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Step and kink dynamics on Au(110) and Pb(111) studied with a high-speed STM
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The dynamics of monoatomic steps on the Au(110) surface is studied with a scanning tunneling micro-
scope from room temperature to 590 K. The time dependence of the position fluctuations of steps was
measured as a function of temperature and kink density. The mean-square displacement of the position
was found to be proportional to the square root of time, indicating an exchange of atoms with the adja-
cent terraces. The step dynamics is dominated by the diffusion of geometrically forced kinks that per-
form a random walk but cannot pass each other. The statistics of step fluctuations in time is mapped on
existing theory for one-dimensional diffusion. The resulting atomistic theory explains the time behavior
of the mean-square step displacement and its dependence on both temperature and kink density. Kinks
that are close together do not move completely independently of each other. The time dependence of the
fluctuations of steps on Pb(111) indicates that the step motion of this surface is the result of mass trans-

port along the step.

I. INTRODUCTION

The thermal fluctuation of the position of monoatomic
steps on metal and semiconductor surfaces has recently
attracted much attention, both experimentall_lo and
theoretical. ' "1* The dynamics of steps plays a role in
growth!>1¢ and in the equilibration of surface structure
and morphology.'’~?? One of the important issues con-
cerns the mechanism by which a step moves. The atomic
processes underlying the step dynamics, in particular the
extent to which they involve mass transport along steps
or over the adjacent terraces, influence the shape of
monoatomic islands during growth.?>?* By influencing
the island shapes, the dynamics at a step has a large im-
pact on the morphology of the film during growth and
can, for example, change three-dimensional into two-
dimensional growth.?> Because the fluctuations of a step
can be changed by the proximity of neighboring steps, '? a
detailed analysis of the dynamics of steps as a function of
the average step density on the surface can be used to
measure the interaction between steps.’

Figure 1 schematically shows several scenarios by
which the position of a step can locally change. We dis-
tinguish two different categories. In category A the step
moves by exchanging atoms with a reservoir of adatoms
on the terraces. The scenarios in category B involve no
exchange with the terraces. In this case transport of ada-
toms and/or vacancies along the step itself is responsible
for the movement of the step.

With the advent of microscopic techniques such as
transmission electron microscopy (TEM),?¢ reflection
electron microscopy (REM),?” low-energy electron mi-
croscopy (LEEM),?® and scanning tunneling microsco-
py, ¥ 73! it has become possible to visualize single monoa-
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tomic steps on surfaces. With REM and LEEM the la-
teral resolution is limited to approximately 100 A, but the
monoatomic height differences between adjacent terraces
on the surface are clearly resolved. The scanning tunnel-
ing microscope (STM) has the spatial resolution to atomi-
cally resolve a step.3! The STM is therefore ideally suit-
ed for the investigation of the atomic mechanisms under-
lying the step motion. In the present study we employed
an STM, which has been optimized for operation at high
imaging speed and high specimen temperatures. 2

In general, the individual processes that are combined
in one diffusion scenario have different activation ener-
gies, so that their rates can differ by many orders of mag-
nitude. For example, recent calculations based on the
embedded-atom method predict that the activation ener-
gy for a Cu atom to detach from a kink in a {110) step
on Cu(001) to the neighboring adatom site along the step
is 0.75 eV while the activation energy for the Cu atom to
move further along the (110) step is only 0.38 eV.3 For
approximately equal attempt frequencies, this activation
energy difference results in a ratio between the rates for
kink movement and atom displacement along the step of
more than seven orders of magnitude at room tempera-
ture. Thus, we expect that at temperatures at which the
step moves on a time scale that is accessible with the
STM, the individual adatoms move so fast that they can-
not be observed with the STM.

So far, step dynamics have been studied with REM,
STM, and LEEM.!™ 10 Because it is hard to extract the
atomic mechanism for the step dynamics directly from
the experimental observations, it is essential to perform a
statistical analysis of the fluctuations of the step position
and relate the result to theoretical predictions. Recently
several formalisms have been developed to describe step
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dynamics.'»1>1*  Bartelt et al. have shown, using

Langevin equations, that when a step moves according to
a scenario in category A, the mean-square displacement
of the step increases with time ¢, proportional to ¢!/ 2
When it moves by a scenario in category B, the mean-
square displacement is proportional to ¢!/4. In this way
it is possible to draw conclusions about the mechanism of
the step dynamics by measuring the mean-square dis-
placement of a step as a function of time.

In this paper we present a STM study of step dynamics
on Au(110) and Pb(111). Figure 2(a) shows a ball model
of the (1X2) missing-row reconstructed Au(110) surface,
containing a monoatomic step with a single kink. The
step is of the “‘clockwise,” i.e., (111), type. All the step
dynamics on Au(110) described in this chapter concern
the low-energy (111)-type step. Figure 2(b) depicts a ball
model of a Pb(111) surface with a [110] step and two
kinks.
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FIG. 1. Schematic illustration of seven scenarios for local
displacements of a step on a surface. The scenarios are divided
into two categories. Category A contains scenarios in which the
step moves by an exchange of one or more atoms between sites
on an adjacent terrace and (a) sites in a step, (b) sites at a step,
and (c) sites at a kink. Category B contains the scenarios in
which the step moves due to a relocation of one or more atoms
along the step. (d) Atom diffuses along the step. (e) Exchange of
atoms from kink sites and sites at the step, creating a new kink
pair. (f) Atom diffuses from one kink to the next. (g) Exchange
of one or more atoms in a step sites with sites at the step.
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FIG. 2.

