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Line of continuously varying criticality in the Ashkin-Teller quantum chain
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We study the line of continuously varying critical exponents found recently in the one-dimensional
quantum Ashkin-Teller model using the conformal Geld theory. On this line, the exponents of the
energy density, the polarization, and the magnetization operators are numerically determined by
the finite-size scaling method in the conformal field theory. We find that the magnetic exponent is
associated with the primary field ( is, is), which exists in the coupling constant independent sector
of the partition function. Within the existing theory, the numerical results are consistent with the
identification of this line with the orbifold line in the Gaussian universality class with the thermal
exponent 1 & xT & 2.

I. INTR.C)DU CTION 'R = —) [(o, +o;t+Ao )

In the study of two-dimensional critical phenomena,
one important goal is to describe all universality classes
of critical models. ~'2 Among them, the Gaussian univer-
sality class plays a fundamental role in our understand-
ings of these critical phenomena. Since the pioneering
work of Belavin, Polyakov, and Zamolodchikov, ' there
has been considerable progress in this field by the descrip-
tion of conformally invariant field theory. The conforrnal
Geld theories are classified by the central charge c of the
Virasoro algebra. The Gaussian universality class is de-
scribed by the c = 1 theory in which we are interested in
this paper.

The continuously varying criticality in the eight-vertex
model and the Ashkin- Teller model ' has attracted
much interest. The two-dimensional Ashkin-Teller model
consists of two Ising models coupled by a four-spin
interaction. The classical Hamiltonian is given by

II = —) [K2(s~s& + t~t&) + K4s~s&t~t&],
(' 2)

where 8, = +1 and t; = +1 are the two kinds of Ising
spins at site i on a square lattice and the sum is taken
over the nearest-neighbor pairs. The parameters K2 and
K4 denote the two-spin coupling constant and the four-
spin coupling constant, respectively. When K4 ——0, the
model (1.1) reduces to the two decoupled Ising models
with the nearest-neighbor coupling K2. When K2
K4, the model (1.1) is equivalent to the four-state Potts
model. On the line e ' = sinh2It2 (It4 & 4 ln3), the
system exhibits the continuously varying criticality.

The Ashkin-Teller quantum chain is obtained by a
highly anisotropic limit of the classical Hamiltonian
(1.1). s The two-dimensional classical system is reduced
to a one-dimensional quantum system by taking an ex-
treme lattice anisotropic limit. The quantum Hamilto-
nian reads (see the Appendix)

(1.2)

where 0~ and I'~ are matrices,

(1000
0 i 0 0
0 0 —1 0

(0 0 0 —i)
0100

(0 0 1 0)
In the region P & 0, the phase diagram of the

Hamiltonian (1.2) was first obtained by Kohmoto, den
Nijs, and Kadanoff and it was confirmed by several
methods. It has a rich structure including the line
of the continuously varying criticality [the critical line

(P = 1, —1 & A & 1)].2i The critical exponents vary
continuously as A changes. The thermal exponent, the
scaling dimension of the energy density operator, takes
the form xT (A) = 1/2(1 ——arccos A). The line of
the continuously varying critical exponents in the two-
dixnensional classical Ashkin-Teller model is mapped to
this line. Kadanoff and Brown studied the continuously
varying criticality in the eight-vertex and Ashkin-Teller
models by the description of the Gaussian solution. They
identiGed the operators, except for a magnetization op-
erator, with those of the Gaussian model. The Ashkin-
Teller model has a magnetization operator which has a
constant scaling dimension x~ ——

8 all along the critical
line. There is, however, no corresponding operator in the
Gaussian model. Von Gehlen and Rittenberg numer-
ically studied this line and found special points where
symmetry enhancement occurs. These points are not de-
scribed by the theory of Kadanoff and Brown. In this
sense, the mapping to the Gaussian model was not com-
plete. Yang clarified these points with the description
of the S /Zq orbifold model. 24 2s

Recently, the phase diagram in the negative P region
was studied by series expansions. The new line of the
continuously varying criticality was found numerically.
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It connects the two end points [whose coordinates are
(A, P) = (—1, 0) and (1, —oo)] through the point (A, P)
= (0, —1). (It is line DA'D' in Fig. 1 in Ref. 27.) In the
present paper, we investigate this line using conformal
Geld theory. We do not have exact solutions except at A
= —1, 0, and 1. (At A = +1 the Hamiltonian is trivially
solvable, because it reduces to that of decoupled spins.
At A = 0 it reduces to the two decoupled Ising mod-
els. ) Therefore, we numerically calculate the low-lying
excitation spectrum, and identify the energy density, the
polarization, and the magnetization operators.

