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The spin- — frustrated Heisenberg Model (HM) is investigated using a block-spin perturbation
approach on kagome and triangular lattices. In both cases, after coarse graining the triangles on
the original lattice and truncation of the Hilbert space to the triangular ground-state subspace,
HM reduces to an effective model on a triangular lattice in terms of the triangular-block degrees
of freedom, viz. the spin and the chirality quantum numbers. The chirality part of the effective
Hamiltonian captures the essential difference between the two lattices. It is seen that chiral-ordered
variational states have high energies compared to the other variational states.

Antiferromagnetism (AF) in frustrated lattice systems
is known to display some physically striking features, for
instance a finite ground. -state entropy. Heisenberg spin
systems on frustrated lattices have been investigated ex-
tensively using diverse methods, and ground states
with novel structures have been proposed. ' Many au-
thors have addressed the question of a chiral long-range
order, especially after the suggestion of its possible con-
nection with the high-T superconductors. ' ' Here we
investigate Heisenberg spin systems using a block-spin
perturbation theory scheme on lattices whose basic unit
is a triangle, which is the smallest system with frustra-
tion and a chirality. After coarse graining the triangles
on the original lattice we derive an efFective Hamiltonian
which explicitly shows the form of the chiral interactions
between the blocks.

We consider a spin-1/2 Heisenberg antiferromanget on
triangular and kagome lattices. The Hamiltonian is given
by

R=J) s; s, ,

where the sum is over all the bonds on the kagome lat-
tice (KAF) or triangular lattice (TAF), s; is a spin-1/2
operator at site i, and J is the exchange interaction
strength. The classical states (which correspond to the
limit s -+ oo) are known for both lattices, where the an-

gle between any pair of spins is 2m/3, and all the spins
on a triangle are coplanar. In contrast, in the spin-1/2
ground state on a triangle the spins are not on a plane,
and the chirality is a measure of this noncoplanarity.

We are interested in developing a systematic coarse-
graining procedure capturing the essentials of frustration,
and finding explicitly the block-spin efFective interaction.
Also we can see the difFerence between the efFective tri-
angular interaction on the kagome and the triangular lat-
tices, as the amount of frustration is difFerent in the two
cases. We start with blocking the original lattice into
independent triangular blocks. Using the eigenfunctions
of the triangles we derive a block-spin Hamiltonian in
terms of the block degrees of freedom, namely, the total
spin and the chirality. This procedure will be an ex-

act transformation if all the eight states per triangular
block are kept. However, we will efFect a truncation of
the Hilbert space at the block level by keeping only half
the number of states, i.e., restricting the Hilbert space to
the block ground-state subspace, as is explained below.
This procedure is equivalent to doing a perturbation the-
ory on the interblock interaction. A similar scheme was
implemented for coupled Heisenberg chains recently. '

For KAF we block all the triangles standing upright (as
shown in Fig. 1), and in the case of TAF we use the block-
ing scheme used by Niemeijer and van I eeuven for the
Ising problem (here one-third of the triangles stand-
ing upright are blocked). In both cases the interactions
between the blocks is mediated by the inverted trian-
gles (i.e. , triangles standing on one vertex). The new
interblock Harniltonian after coarse graining is defined
on a triangular lattice with the total number of sites a
third of the original lattice.

The Heisenberg model on a triangle has two fourfold
degenerate energy levels with total spin S = 1/2 and 3/2.
The ground state with S = 1/2 has an energy —

4 J, and
the S = 3/2 excited states are 1.5J above the ground
state, which we will drop by halving the Hilbert space.
A twofold Kramers degeneracy in the ground state is
implied as we have an odd number of spins. The ex-
tra degeneracy comes from the chirality of the triangle.
The chirality operator for a triangle is defined" through

~si . 82 x 83. We have inserted a numerical fac-

tor along with the box product of spins so as to make
the chirality operator a spin-1/2 operator. The above
operator can be chosen to be the z component of the chi-
rality operator y. It is not usual in the literature to treat
the chirality as a spin-1/2 operator. However, within the
ground-state subspace for a triangle the twofold degener-
ate ground state in both the spin sectors can be thought
of as a chiral spin-1/2 system. o Interblock interactions
cause transitions between the two chiral states; thus low-
ering and raising chiral operators naturally arise, which
we write in terms of the original spin operators later. To
be consistent with labeling as the chirality changes sign
under odd permutation of spin labels, chirality always
refers to the chirality of a triangle standing upright with
the first spin at the vertex and the second spin at the left
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I++) =

corner of the base. Let us label the four ground states us-
ing the two block quantum numbers S' = +I/2, and the
chirality y' = +I/O. The state with S' = 1/2, y' = 1/2
denoted by