(a) Schematic model of the (1X2) missing-row
reconstructed Au(110) surface. The darker atoms are located in
the lower-lying layers. Two terraces are depicted with two com-
plete missing rows on the lower terrace and one on the upper
terrace. The clockwise step between the terraces contains one
kink. (b) Schematic model of the unreconstructed Pb(111) sur-
face. The darker atoms are located in the lower-lying layers.
The image depicts a step along [ 110] with two kinks.

From direct observations on Au(110) at relatively low
temperatures (from room temperature up to 350 K) we
conclude that preexisting kinks in the steps play a crucial
role in the dynamics of these steps. By combining this
observation with a statistical analysis of the dependence
of the mean-square step displacement on time, tempera-
ture, and kink density, we develop a model for step dy-
namics on Au(110) based on the movement of the indivi-
dual kinks in the steps. This model describes the mea-
surements very well. The mean-square step displace-
ments diverge as ¢!/2, which puts the mechanism for the
step fluctuations in category A: exchange of atoms be-
tween steps and terraces. By contrast, the mean-square
step displacements on Pb(111) show a proportionality to
t17*, which indicates that the mass transport involved in
the step dynamics on this surface is along the step
(category B). We complete our observations with the
statistics of the motion of individual kinks on Au(110).

II. EXPERIMENT

A. Cleaning procedure

The Au sample was chemically etched, and mechani-
cally polished. It was cleaned in situ by cycles of Ar ion
sputting and annealing to 550 K. The cycles were opti-
mized to produce a sharp (1X2) low-energy electron
diffraction pattern with a low background intensity. Dur-
ing the initial stages of sample preparation we found with
Auger-electron spectroscopy (AES) that the surface was
contaminated with Ca, which segregated from the bulk to
the surface. After several tens of cleaning cycles the level
of impurities was below the 1% detection limit of AES.
By radiative heating of the rear side of the crystal, tem-
peratures up to 590 K were obtained.
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The Pb(111) sample was spark-cut from a single-crystal
ingot and chemically etched. It was cleaned in situ by cy-
cles of AR ion sputtering and annealing to 450 K. After
several sputter-anneal cycles the level of contamination of
the surface was found to be below the detection limit of
AES.

The STM tip was prepared by electrochemical etching
of a 0.25-mm-diam W wire and annealing in vacuum. The
tip was further prepared in situ by field electron emission
and Ar ion sputtering.

B. Step shapes: frizziness and pinning

At elevated temperatures the monoatomic steps on
Au(110) appear ragged in the STM images. Figure 3
shows such a “rough” step with an average kink density
of 0.012 kinks per lattice site, measured at a temperature
of 590 K. The vertical stripes in Fig. 3(a) result from the
missing-row reconstruction, which is still present at this
temperature. The roughness does not reflect the real step
shape. Rather it is the result of an under-sampling in
time of the step position. In other words, the step posi-
tion frequently changes within the time needed to scan
one line, causing abrupt changes in step position from
one scan line to the next. This apparent raggedness has
been observed on several metal surfaces, even at room
temperature,! ~>3*737 and it has been termed “frizzi-
ness.”! At higher line rates (i.e., reduced under-sampling
of the step position) the frizziness is reduced. This reduc-
tion is illustrated in Fig. 3 where the line rate has been in-
creased from 3.6 Hz [Fig. 3(a)] to 26.1 Hz [3(b)], and 433
Hz [3(c)]. This observation is different from earlier re-
sults obtained by Poensgen et al. ,! which seemed to indi-
cate that the frizziness on Ag(111) and Cu(001) was in-
dependent of scanning speed.

By decreasing the temperature we reduce the mobility
of the steps. In this way we can follow the dynamics of

FIG. 3. Three STM images of the Au(110) surface (102
A X263 A, 127 scan lines, V,=—0.88 V, I,=0.1 nA) measured
at 590 K with different line rates. All three show the same step
section. (a) Line rate: 3.6 lines/s. Vertical dark stripes corre-
spond to the missing rows. (b) Line rate: 26.1 lines/s. (c) Line
rate: 433 lines/s.
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both the steps and the kinks in the steps in “slow
motion.” Figure 4 shows a sequence of four surface topo-
graphs of Au(110), measured at 374 K, at a rate of 1 im-
age every 49 s. The images show three terraces separated
by two steps of monoatomic height (one up and one
down). The (1X2) missing-row reconstruction of the sur-
face is clearly present on all three terraces. Both steps in
Fig. 4 are of the clockwise type. Both steps contain kinks,
and the sequence of images in Fig. 4 shows the mobility
of the kinks at this temperature. Each movement of a
kink causes the position of the step to locally change by
one unit of the missing-row reconstruction. When the
sampling rate of the step position is slow compared to the
mobility of the kinks, this causes the occurrence of ap-
parent kink pairs. Arrows A in Fig. 4(d) indicate such an
event, where it appears as if the step contains two nearby
kinks of opposite direction. Each time a kink crosses the
line being scanned, the image shows a jump in the posi-
tion of the step. Multiple crossings of the kink through
the scan line lead to a typical telegraph noise of the step
location (frizziness). We observe that the occurrence of
the apparent kink pairs decreases or even disappears
completely when the line rate of the measurement is in-
creased sufficiently. At high scan speeds and/or low tem-
peratures (see Fig. 4) we observe that the step dynamics
occur only by diffusion of preexisting kinks in the steps.
The kinks seem to diffuse freely, but they do not pass
each other by more than two atom spacings, thus almost
completely avoiding ‘‘overhangs” in the step shape. We
are forced to conclude that the thermal creation of kink
pairs can only play a minor role in the step dynamics
(and the frizziness) on Au(110). This is in contrast with
the conclusions for Cu(001) and Ag(111) in Refs. 1 and 2.
We find that all the steps on the Au(110) surface are
pinned. Arrow B in Fig. 4 indicates the most common
pinning center, which appears as a protrusion at a step.
We assume that it consists either of one or more Ca