A = 'Rp 'R» 'R2 'B3.

Here 'R» ——'R3 because the Hamiltonian is invariant un-
der exchanges of the charge sectors 1 and 3 at every site.

The finite-size correction to the ground state energy is

E~ -eG —c—N, +&/ N, I, (2 5)

where et denotes the energy per unit length in the ther-
modynamic limit, v is the charge velocity, and N is the
number of the lattice site. The corrections to the excita-
tion energies are classified as

II. LINE OF CONTINUOUSLY VARYING
CRITICALITY' IN THE REGION P ( 0

A. Properties of the critical line

The critical line which divides an ordered. phase and a
disordered phase has the following properties.

(1) The Z2 x Z2 syinmetry associated with the po-
larization and the magnetization operators fully breaks
down on this line when we cross it &om the disordered
phase (p ) p, ) to the ordered phase (p ( p, ) where p,
is the critical point for a given A.

(2) The Hamiltonian (1.2) has the property

E(q; l, l; N) —E&(N) (h + h + I + l),

(2.6)

where I and l are non-negative integers which represent
the structure of the conformal tower. The indices n and
m represent those of the spin-wave operator and the vor-
tex operator in the Gaussian model, respectively. Here
h„denotes the scaling dimension which is associated
with the primary field P and h is the contribution
from that of the antiholomorphic part. The critical ex-
ponent of the operators of the Gaussian model, x, is
related to them as x = h + h,

The excitations carry the momentum

~(p, ~) =-p~~ —,—~ ~.
(I

(2 1) 1 = —(h„-h„+I—ig. (2.7)

For P ( 0, this maps the ground state to the ground state
in the transformed system. Thus we have a duality which

connects [A, ty) end (
—g, &) for ty ( 0. Accordingly the

critical lines between A = 0 and —1 and between A = 0
and 1 are dual.

(3) At (A, P) = (0, —1) the Hamiltonian has the self-
dual property and reduces to the two decoupled antifer-
romagnetic Ising models at criticality.

(4) The critical exponents which were calculated by
series expansions vary continuously.

B. Finite-size scaling method

Q = @; iq; (mod 4), (2.2)

where

(0000)
0 1 0 0
0020(0oo3)

(2.3)

The eigenvalue of Q is 0, 1, 2, or 3. Since Q commutes
with the Hamiltonian (1.2), the Hamiltonian is decom-
posed into the four charge sectors

In order to obtain the central charge c and the expo-
nents to identify some of the operators on the critical
line, we use the Gnite-size scaling method.

The Z4 charge operator is deGned. by

C. Numerical results

Due to the duality (2.1), we only investigate the region
—1 ( A ( 0. The critical points were determined by
series expansions up to 17th order. The data used in
this paper are shown in Table I. We cannot have reliable
results for A ( —0.8.

To estimate the central charge from (2.5), we calculate
the ground state energy E&(N) and the charge velocity
v(N) for a finite size N. We use the Lanczos methods
and the calculations are performed up to 12 sites under
periodic boundary conditions. We Grst estimate v by
extrapolating v(N) for N = 4, 6, 8, 10, and 12 by the
method of least squares. This and the estimates of the
coefficients of 1/N2 in (2.5) give the central charge c(N),
which is shown in Fig. 1. The central charge c is obtained
by extrapolating c(N) for N = 4, 6, 8, 10, and 12 by the
method of least squares. The error bars are set to include
the extrapolated values &om N —2, N, and N+ 2 where
% is either 6, 8, and 10. The results are shown in Fig. 2.
The numerical estimates support c = 1 for A ) —0.8.

To estimate the critical exponents from (2.6), we nu-
merically calculate the low-lying excitation spectrum
E~ (N~) where j label the energy levels. Since the nu-
merical results strongly support that c = 1 on the criti-
cal line, we determine v from (2.5) under the assumption
c = 1. The estimated critical exponents from (2.6) are
shown in Fig. 3. The exponents obtained by extrapo-
lation are shown in Fig. 4. Here and hereafter the er-



TABLE 1. Critical points P, estimated by series expansions of the operators O~ and 02 (see
Ref. 16 for definitions). Column (a) represents values of P obtained by magnetizations and column

(b) represents those obtained. by susceptibilities. The estimates for the quantities are obtained by
averaging three or four highest-order diagonal elements and near-d. iagonal elements, [n —1,n], [n, n],
and [n+ 1,n], of the Pade tables. Error bars are set to include these three or four values. At A = 0,
the exact value of P, is —l.

