. The existence of in-
terlayer correlations is an important finding, because it
places constraints on the microstructure of the nanotubes
and nanoparticles. Such correlations tend to reduce the
interlayer interaction energy, which plays an important
role in the formation of nanotubes and nanoparticles.

The inset to Fig. 4 shows the results of a high-
resolution measurement in the region around the 10 two-
dimensional reAection. The line shape in this region is
sensitive to the size of the average coherent planar
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domain. Best agreement of the theoretical curve with the
data was obtained with D =400+30 A.

IV. THKQRKTICAL RESULTS

In Sec. III we modeled the diffraction from a stack of
partially ordered graphite sheets and obtained very good
agreement with the experimental data when —18% of
adjacent layer pairs were ordered as in crystalline graph-
ite. In this section we address the possibility that inter-
layer correlations occur in nanotubes and nanoparticles,
where sheet curvature and geometrical restrictions im-
pose constraints on interlayer ordering. We also examine
the influence of nanotube curvature on the finite size
broadening of hk peaks.

We start with an introduction to relevant notation and
definitions. We then discuss aspects of the geometry of
nanotubes in the large diameter approximation, and their
implications regarding the extent to which adjacent lay-
ers can be correlated. Finally we present the resu1ts of
computer calculations for nanotubes without invoking
this approximation.

A. Axial, nonaxial, and 00l rejections

The long axis of a nanotube is called the z axis, and at
any location on a nanotube the radial direction is the c
direction (to make correspondence with graphite), and
the tangential direction is the P direction (Figs. I and 2).

To discuss the periodic atomic arrangements that are
responsible for coherent reflections, let us first consider
single-layer nonhelical nanotubes (Fig. 2). Atoms in such
tubes sit on rings that are periodically arranged along the
z axis. The repeat period T of the z coordinates is a /2 for
8=0' nanotubes and b/2 for 8=30 nanotubes. Nonheli-
cal nanotubes contain regions that scatter x rays
coherently for any wave vector q whose z component is

q, =2vrn/T where n is an integer. These reffections will
be called axial hk reAections.

In addition to translational periodicity along the z axis,
the atomic positions in nonhelica1 nanotubes have angu-
lar and helical periodicities, the latter involving a rota-
tion followed by a translation along the z axis. These lead
to approximate local in-plane translational periodicities
resulting in coherent scattering with two-dimensional
Miller indices hk as in graphite. These will be called non-
axial hk reflections.

Axial and nonaxial reflections from an approximately
flat local region of a 0=0' nanotube are illustrated in Fig.
7. The powder peak labeled 11 is due to the six distinct
reflections 11, 11, 12, 12, 21, and 21. In 0=0' nanotubes
two of these six reflections are axial, but there are no axi-
al reflections of this type in 0=30 nanotubes. Similarly
the 10 powder peak is due to the six distinct reflections
10, 10, 01, 01, 11, and 11, two of which are axial in
0=30' nanotubes, while in this case there are no axial
reflections in 0=0' nanotubes. In helical nanotubes a11 of
the 10 and 11 reflections are nonaxial.

Helical nanotubes are also periodic in the z direction
but with T much greater than a or b. Our calculations
confirm that the structure factors for the axial reflections
are negligibly small, and they will be ignored in the rest

FIG. 7. A small region of a large diameter nonhelical 0=0'
nanotube (cf. Fig. 2). Arrows represent directions of in-plane
components of q for 11 reflections: solid —axial; dashed-
nonaxial. In all cases the magnitudes of the in-plane com-
ponents of q are 4m/a, and the out-of-plane components of q (in
the radial c direction) are arbitrary.

of the paper. Within this approximation coherent
scattering in helical nanotubes results exclusively from
the helical periodicity of the atomic positions, and helical
nanotubes have exclusively nonaxial reflections.

Analytical and numerical calculations' show that both
axial and nonaxial hk reflections in single-wall nanotubes
produce characteristic two-dimensional sawtooth powder
line shapes, originally calculated for graphite by War-
ren. ' Preferred stacking of adjacent layers in multilayer
nanotubes can modulate the tails of these reflections.

Radial periodicity in multilayer nanotubes results in
approximate translational periodicity in the stacking (ra-
dial) direction in each local region. Reffections due to
this periodicity appear at Q =nl /d„where I is even, and
will be called 001 reffections. In the powder pattern they
appear as symmetric peaks.