FIG. 4. Sequence of four STM images of the Au(110) surface
(160 A X513 A, V,=—0.88 V, 1,=0.1 nA) measured at 374 K
at a rate of 1 image/49 s. Arrows A indicate an apparent kink
pair. Arrow B indicates a pinning center.
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atoms that have segregated from the bulk to the surface
or of one or more Mo atoms that have been sputtered
from the sample holder onto the surface. From the STM
measurements performed at several temperatures after
different cleaning treatments we estimate that the typical
density of these protrusions is between 10~% and 1073
monolayer. The average distance between protrusions
along a step is 400 A. Another mechanism by which the
step can be pinned on the reconstructed Au(110) surface
is the so-called fish-scale pattern that results from a local
miscut of the surface towards either (110) or (110),
which effective pins the step at the junction of two ter-
races with a height difference of two atomic planes. 3%

If a step on Au(110) is not pinned precisely along the
close-packed [110] surface azimuth, this local misorien-
tation has to be accommodated via geometrically en-
forced kinks, as is indicated in Fig. 5. The local kink
density p is the ratio of the number of the enclosed
geometrical kinks plus one and the distance between the
pinning centers. The step pinning on Au(110) typically
leads to step sections with kink densities in the range
from O to 0.125 kinks/lattice site.

We observe that the number of atoms between the pin-
ning centers is not conserved. This suggests that either
the step fluctuations are caused by a direct exchange of
atoms between the step and the terraces or that the pin-
ning centers indicated in Fig. 5 pin the step but allow
adatoms traveling along the step to diffuse past them. If
steps are pinned perfectly along the [110] direction, the
step position between the pinning centers does not move
over large time intervals, again demonstrating that
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FIG. 5. Schematic illustration of a pinned step on the
Au(110) surface. The solid vertical lines indicate the missing-
row structure. The step pinned between the pinning centers C
contains five geometrical kinks. The dashed arrows indicate the
scan lines used in Secs. III and IV for the study of the time fluc-
tuations of, respectively, the steps (arrow A, x direction) and the
kinks (arrow B, y direction).
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FIG. 6. Atoronically resolved STM image of the Pb(111) sur-
face (63 X 82 A, V,=+0.15V, I,=1.0 nA) measured at room
temperature in 0.5 s.

thermal kink creation at these temperatures is negligible.

Because the movement of a step is caused by the
diffusion of kinks along the step, the pinning centers
spectacularly increase the mobility of the step on a short
time scale by inducing a superthermal kink density. On a
long time scale the mobility of the steps is reduced com-
pletely due to the pinning, which sets a maximum ampli-
tude of the step fluctuations.

At room temperature the dynamics of the steps on
Pb(111) are so fast that even with the maximum line rate
of our STM of 1 kHz the steps remain frizzy. Figure 6
shows a STM image of a section of the Pb(111) surface
with four steps. On each of the terraces the atoms are
resolved. On Pb(111) it is less easy to determine the loca-
tion of the pinning centers than on Au(110). In some im-
ages they show up as a protrusion similar to the ones ob-
served on Au(110). But usually we can only locate them
as the sites in a step that are immobile during a series of
STM images.

III. STEP FLUCTUATION STATISTICS

We have shown in Sec. II B that the under-sampling in
time of the position of a mobile step leads to the mixing
of spatial and temporal information in the STM images.
In order to measure exclusively the time dependence of
the step fluctuations, we repeatedly scan one individual
line perpendicular to the step. Thus we obtain the posi-
tion of the step as a function of time, for one location
along the step, which we usually choose midway between
the nearest two pinning centers (scan line A Fig. 5). We
suppose that, on a sufficiently short time scale, the central
part of a pinned step section fluctuates as if it were part
of an infinitely long, free step with the same kink density.

Figure 7 shows the fluctuations in time of two steps
measured simultaneously at a temperature of 475 K,
displayed as a pseudo-STM image. The vertical axis
denotes the lateral coordinate perpendicular to the [110]
direction. The horizontal axis corresponds to time. Fig-
ure 7 demonstrates that the position of the steps can be
determined with missing-row resolution. In the 32-s time
window both steps in Fig.7 exhibit several abrupt posi-
tion changes caused by kinks crossing the scan line. The
abruptness of the changes in the step position is the result
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FIG. 7. Time sequence of a scan line across two steps on
Au(110), measured at 475 K (32 s X118 A, V,=—0.60 V,

I1,=0.1 nA). The time per scan line is 83 ms.

of a very low probability of observing the actual moment
of the passage of a kink through the scan line. This prob-
ability is negligible due to the combination of the
discreteness of the kink motion (see Sec. IV), the high
resolution of the STM along [110] (less than the intera-
tomic spacing) and the fact that the time needed for a
kink displacement of one lattice unit is probably very
short compared to the average time between successive
displacements.