0.0
—0.3
—0.5
—0.6
—0.7
—0.75
—0.8
—0.82
—0.85
—0.9

(a)

—O.674283(9)
—0.4962 (2)
—O.4124(2)
—0.3287(2)
—O.28S8(4)
—0.2533{4)
—0.2108(5)
—0.20523(l)
—0.152{4)

(b)
—1.ooo2(9)
—0.6734(5)
—O.4965(2)
—O.4146(5)
—O.3346(1)
-O.2943(4)
—0.2532 (3)
—0.192(6)
—0.164(6)
—0.12(2)

(a)
—1.0016(3)
—o.675(2)
—o.498o(7)
—o.413s(s)
—0.3298(6)
—0.2870(8)
—0.243(1)
—0.224(1)
—0.201(5)
—O. 14(1)

(b)
—1.001(2)
—o.672(2)
—0.4971(s)
—0.4157(2)

—0.2962 (2)
—0.2556(7)
—0.239 (1)
—0.154(8)
—O. 11(1)

ror bars are set from the same method as that used for
the central charge. At A =- 0 the numerically obtained
values of h + 6 are 0.990(1) (sector 0), 0.1238(5)
(sector 1), and 0.2477(6) (sector 2). The exact values
of the exponents (the tvro decoupled antiferromagnetic
Ising models) are, for the thermal exponent, xT = 1, for
the exponent of the polarization operator, x~ ——4, and
for the magnetization operator, x~ ——8. Thus we iden-
tify the energy density operator as $2 o, the polarization
operator as Pq o, and the two magnetization operators
as (~~, ~z) (see Fig. 4). The magnetization operator is
in the sect, or 'R~, thus the sector 'Ra has another one.
The data suggest that the magnetic exponent x~ is in-
dependent of A. They also suggest that xT and x~ are
continuously varying. The numerical estimates, however,
suggest that the ratio xT j2:~ is constant and equals 4 for
A & —0.5. See Fig. 5.

The numerical results support that c = 1 on the critical
line. By the numerical analysis, we identified the ther-
mal and. the polarization operators which have the con-
tinuously varying critical exponents. The results suggest
that their ratio equals 4. These are responsible for the
classification to the Gaussian universality class. In the
Gaussian universality class, there are two kinds of con-
tinuously varying criticality. One is the original Gaussian
line (or circle line), and the other is the S /Z2 orbifold
line. We describe the difference between these lines.

We can derive the operator content of the theory from
the requirement of the modular invariance of the par-
t,ition function. Given a modular-invariant model,
we can construct another modular-invariant model pro-

1.2

1.2

0.8

0.8

O
0.6

0.4

0
-0,3
-0.5
-0.6
-0.7

-0.75
-0.8

0.6

0.4

0.2

0
0 0.1 0.2

1!N

0.3 0.4
0 -0.8 -0.6 -0 4

]

-0.2

FIG. l. Estimates of the central charges c(N) for a Suite
size ¹ The parameter A are 0, —0.3, —0.5, —0.6, —0.7, —0.75,
and —0.8.

FIG. 2. Central charges obtained by the extrapolations.
See the text for the error bars. The dashed line is c = 1.



52 LINE OF CONTINUOUSLY VARYING CRITICALITY IN THE. . . 1141

jecting onto states which are invariant under a discrete
group. ' ' ' Using the modular-invariant partition
function of the Gaussian model, we can construct the
Si/Z2 orbifold inodel by projecting onto the states which
are invariant under the Z2 group. It is crucial that the
S /Z2 orbifold model consists of two sectors. One of the
sectors is identical to the original Gaussian model. It de-
scribes the continuously varying critical exponents. The
other sector consists of the operators whose scaling di-
mension is independent of the coupling constant. On the
critical line (P = 1, —1 & A ( j.), Yang constructed a
partition function and found that the magnetic exponent
is associated with the two primary fields (is, is) in the
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FIG. 4. Critical exponents obtained by the extrapolations.
See the text for the error bars.

constant sector. In Fig. 6, we show a survey of c = I
models. ' It is worth noticing that each line has the
corresponding special points where the enhancement of
the symmetry occurs. The correspondence is one to one.
We use also these relations to identify the points on the
critical line.