B. Large diameter approximation

The purpose of this section is to develop a basic under-
standing of the constraints placed on interlayer correla-
tions and finite-size broadening effects due to the simple
fact that nanotubes are made of graphite sheets rolled
into cylinders, imposing a boundary condition that is ab-
sent in Aat graphite. We will consider large diameter
nanotubes, in which there are many carbon atoms on the
circumference of a given layer. It is then sufhcient to in-
vestigate the statistical distribution of stacking arrange-
ments in order to determine whether or not the hk
reflections are modulated by interlayer correlations. To
examine stacking in nonhelical nanotubes, consider Fig.
8, which shows a projection of the positions of atoms in
two adjacent layers of a 0=30' nanotube onto a plane
perpendicular to z. Note that the angular offsets differ at
different angular positions. In fact, the P offset changes
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FIG. 8. Two concentric rings of atoms equally spaced in the
P direction. The arrow represents a region of AB graphitic
alignment.

Thus we expect the finite-size broadening of the axial
reflections to be much smaller than that of the nonaxial
reflections, since the tube length is much greater than its
radius. An exact analytic calculation and quantitative
discussion of the finite-size broadening of hk peaks will be
given in a separate paper. '

C. Beyond the large diameter approximation

In order to determine whether or not the diameters of
the nanotubes in our sample are sufficiently large that the
large diameter approximation is justified, we have per-
formed numerical calculations of powder-diffraction pat-
terns of nanotube samples with layers of the same helici-
ty. For x-ray-scattering measurements the diffracted in-
tensity is proportional to

linearly with P, covering the entire domain of possible
offsets with essentially equal probability as long as the di-
ameter is "large. " Thus in a powder-diffraction experi-
ment, the sampled distribution of offsets is random and
nonaxial hk reflections cannot be modulated. The same
argument applies to 0=30' scroll nanotubes and to 0=0'
nanotubes of both types. Helical nanotubes have addi-
tional disorder along the z axis and cannot have modulat-
ed hk reflections. Nanoparticles consisting of nearly
spherical fullerenelike concentric shells cannot have
modulated hk reflections for analogous reasons.

Axial hk reflections in nonhelical nanotubes are insens-
itive to tI) oft'sets, because they have no component of q
parallel to P (Fig. 7). These refiections can therefore be
modulated if there is preferential alignment of layers in
the z direction. In nonhelical scroll tubes all layers have
the same z axis coordinates, and the axial hk reflections
are modulated. On the other hand, any stacking is al-
lowed in Russian doll tubes and the axial hk reflections
are modulated if adjacent layers are not randomly
stacked along the z axis. Calculations are required to
determine the energetically favorable stacking arrange-
ments.

Another important consequence of the curvature of
nanotubes is that the coherently diffracting domain is
confined to a small region unless q is parallel to z. The
size of the coherent domain for a nonaxial hk reflection is
equal to 2 /sin(yhk ) where A is a function of the tube ra-
dius and g&k is the angle between the translational
periodicity vector for the hk reflection and z. On the
other hand the finite size of the coherent domains for axi-
al reflections is proportional to the length of the tube.

I

I(Q)=, f dq5(~ql —Q)G(q),

where the ensemble averaged structure factor

G(q) =Av ge

Here r; is the position of atom i, Av represents the en-
semble average, 1/Q is the Lorentz factor, and C(Q)
and f(Q) are the polarization factor and atomic scatter-
ing factor, respectively. Nanotube curvature complicates
the exact analytic evaluation of Eq. (5) and such calcula-
tions will be described in a separate paper. ' Here we will
present the results of numerical calculations and discuss
the main features of G(q) (see also Ref. 14).

Because of translational periodicity along the z axis,
G(q) is nonzero only at discrete values of q, (assuming
infinite length tubes). The relevant q, values in nonheli-
cal tubes are integer multiples of 2~/a for 8=0' tubes
and of 2~/b for 0=30 tubes. In our calculations for hel-
ical nanotubes we only sum over the reciprocal space
sheets that contribute significantly to the hk peaks. The
q, values of these sheets can be calculated explicitly; q,
values contributing to the 10 peak are
(4n/b )sin(m. /6. + n ir/3+ 8) and q, values contributing to
the 11 peak are (4m/a )sin(nm/3+8), where n is any in-
teger.

Since the ensemble averaged reciprocal-space density
G(q) has cylindrical symmetry, and since q, is restricted
to a set of specific values, we can reduce the three-
dimensional integral in Eq. (5) to a finite sum over one-
dimensional integrals:

C 2
2 2

I(Q) = Av g f 5(q,. —"t/Q q)ge ' '
q

—dq,
l, l

where L is the length of the tube, and q, is the radial
component of q.