In order to quantify the step fluctuations we evaluate
the mean-square displacement of the step:

Ui(t)=<[x(t+t0)—X(to)]2> ’ (1

where x (¢) is the position of the step at time ¢ and the an-
gular brackets denote an averaging over all time origins
to. The x and y directions are perpendicular and parallel
to the step. Figure 8 shows a double-logarithmic repre-
sentation of a typical mean-square displacement as a
function of time, for a step with a kink density of 0.0156
kinks/lattice site, measured at 556 K. For the determina-
tion of this particular mean-square displacement, the step
position was recorded during 0.2 s with a time resolution
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FIG. 8. Double-logarithmic representation of o%(t) of a step
on Au(110) with a kink density of 0.0156 kinks/lattice site, at a
temperature of 556 K. The mean-square displacement has been
expressed in units of the square of the missing-row spacing. The
inset shows o'2(¢) in a linear plot. The solid curves are power-
law fits, with o2(¢) < ¢!/2,
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of 2 ms. It is clear that o2(¢) follows a power law. We
find that the power is 0.48+0.05 for all temperatures and
kink densities, where the error margin reflects the stan-
dard deviation of the power measured from several tens
of step sections. We can therefore write

ai(t)zm (p’ T)t0.48j:0.05 , (2)

where the prefactor m may depend on the temperature T
and the kink density p. The power is close to 0.5 over the
entire experimentally accessed range of o2(¢) (more than
one order of magnitude). We therefore conclude that the
mean-square displacement of steps on Au(110) is propor-
tional to the square root of time, ¢ 172 which implies that
the steps exchange atoms with the terraces (category A)
(see Sec. V).

Not only the time dependence but also the dependence
of the step fluctuations on the kink density contains in-
formation about the mechanism underlying the motion of
kinks and steps. From the evaluation of o2(¢) for step
sections with different kink densities, the dependence of
m (p,T) on the kink density is determined directly. We
find that the step dynamics midway between two pinning
centers only depends on the kink density and not on the
distance between the pinning centers, from which we
conclude that the pinning centers do not strongly affect
the step dynamics on the time scale used in this study.
Figure 9 shows a double-logarithmic representation of
m(p,T) vs p, for different temperatures. Assuming a
power-law dependence, we find that m (p, T) is described
by

m(P, T)=C(T)p0.96:t0.12 , (3)
where the proportionality constant ¢ may only depend on
temperature. The error bar corresponds to the statistical
uncertainty in the slopes in Fig. 9. We conclude that the
mean-square displacement of steps on Au(110) is propor-
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FIG. 9. Double-logarithmic representation of the mean-
square displacement prefactor m (p,T) vs the average kink dis-
tance N =p ! for different temperatures on Au(110). The pre-
factor m (p,T) has been expressed in units of the square of the
missing-row spacing. The solid lines are fits with
m(p,T)xc(Tp.
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FIG. 10. Arrhenius plot of the prefactor ¢(7T) on Au(110),
expressed in units of the square of the missing-row spacing. The
solid line is a fit according to ¢(7T) <exp(—E,. /2kzT), with
E,.=0.72¢eV.

tional to the kink density.

From Sec. II B we know that the step fluctuations are
caused by the motion of kinks. Because the movement of
a kink probably is a thermally activated process, we ex-
cept ¢ (t) to exhibit Arrhenius behavior. Figure 10 shows
an Arrhenius plot of ¢(7), which confirms our expecta-
tion. The slope in Fig. 10 corresponds to an activation en-
ergy of 0.71+0.1 eV (see Sec V). This is the activation en-
ergy for the movement of a single kink along the step.

The step dynamics on Pb(111) is quantified in the same
way as on Au(110). From the step position as a function
of time the mean-square step displacement is obtained
[Eq. (1)]. Figure 11 is a double-logarithmic representation
of the mean-square displacement of a step on Pb(111)
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FIG. 11. Double-logarithmic representation of o2(t) of a
step on Pb(111) with a kink density of 0.3 kinks/lattice site, at
room temperature. The mean-square displacement has been ex-
pressed in units of the square of the lattice spacing perpendicu-
lar to [110]. The inset shows o2(¢) in a linear plot for the first
0.1s. The solid curves are power-law fits, with g2 () < ¢'/4,
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with a kink density of 0.3 kinks/lattice site, measured at
room temperature. It shows that the mean-square dis-
placement of steps on Pb(111) for short times also obeys a
power law in time. The slope in Fig. 11, however, indi-
cates that the mean-square displacement is proportional
to 174 rather than ¢'/2. We find this for all the steps we
investigated on Pb(111) at room temperature. Figure 11
shows that for longer times the mean-square displace-
ment levels off. We suggest that this is caused by step pin-
ning.