I
+ +) is given in the s' basis as

31 tt~)+ "3INt)+ 3l~tt) (2)

where u is the cube root of unity. The other states can
be generated by interchanging ~ and cu2 (this changes
the chirality from + to —with S' fixed), and by oper-
ating with the total spin-lowering operator (this changes
S &om 1/2 to —1/2 with the chirality fixed). Let us
construct the chiral-raising operator and its Hermitian
conjugate by defining y+I+) = 0 and y+I —) = I+) in
both spin sectors. It should be noted that there is lo-
cal degree of freedom for each triangle; that is, we can
choose any arbitrary linear combinations of the two chiral
states, as the Harniltonian does not have explicit chiral-
ity terms. This can be used to advantage in the effective
Hamiltonian we derive below.

We would like to write an effective Hamiltonian be-
tween the blocks in terms of the total block spin S; and
the chirality y,. of the blocks. Since the original Hamilto-
nian has only pairmise interactions, the problem reduces
to a two-triangle problem (with a 16-dimensional Hilbert
space) which can be done analytically. That is, we ex-
press (oils;(Tl) s~ (T2) I@ ) as an operator, where I and
m are labels of the wave functions of the two-block sys-
tem, viz. , direct products of eigenfunctions of two trian-
gles T1 and T2, which are connected through the spins
8, and 8~. To accomplish this we need to know the action
of original spin operators on the triangle eigenfunctions;
i.e. , for instance, for a given triangle we have

sil++) = I/2I++) —
I hatt),

3

sil+ -) = 1/2I+ -) —
I hatt),~3

and similar relations involving the other states and oper-
ators. We can anticipate that the effective interaction
between the block spins will be isotropic, as we have
not broken the rotational symmetry in spin space by our
blocking procedure. The spin part of the operator fac-
tors, and we are left with a four-state problem. We can
explicitly carry out the evaluation of the above matrix
elements and write the effective interaction between two
triangles as a product of spin and chiral interactions. The
details of the calculation will not be given here. The ef-
fective Hamiltonian is given as

~..=-, + —,).S; S, —,(II;, +F;, +&', ), (3)

mhere the operators H, D, and U are nonzero on hori-
zontal, upward, and downward. bonds, respectively, on a
triangular lattice as shown in Fig. 2. The constant term
shown above is the energy of the unperturbed ground
states, and we have included a denominate factor of 3
as the number of sites of the new lattice has come down
by the same factor. The explicit form of these bond op-
erators will be given below. It is interesting to see that
bonds nom carry arrows as shown, and all the bonds in
one direction have the arrow in the same direction. In-
side a triangle the arrow is in one direction only. If we
assign a new chiral variable to the direction of the ar-
row for a given triangle, tmo neighboring touching tri-
angles have opposite chirality. Let us define the opera-
tors T,T,T for every block in terms of the raising
and lowering chiral operators through T+ = y+ + y /2,
T~ = ~y+ + w y /2, T~ = (u2y+ +(uy /2. In terms
of these operators, the bond interactions in Eq. (3) are
given as

T.")(i T~), U;, = (,' —TP')(,' —T,". ), D,, = (-,' —T,. )(-,' —T, ) for KAF,

II'g = (-,'+T; )(-,' —T,"), U,, = (-,'+T, )(-,' —T, ), D;, = (-,' T, )(-' —T ) for TAF.

(4)

(A)

FIG. ].. A part of the original (A) kagome and (B) trian-
gular lattices. The blocked triangles are indicated with dots.
The efFective model is defined on a new triangular lattice with
the number of sites reduced to a third of the original lattice.

FIG. 2. The efFective block-spin interactions for (A)
kagome and (B) triangular lattices. The arrows carry the
information of the relative orientation of the blocks on the
original lattices. All the horizontal bonds have arrows in one
direction only, and similarly the other bonds.
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As we can see &om the above the chirality part of the ef-
fective Hamiltonian is very different for the two lattices.
Also it is peculiar that there are no terms involving y
operators, and the interaction in the x and y directions
is anisotropic and not very intuitive. In both cases the
bonds are directional, though the way the bonds become
directional in the two cases is different. For the kagome
lattice the orientation of a given block with respect its
nearest neighbor blocks gives directionality to the efFec-
tive bond strength. There is an additional source of di-
rectionality for the triangular lattice; there are two bonds
&om a single site of one block going to two difFerent sites
of another block. It is interesting to see, though the ef-
fective model on a triangular lattice is also &ustrated, if
the block spin and the chirality can conspire so as to can-
cel some of the &ustration effects, which we investigate
later.