Calculations were performed for Russian doll and
scroll types of nanotubes. Equation (7) was evaluated by

generating the coordinates of the atoms of a nanotube of
finite length, calculating the values of q, that contribute
to the sum, and then evaluating the integral numerically.
Ensemble averages were performed by summing over



122 REZNIK, OI.K, NEUMANN, AND COPI EY 52

contributions from 300 nanotubes of a g' to a given type and nel-
icity with specified rectangular distributions of inner di-
ameters and lengths. Additional parameters for ensem-
bles of Russian doll tubes were an interlayer correlation
parameter and the distribution of the number of layers.
The stacking model for the Russian doll tubes was analo-
gous to the model described in Sec. III: adjacent layers
were assumed to be randomly aligned with probability g
and otherwise a randomly picked pair of unit cells in ad-
jacent layers was aligned as in graphite. Additional pa-
rameters for scroll tubes were the density of dislocation
defects and the average length of the spiral; dislocations
were mod. cled as random translations in the z and
"spira" directions. The structural parameters of each
nanotube, such as the number of layers, and the locations
of defects, were randomly generated within the specified
distributions.

In Fig. 9(a) we show a calculated diffraction pattern for
an ensemble of nonhelical Russian doll nanotubes with

elical angle 8=0' and randomly stacked layers (g =1;
Fig. 9(b) shows a calculation for 8=0' scroll tubes with
an average of —5 dislocation defects per tube. Both
structures had inner diameters of 20—40 A, 5 —21 layers,
and 200—300 unit cells along the z axis. The difFraction
pattern in Fig. 9(a) is also characteristic of all helical
nanotubes and the pattern in Fig. 9(b) is characteristic of—O' Russian doll tubes with interlayer correlations

reflections in these nanotubes and is therefore not modu-
ated. Its lid. s line shape is in excellent agreement with the

line shape calculated for disordered graphite [E . (3)j
with p =1. Two of the six reflections in the 11 eak are
axial so the, so ey are modulated in tubes with correlations

along the z axis, resulting in the extra peaks seen in Fig.
9(b). They are equivalent to the 112 and 114 peaks in
graphite.

We havave also investigated the dependence of the 11
peak line shape on the degree of z axis ordering, by per-
forming the same calculation with a h' h dig ensity o Q
points for 8=0 Russian doll nanotubes (Fig. 10); the
structural parameters were the same as in the previous
calculatton, and the probability of random alignment (g)
was 1, 0.55, and 0 for the bottom, middle, and top curves,
respectively.

The bottom curve exhibits asymmetric peaks with
maxima at —5. 13 A and at —5.2 A ' b th h

roa tails on the high-Q side characteristic of two-
imensional reflections, as well as a broad peak at —5.57

A . Our analysis reveals that the —5. 13 A ' peak is
due to the axial 11 rejections (we call it th

'
1 1

eak) the-
r
pea, t e -5.2 A peak results from the nonaxi l 11
efiections (we call it the nonaxial 11 peak) and th k

xla

at -5.5a —. 7 A is the 006 reflection. The nanaxial 11 peak
has a maximum at higher Q and is much broader than
the axial 11 peak because, as discussed in Sec. IV B, cur-
vature limits the coherently diffracting domain for the
nonaxial peak; this results in finite-size broadening and a
shift of its maximum io, &3 From the shift of the max-
imum we estimate that the 11 nonaxial reflection
coherent domain size is -60 A. As predicted in the large
diameter approxj. mation, ordering of layers along the z
direction introduces modulations into the axial 11 peak,
evidenced as the broad bump at -5.4 A ' in the middle
curve of Ftg. 10 (g =0.55), and as sharp symmetric ill
peaks in the top curve (g =0). Note too that much of the
axial 11 peak sharpens into a symmetric 110 peak as g is
decreased from 1 to 0. On the other hand interlayer or-
dering does not afFect the nonaxial 11 peak.
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FICx. 9. A calcululation of the diffraction pattern for 0=0'
o u es wrt no z-axis inter-nonhelical nanotubes: (a) Russian d 11 t b

'
h

ayer correlations. (b) Scroll tubes with dislocations

FICx. 10. AA calculation of the diffraction pattern for 0=0'
nonhelical Russian doll nanotubes 'th d'ffwi i erent z-axis inter-
layer correlation parameters g (defined in the text). The
diffraction pattern below 4.9 A ' is not ff t d bis not a ected by interlayer
ordering.
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No splitting of hk peaks into axial and nonaxial com-
ponents, such as is shown in Fig. 10, has yet been ob-
served experimentally, no doubt because peak line shapes
are strongly smeared owing to variations of helicity in
available samples. A more detailed theoretical investiga-
tion of finite-size effects in nanotubes is currently under-
way. '