IV. KINK DYNAMICS ON Au(110)

A. Single kink fluctuation statistics

Our observation at relatively low temperatures (e.g.,
Fig. 4) revealed the crucial importance that kinks have in
the movement of a step. In this section we investigate the
fluctuation of the positions of the kinks directly. Similar
to the way in which the step position was measured as a
function of time, we measure that of a single kink by re-
peatedly scanning one individual line along the [110]
direction, which passes through the kink (scan line B in
Fig. 5) Figure 12 shows a pseudo-STM image, similar to
Fig. 7, of the position of a kink as a function of time mea-
sured at 374 K. The horizontal axis corresponds to time
and the vertical axis denotes the lateral coordinate along
the [110] direction. The position of the kink is the point
where the height abruptly changes by 1.4 A.

Because the kinks on Au(110) move over one unit of
the lattice by the evaporation or the adsorption of two
atoms [see Fig. 2(a)], one might expect to observe two
types of kinks, the initial or final configuration shown in
Fig. 2(a) and an intermediate one where just one atom has
left or is attached. The steepness of the height change in
Fig. 12 should be different for both types of kinks. We
have not succeeded in distinguishing two different slopes
at the position of the kink. This either means that the
resolution of the tip was not sufficient to observe the
difference or that one of the two types is much shorter
lived than the other, effectively causing only the long-
lives species to be observed. *°

In order to quantify the diffusive motion of a single
kink we use the position of the kink as a function of time
to calculate its mean-square displacement:
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FIG. 12. Time sequence of a scan line across a single kink in
a step on Au(110) with an average kink density of 0.021
kinks/lattice site, measured at 374 K (138 AX3.86 s, V,=—0.6
V, I,=0.05 nA). The time per scan line is 9.7 ms.
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a2(=([y(t +10)—p (1)), (4)

where y(t) is the position of the kink as a function of
time and the angular brackets again denote averaging
over all time origins ¢;. Figure 13 shows a double-
logarithmic representation of the mean-square displace-
ment of a kink as a function of time, measured during 2 s
with a time step of 0.01 s, at 421 K for a step with a kink
density of 0.025 kinks/lattice site. The mean-square dis-
placement follows a power law of time. The exponent
found is close to unity, the value expected for an unre-
stricted random walk. Assuming that the kink in Fig. 13
performs a regular random walk, i.e., ai( t)=T(T)t, and
that the jump frequency of the kink I'(T) exhibits Ar-
rhenius behavior with an activation energy equal to 0.7
eV (see Sec. III), we obtain an attempt frequency I'j of
6.3X10° Hz. For the temperatures, kink densities, and
time scales investigated so far we always find exponents
less than unity for the mean-square kink displacement.
We interpret this as the hindering effect of neighboring
kinks on the diffusive motion of each kink. As will be ex-
plained in Sec. V, the mean-square kink displacement
should asymptotically become proportional to the square
root of time.

B. Correlated and anticorrelated kink motion on Au(110)

The simultaneous measurement of the positions of
several kinks as a function of time reveals that the kinks
do not always move completely independently from each
other. To this end the microscope repeatedly scans a se-
quence of lines, each running through a different kink.
The result of such a measurement is depicted in Fig. 14,
which shows the positions of two neighboring kinks as a
function of time, measured at 330 K in a step with an
average kink density of 0.12 kinks/lattice site. Figure 14
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FIG. 13. Double-logarithmic representation of o() of a
kink on Au(110) in a step with a kink density of 0.025
kinks/lattice site, at 421 K. The mean-square displacement has
been expressed in units of the square of the lattice spacing along
[170]. A constant value of 1.0 that resulted from vibrational
noise has been subtracted from the mean-square displacement.
The solid is power-law fit, with o2(¢) o %%
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seems to indicate that when the two kinks happen to be
close to each other, their motion is anticorrelated (i.e.,
the walk that one kink performs is partly the reverse of
that of the other kink). This is precisely the behavior that
one expects when the kinks move in the following way.
Suppose that the position of one of the kinks changes by
the evaporation of an atom to a sit along the step. This
atom diffuses along the step and may reach the next kink,
where it then adsorbs. Thus the movement of the two
kinks is in opposite directions and, apart from the
diffusion time of the evaporated atom, simultaneous [see
Fig. 1(0)]. To quantify the degree of correlation in the
kink motion, we define a correlation coefficient as

- (Ayl(to)Ayz(to+T)>_<Ayl(t0)<Ay2(to)>
T)= ’
12 [(Ap2) — Ay DD Ap3 ) — (Ap, Y))]?

=
=1

(5)

where Ay, (t,) and Ay,(t,+7) are kink displacements of,
respectively, kink 1 at time ¢, and kink 2 at time ty+7
and the angular brackets denote an averaging over all
time origins #,. The factor 2 appears because the average
product of Ay,(tq) and Ay,(t,+7) counts only half of
the correlated displacements of kinks 1 and 2 at a time
distance 7.

From the positions of the two kinks in Fig. 14 we ob-
tain a correlation coefficient of Z,(7)= —0.46x0.12, for
the minimal time difference of 7=32 ms (time between
subsequent lines) and for distances of zero or one atomic
spacing. For larger distances and/or larger time
differences the correlation coefficient is zero, within the
statistical error of =0.12. A more detailed analysis of the
motion of individual kinks and the anticorrelation be-
tween neighboring kinks on Au(110) will be reported in a
forthcoming publication. %0

kink position (atomic units)

ol 4 e

80 100
t(s)

FIG. 14. The positions of two neighboring kinks on Au(110)
as a function of time, measured at 330 K. The positions are ex-
pressed in units of the lattice spacing along [110].
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V. THEORY FOR Au(110)

In Sec. IV we have found that, on the time scale of our
investigation, kinks perform a simple random walk, pro-
vided that the neighboring kinks are sufficiently far away.
We also know that the kinks cannot pass each other by
more than two atom spacings. This leads to a slowing
down of their diffusive motion when neighboring kinks
are close. Neglecting kink-kink interactions, we model
the kinks as particles diffusing on a one-dimensional lat-
tice.