To make identification of the critical line, the most im-
portant result obtained numerically is that critical expo-
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FIG. 3. Estimates of the critical exponents of the operators
(a) zT, (h) 2:~, aud (c) zH for a Bmte size N. The parameter
A are 0, —0.3, —0.5, —0.6, —0.7, —0.75, and —0.8.

FIG. 5. Ratios between the critical exponents x~ and x~
obtained by the extrapolations. See the text for the error
bars.
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TABLE III. The correspondence between the eigenvalues
of p and o..
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~ammmmamm

1/g2 /5/2 1JJ3 e ~ o
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2
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FIG. 6. Two lines of the continuously varying criticality in
the Gaussian universality class. (For exainple, see Ref. 36.)
The values along these lines are the compactification radius
r. The arrows represent the corresponding models with the
same compacti6cation radius.

with the above identification since the thermal exponent
is related to the compactification radius as xT ——1/4r2.
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nents of the magnetic operator be constant on the critical
line. It is identified with the two primary fields (is, is).
Thus the numerical results suggest that the critical line is
the orbifold line. In order to support this identic. cation,
let us examine the points (A, P) = (0, —1) and (1, —ao).
Apparently the point (A, P) = (0, —1) is the (Ising)2
point. Next, we investigate the point (A, P) = (1, —aa).
By a nonlocal unitary transformation, the Hamiltonian
(1.2) is mapped to the staggered XXZ model, is

'8 = ) (S2,.S2~+i + S2, S2,.+i + AS2;.S~;+i)

+p ) (S2,S2,. + S2 iSf, + AS2; iS2,), (3.1)

APPENDIX

We describe the correspondence among the Hamilto-
nians (1.1), (1.2), and that in Ref. 16. The Hamiltonian
of the classical Ashkin-Teller model in two dimensions is

II = —) [K2(s,s, + t;t, ) + K4s, s, t;t, ],
(' 2)

(Al)
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where S. , S". , and S' are the S = 1/2 spin operators.
At A = 1 the first-order degenerate perturbation in 1/P
from the limit P ~ —oa gives the S = 1 antiferromag-
netic Heisenberg model. It was studied in relation
to the Haldane gap problem. The Hamiltonian (3.1)
reduces to decoupled S = 1 spins at A = 1 and has an
SU(2) symmetry. Therefore, it is reasonable to identify it
with the SU(2) point an the original Gaussian line. Since
the Hamiltonian (3.1) is obtained by a nonlocal transfor-
mation, it is possible that the point (A, P) = (1, —oo) is
the Kosterlitz-Thouless point on the orbifold line which
corresponds to SU(2) point on the original Gaussian line
(see Fig. 6). Moreover, the point (A, P) = (1, —ao) is dual
to the paint (A, P) = (—1, 0) which is expected to be the
end point of the critical line of the Kosterlitz-Thouless
transition.

For the variations of the critical exponents, the nu-
merical results show that the thermal exponent increases
from A = 0 to 1 along the critical line. It is consistent

0
0

7r/2

3vr/2

cos8 =
1
0

—1
0

cos20 = st

TABLE II. The correspondence between the eigenvalues of
8 and the Ising variables 8 and t.

where 8; = +1 and t,. = +1 are two kinds of Ising vari-
ables. The Ashkin-Teller quantum chain is obtained by
a highly anisotropic limit of (Al). For details, see Sec.
II of Ref. 16. The quantum Hamiltonian is

'R = ) [2(l —cos pz) + A(l —cos 2@~)]

—p) [2cos (0i —0~+i) + Acos (20~ —20~+i)].

(A2)

The operator 0~ acts on a site j and has four eigenvalues:
0, vr/2, 7r, and 3vr/2. Its conjugate operator pi changes
the eigenstates of the operator 0i as e'"» ~0~) = ~0i +
em/2), where n is an integer and 0~ is defined by mod 2ir.
They obey the relation e' "e' "& = e' » e'" ' e'
The combination of the classical variables 8, and t, makes
four possible states at each site, which corresponds to the
four values of 0 in (A2). The correspondence is listed in
Table II.

Using the operators defined in (1.3), the Hamiltonian
(A2) can be written [Eq. (1.2)]. The operator a~ acts
on a site j and has four eigenvalues: 1, i, —1, and —i.
Its conjugate operator I'~ changes the eigenstate of the
operator o~ as I'~io~) = ~i x cr~). The four eigenstates of
the operator pz corresponds to those of o~. We list the
correspondence in Table III.
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