V. DISCUSSION AND CONCLUSIONS

In Sec. IV we showed that the curvature of the graphi-
tic layers in nanotubes precludes the possibility of inter-
layer stacking correlations unless the tubes are nonheli-
cal. We also found that a sample consisting of t9=0'
nonhelical nanotubes has an unmodulated 10 peak and a
11 peak with modulated and unmodulated components
whose integrated intensity ratio is 1:2 (Fig. 10); converse-
ly a sample of 0=30 nonhelical nanotubes has an unmo-
dulated 11 peak and a 10 peak whose modulated and un-
modulated component intensities are again in the ratio
1:2. This is because none of the six 10 (11) reflections and
only two of the six 11 (10) reiiections in 8=0' (9=30 )

nanotubes are axial, and the axial reAections are modulat-
ed whereas the nonaxial reAections are not. In an at-
tempt to interpret our data within the theoretical frame-
work developed in Sec. IV, and in a manner consistent
with our TEM results, we shall assume that 40% of the
sample is spherical nanoparticles (which have no modu-
lated reiiections), and that the remaining material is ex-
clusively nonhelical 8=0' and 0=30' nanotubes. The
two types of nonhelical nanotubes are assumed to be
present in roughly equal proportions since the observed
10 and 11 reAections are both modulated. This picture,
which maximizes the modulated component in the hk
peaks, implies that the integrated intensities of the modu-
lated components of the 10 and 11 peaks amount to about
10% of the total integrated intensity.

We have so far assumed that the fraction of fully
nonhelical nanotubes is 100%. However, recent TEM
studies ' have shown that this fraction is actually much
smaller. Furthermore the measured distribution of inter-
layer d spacings in our sample (Fig. 6) is completely in-
consistent with the bimodal distribution expected for a
sample which consists of nothing but nonhelical nano-
tubes in equal proportions; 0=0' and 0= 30' Russian doll
nanotubes have interlayer d spacings of —3.39 and
-3.52 A, respectively. The preponderance of helical
nanotubes in our sample means that the modulated corn-
ponent of the hk rejections should be much less than
10% so that interlayer correlations are very unlikely to
be observable in experimental measurements if the model
assumed in Sec. IV is correct.

Since we do observe modulated hk peaks, and since our
sample is largely nanotubes, we are forced to conclude
that our idealized structural models of nanotubes are in-
correct. On the other hand, we showed in Sec. III that

our data are well described by a model of disordered
graphite in which the probability of graphitic stacking is
18%. This suggests that the observed interlayer correla-
tions may arise from Bat domains which locally approxi-
mate graphite. It is clear from Figs. 1 and 8 that nano-
tubes of the same helicity contain regions where the
alignment of atoms in adjacent layers is close to that of
graphite, and others where it is not. Zhang et al'. pro-
posed that the interlayer stacking energy would be opti-
mized if flattened regions approximating graphitic align-
ment were created at the expense of additional curvature
in other regions, resulting in nanotubes and nanoparticles
with polygonal cross sections. Polygonal nanotubes and
nanoparticles would also have different interlayer spac-
ings in the bent and Aat regions. ' Thus polygonization
would naturally explain both the existence of interlayer
correlations and the broad distribution of interlayer spac-
ings observed in our experiment. Polygonal nanotubes
and nanoparticles have already been observed with high-
resolution TEM (HRTEM). ' Furthermore I.iu and
Cowley' have observed hkl spots in diffraction profiles of
individual nanotubes, indicating the presence of
significant interlayer stacking correlations. A possible
origin of polygonization' is that it is due to sp defect
structures.

It is tempting to think that the modulated hk
reAections are exclusively due to polygonal nanoparticles,
since TEM measurements clearly show that many of
them are faceted. In this case, since our sample is 40%
nanoparticles, we expect at most 40% intensity to be
modulated and the data should be well described by a fit
to a component with p =0 and 60% of the integrated in-
tensity and a second component with p%0 and 40% of
the integrated intensity. However, the one component fit
described in Sec. III gave a much better description of
the data, implying that interlayer correlations are present
in both tubes and particles in our sample.

We have observed short-range graphitic interlayer
stacking correlations in the diffraction pattern of a car-
bon nanotube/nanoparticle sample. We have also per-
formed calculations which show that such correlations
should not be observable, given what is known about the
helicities of nanotubes, unless we assume, consistent with
recent HRTEM observations, that the carbon atoms in
nanotube/nanoparticle samples largely condense into fiat
regions with graphitelike interlayer correlations. This
suggests that carbon nanomaterial is mostly polygonal.
However, the present x-ray-diffraction measurements
cannot distinguish between Russian doll and scroll tubes,
nor can they determine whether the Rat domains are con-
nected by regions of continuous curvature or by the high-
ly disordered regions proposed by Zhou et al.
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