The mean-square displacement of a location along the
step, after a time ¢, is determined by the mean-square
difference between the number of kinks that have passed
that location in one direction and the number of kinks
that have passed in the opposite direction. The passing
of the kinks at a certain location along the step cannot be
viewed as independent events because of the fact that
they cannot pass each other. In order to avoid this com-
plication, we label the kinks. Each time two kinks
“meet,” we randomize their labels. The labels will there-
fore perform ordinary, and uncorrelated, random walks
even though the kinks themselves obey the noncrossing
condition. We now obtain the mean-square displacement
of the step from the diffusion of the labels rather than
from that of the kinks. The approach is analogous to
that taken by van Beijeren, Kehr, and Kutner in the
description of tracer diffusion of hard particles on a one-
dimensional lattice.*! The mean-square step displace-
ment after a time ¢ is given by the mean-square difference
between the number of labels n,,(¢) that have started left
from the observation point along the step at ¢t =0 and
ended up on the right, and the number of labels n,(t)
that have passed in the opposite direction:

a2()={[n,(t)—n, ()]?) . (6)

Because the labels perform independent random walks,
their mean-square displacement is proportional to .
Therefore n,,(t) and n,(t) are proportional to ¢'/2, so
that the fluctuations on n,(t), n,(¢), and n,(¢)—n,(2)
are proportional to t!/4, This corresponds to a mean-
square step displacement proportional to ¢!/2,

In the following we present a more quantitative treat-
ment of the mean-square step displacement. We start
from the step velocity autocorrelation function
(v, (t)v,(0)). This is linked to the mean-square step dis-
placement in the following way:

2
f;;[ai(t)]=2%<vx(t)[x(t)—x(0)1>

=4 e (—
2dt(vx(0)[x(0) x (=)

=2(v,(0)v,(—1))
=2(v,(t)v,(0)) , (7)

where v, () is the velocity of the step at time z. We mod-
el the jumps of the step as occurring instantaneously.
Therefore it is necessary to define the step velocity at the
occurrence of a “jump” in the positive x direction in the
following way:
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V(1) =0,8(t —tjym) )

where a, is the lattice constant perpendicular to the step
(in the remainder of this paper we will set a, equal to uni-
ty), and #;,,,, is the point in time at which the step jumps.
A nonzero velocity at ¢ =0 only occurs when the step po-
sition jumps precisely at that point in time. Equation (8)
describes x (¢) correctly. The self-correlation due to the
initial jump gives a contribution 2p(I"/2)8(¢) to the ve-
locity autocorrelation function, where I' is the jump fre-
quency of the kinks. The factor 2 is due to the two possi-
ble jump directions. The kink density p appears as a fac-
tor because the step can only jump at ¢ =0 if there is a
kink next to the observation point on the step, immedi-
ately before ¢t =0. The frequency I" with which an isolat-
ed kink jumps, to the left or to the right, is assumed to
obey the Arrhenius law

I=Tgexp[—E,,/kT] . ©)

The kink that passes at t =0 and makes the step jump
at that point in time, will be called the “special” kink in
analogy to the special vacancy in Ref. 41. For t >0 a
nonzero contribution to the velocity autocorrelation
function of the step will only result if at time ¢ the special
kink passes the observation point again. In a first ap-
proximation, the special kink describes a random walk
and therefore the probability of finding it, after a time ¢,
at a distance of n lattice units away from its starting posi-
tion is given by

f(n,t)=e 11 (T't), (10)

where I, is a Bessel function of imaginary argument.
When the initial move of the special kink was from right
to left, the probability for the kink to jump past the ob-
servation point at time ¢ equals 1/2I" f(0,?) for a move to
the right and 1/2Tf(1,¢) for a move to the left. The
contributions to the velocity autocorrelation function due
to these moves are —p(I"/2)*£(0,¢) and p(T" /2)*f (1,1),
respectively. When the results of the two possible initial
move directions are summed with the self-correlation of
the initial move, we arrive at

(v, (1)v,(0))=2p(T /2)*{S[(T /2)t]— £ (0,)+ f (1,2)} .
(11)

The mean-square step displacement for long times is now
directly obtained from the velocity autocorrelation func-
tion by integration of Eq. (7):

ai(t)———pl"fotd're_rflo[l"r]

zp\/(Z/‘n')Ft . (12)

In the derivation of Eq. (12) we have closely followed a
similar derivation in Ref. 41 for the motion of hard parti-
cles on a one-dimensional lattice, in the limit of low va-
cancy density. We have associated the kinks with the va-
cancies. However, since the kinks move in the y direc-
tion, perpendicular to the x direction in which the step
moves, we have to “fold” the one-dimensional lattice on
which the vacancies and the hard particles diffuse, in or-
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der to map it on our kink-step configuration. Figure 15
shows how a step with kinks can be “constructed” from
the one-dimensional chain of particles and vacancies.
The path length along the step (counting the kinks too) is
equal to the chain length.

For arbitrary vacancy densities a more elaborate calcu-
lation yields the mean-square particle displacement for

both short and long times, with the asymptotic results*!
oX(t)=p'T't (small t) (13a)

and

az(t)z—l—;Lp;\/(Z/#)Ft (large 1) . (13b)

Here, p’ is the vacancy density. As a result of the chain
folding, the kink density p is not identical to the vacancy
density p’, but p=p’/(1—p’), so that we finally arrive at

o2(t)~—L—Tt (small 1) (14a)
1+p
and
al(t)=pV(2/m)Tt (large t) (14b)

for the mean-square displacement of the step. The cross-
over between the two time regimes occurs at the time
2

ol ’

which is approximately equal to the time in which each
kink has made, on average, one move. The same ap-
proach can be used for the calculation of the mean-square
displacement of the kinks themselves. Associating the
kinks directly with the hard particles, we obtain for the
mean-square kink displacement

tf=~(1+p)? (14¢c)

1
2 ~——
0},(t)~1 PFt (small t) (15a)

and

ai(t)~%\’ (2/m)T't (large t) . (15b)
The transition time between the two time regimes of the
mean-square kink displacement is given by

e (HpP 2

5 2 T . (15¢)

IR .

J

FIG. 15. Schematic illustration of the mapping of a step with
kinks onto a linear chain of hard particles with vacancies. Each
kink is mapped onto a vacancy (open circle) and each straight
step unit is mapped onto a hard particle (solid circle).
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This is roughly the time needed for a diffusing kink to
cover the distance to one of its neighbors.

It is clear that for the time scales used in this study Eq.
(14b) correctly describes both the time dependence of the
measured mean-square step displacement (Fig. 8) and its
dependence on the kink density p and the temperature T
(Figs. 9 and 10). Note that due to the square-root depen-
dence of o2 on the jump frequency of a kink, the slope in
Fig. 10 corresponds to half the activation energy for the
movement of a kink. The activation energy is that for
kink movement by evaporation. Using Eq. (14b) and Fig.
10, we calculate Ty to be 10! Hz, which is in good
agreement with the value of 6.3 X 10° Hz derived directly
from the mean-square kink displacement in Sec. IV A.
These numbers are low compared to typical vibration fre-
quencies.

Equation (15a) describes the time fluctuations of kinks
on Au(110) well. The fact that all the powers of ¢, found
for the mean-square kink displacement in this study, are
less than unity suggests the effect of the crossover to z172
[Eq. (15b)]. By use of Egs. (15a) and (15¢) the mean-
square kink displacement at the crossover time f; is
readily calculated. For the kink densities investigated so
far (0.01-0.1 kink/lattice site) this crossover value is be-
tween 10? and 10* square lattice spacings. Although these
values are far above the maximum mean-square kink dis-
placement in our measurements, a noticeable departure
from an exponent of one is expected already at times that
are an order of magnitude smaller than ty”.‘“

When mass transport along the step is responsible for
the step dynamics, for example, when the kinks only
move by a direct exchange of atoms with neighboring
kinks, the long-time dynamics of the steps slows down to
a time exponent of %, according to continuum theory
based on the Langevin equation.!""#%? We have not suc-
ceeded in deriving a mean-square step displacement pro-
portional to ¢!/* within the framework of an atomistic
model of the type discussed in this section.

In addition to the analytical theory presented here, we
have also performed Monte Carlo computer simulations
of kink motion along steps. In these simulations we have
considered both uncorrelated and anticorrelated motion
of neighboring kinks. Furthermore, we have taken into
account the effect of the step pinning on the dynamics of
the kinks. As expected, the simulations for uncorrelated
kink motion lead to 02(¢) < ¢!/2. However, for anticorre-
lated motion the simulations show that at the relatively
small mean-square displacements used in our study on
Au(110) (between 0.05 and 1 square missing-row distance)
02(t) has not yet crossed over fully to z!/4, but behaves
more like 1935, Nevertheless, from the high experimental
value for the exponent of 0.48+0.05 we can still safely
conclude that the step fluctuations on Au(110) are the re-
sult of uncorrelated kink motion. For o2 values well
above 1, the pinning effect becomes noticeable in the
simulations and ai levels off, both in the uncorrelated
and in the anticorrelated case.

VI. DISCUSSION

We have shown that the movement of steps on Au(110)
is the result of the diffusion of preexisting kinks along the
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step. The role of nonthermal kinks has also been suggest-
ed by a recent study of two vicinal surfaces of Cu(001).3
The surfaces had average step orientations of 7° and 3°
with respect to the close-packed [ 110] azimuth, resulting
in steps with kink densities of, respectively, 0.125 and
0.053 kinks/lattice site. This difference in kink density
was accompanied by a substantial difference in the frizzi-
ness.

The quantitative analysis of the time dependence of the
fluctuations in the step positions on Au(110) reveals that
the mean-square step displacement is proportional to the
square root of time. Our findings can be described with
an atomistic model in which the mean-square step dis-
placement is calculated on the basis of uncorrelated
diffusion of kinks. The kinks move by evaporation and at-
tachment of atoms. The absence of correlations therefore
implies that the kinks exchange atoms with an external
reservoir, the terraces, and puts the scenario for the step
dynamics in category A. Also the Langevin formalism for
step dynamics indicates that the proportionality to t!/? is
a fingerprint for a mechanism in category A.'! In this
formalism the proportionality constants contains a factor
T /7 in which 7 is the step stiffness. The latter parame-
ter not only contains an entropic contribution, which is
important in the present case of forced kinks, but also
contains the kink creation probability per site along the
step. This means that where our atomistic theory treats
steps that fluctuate exclusively due to kink diffusion, the
Langevin formalism also incorporates the effect on the
step motion of the spontaneous creation and annihilation
of kinks.

Recently, the wandering of steps on Si(111) has been
measured on a micrometer scale with a resolution per-
pendicular to the steps of approximately 10 A A quanti-
tative analysis of the mean-square step displacements
shows that at 1170 K the steps on this surface also move
by an exchange mechanism between the steps and the ter-
races.®

For small kink separations we find that the kinks can
move in an anticorrelated fashion, indicating a direct ex-
change of atoms between them. For the Pb(111) surface
we find that, for the times accessible in our STM, the
mean-square displacement of the steps is proportional to
t'7%. This time dependence, which was recently also
found for steps on Cu(001),° is a fingerprint for a mecha-
nism in which the steps move by mass transport along the
steps (category B).!!

So far, we have regarded the frequency with which a
kink moves as being independent of the (local) kink densi-
ty. However, on surfaces where the kinks move by mass
transport along the step, and the atoms evaporated from
a kink perform a random walk along the step, the
effective frequency for kink movement should depend on
the kink density. This is because the probability for an
evaporated atom to reach the neighboring kink before be-
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ing recaptured by the kink from which it originated, is
equal to one over the number of sites between the kinks
(i.e., on average p). Thus, we expect that the mean-square
step displacement for steps fluctuating with this mecha-
nism will be proportional to p3/4¢!/4.* In the case that
the mean-square step displacement is proportional to
t!'/4, the mean-square kink displacement must also be
proportional to ¢!/# for sufficiently long times. This is be-
cause the mean-square displacements of the kinks and the
step are geometrically related via the square of the kink
density [compare Eqgs. (14b) and (15b)].

We think that the mechanism for kink dynamics on
Au(110) and Si(111) is the exception rather than the rule.
One would expect that “evaporation” of kink atoms to a
neighboring step site, followed by one-dimensional
diffusion of the atoms along the (close-packed) step be-
tween the neighboring kinks, would be the dominant
mechanism for kink motion (lowest activation energies).
On Au(110) the exchange of kink atoms with the terraces
is probably a direct consequence of the missing-row
reconstruction, which effectively shields off each kink
from the adatoms diffusing in the neighboring missing-
row trough.

VII. CONCLUSIONS

Low-temperature observations of the step dynamics on
Au(110) show that the step position is changed by the
movement of preexisting kinks along the step. The statis-
tics of the step dynamics on Au(110) are mapped on a
one-dimensional diffusion model. Both the proportionali-
ty of the mean-square step displacement to the square
root of time and its proportionality to the kink density in-
dicate that the kinks move by an exchange of atoms with
the neighboring terraces. From the temperature depen-
dence of the step fluctuations we find an activation ener-
gy for the movement of a kink of 0.710.1 eV, which is in
reasonable agreement with preliminary calculations based
on the effective medium theory.*

By studying the movement of the individual kinks on
Au(110) we find that they perform random walks along
the step. When kinks approach each other to small dis-
tances (<1 atom spacing) they frequently exchange
atoms with each other. The mean-square displacement of
the steps studied at room temperature on Pb(111) scales

s t'/4. This indicates that the steps on this surface ex-
clusively move due to mass transport along the steps.
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FIG. 12. Time sequence of a scan line across a single kink in
a step on Au(ll0) with an average kink density of 0.021
kinks/lattice site, measured at 374 K (138 AX3.86s, ¥,=—0.6
V, I,=0.05 nA). The time per scan line is 9.7 ms.



FIG. 2. (a) Schematic model of the (1X2) missing-row
reconstructed Au(110) surface. The darker atoms are located in
the lower-lying layers. Two terraces are depicted with two com-
plete missing rows on the lower terrace and one on the upper
terrace. The clockwise step between the terraces contains one
kink. (b) Schematic model of the unreconstructed Pb(111) sur-
face. The darker atoms are located in the lower-lying layers.
The image depicts a step along [ 110] with two kinks.



FIG. 3. Three STM images of the Au(110)} surface (102
A X263 A, 127 scan lines, ¥,=—0.88 V, I, =0.1 nA) measured
at 590 K with different line rates. All three show the same step
section. (a) Line rate: 3.6 lines/s. Vertical dark stripes corre-
spond to the missing rows. (b) Line rate: 26.1 lines/s. (c) Line
rate: 433 lines/s.



FIG. 4. Sequence of four STM images of the Au(110) surface
(160 A X513 A, ¥V,=—0.88 V, I,=0.1 nA) measured at 374 K
at a rate of 1 image/49 s. Arrows A indicate an apparent kink
pair. Arrow B indicates a pinning center.



FIG. 6. Atoronica]ly resolved STM image of the Pb(111) sur-
face (63 4X82 A, V,=+0.15V, I,=1.0 nA) measured at room
temperature in 0.5 s.
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FIG. 7. Time sequence of a scan line across two steps on
Au(110), measured at 475 K (32 s X118 A, V,=—0.60 V,

I,=0.1 nA). The time per scan line is 83 ms.