The T operators are linearly dependent T + T +
T = 0, and we will see below that these are related to
the permutation operators of the triangular block. The
eigenfunctions of the operator T in the y basis are
~+) +

~

—)/~2. The operators T and T have the ex-
pectation values +1/4 in eigenstates of T+ with eigen-
values ~l/2. By choosing a given linear combination
of the twofold degenerate chiral states for a given block
we can monitor the bond strength for the block spins.
Thus we have a variety of variational wave functions
that can be constructed for the effective model with the
bond strengths transferred to the desired singlet valence
bonds. Let the ith block be in state P; = a;~+) + b;

~

—),
where the kets denote the chiral states. Then the T op-
erators have the expectation values T = 2c;, T
—c; + ~zd, , T = —c, —~zd;, where c; = Re(a,*b;) and

d, = Im(a,'. b;). Now we have variational parameters a;
explicitly in the Hamiltonian itself, which can be cho-
sen to minimize the energy. Let us try a simple choice
P; such that T+ = —1/2, TP = 1/4, TP = 1/4 and
T+ = 1/4, TP = 1/4, T+ = —1/2 at alternate sites
for KAF. This makes all the bond strengths zero except
half the horizontal bonds (with bond strength 1). The
ground-state is just a singlet spin state on these bonds.
This gives us a bound on the ground-state energy per
site for KAF, Es, (KAF) ( —3/8J. We expect that
with a careful choice of P; one can get a better bound.
For the triangular lattice problem a choice of T+ = 1/2
and T = —1/2 at alternate sites along with spin sin-
glets on horizontal bonds of strength 3J yields a bound

Let us consider the effective Hamiltonian of KAF and
TAF on a triangle. Since the effective bond interaction is
directional (see Fig. 2), we have to examine two types of
triangles, viz. , a triangle standing upright and a triangle
standing on a vertex. For the KAF effective model the
maximum strength of any bond is J in any variational
state. In contrast for TAF we can have bonds of strength

3 J. This means the valence bond state has an energy of
—3/4 and —1 for KAF and TAF, respectively, in units of
J, which is also the energy for a bare Heisenberg Hamil-
tonian on a triangle. But we can do better than this by
taking advantage of the larger number of states we have
in the case of the effective model (64 states). In fact it is
borne out by the exact diagonalization we have done nu-
merically. The ground state is in the S = 1/2 sector with
fourfold degeneracy, implying a new chirality. The energy
is —0.987 for an upright triangle (more than 30% lower
than a valence bond state) and —3/4 for the upside down
triangle for KAF, where as for TAF both triangles have
an energy —1. It is tempting to carry out further levels of
blocking. However, the next level of blocking mould make
sense only if the excited states above the fourfold ground
state are spaced in energy farther than the coupling en-

ergy of the blocks. The excited states for both KAF and
TAF are very close to the ground state at this level of
blocking; the nearest excited state (spin 3/2) for KAF
is only about 0.1 away in units of the coupling strength
(also there are nearby spin-1/2 excited states). This is
becuase we have 64 states per block, which is responsi-
ble in the first place for a lowering of energy (as opposed
to 8 states per block at the first level). This would se-
riously limit any perturbation-theoretic basis for further
blocking, indicating that one should resort to variational
methods.

We mould like to see the efFect of inclusion of the spin-
3/2 states that are dropped in our truncation scheme
at the first level of blocking. This is achieved by us-
ing second-order perturbation theory for the triangular
blocks. The effective interaction A; between two blocks
i and j within the spin-1/2 ground-state subspace (the
spin-3/2 excited states being 2 J away) to second or-

der in the interblock coupling is given by (G'~A;. ~G) =
+ (G'la;, IG) + E&G'la, , IX)(XIX;,IG)/(Z~ —Zx)

The first term is just the energy of the two blocks in the
ground state and the second term gives the interaction
given in Eq. (3). The third term includes the effect of
the virtual transitions to the excited states of the blocks.
Here G = G»G2) X = G»X2, X»G2) X»X2, denotirlg
the ground state and the excited states of a block by G»
and X», respectively, and EG. and E~ represent the en-
ergies of ground state and excited states, respectively, of
the two-block system. The sum is over all the excited
states (there are 48 of them). The operator A,~ is given
in terms of the original spin operators; for KAF it is just
a bond operator connecting the two blocks and for TAF
it is a sum of the two-bond operator that connect tmo
blocks. The sum over the excited states in the above can
be analytically carried out and we can rewrite the effec-
tive interactions in terms of the block spin and chirality
quantum numbers [as given in Eq. (3)]. The efFective
interaction is again directional and is given as (for the
horizontal bonds of the new lattice) for KAF as

(6)

Note that for the other bonds a similar interaction obtains, except that suitable T operators should be used [as given
in Eq. (4)]. For TAF the effective interaction is given to second order by
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'R,~ ———0.343N J + —) S; S~ i

—— T—;3 . . (27 27 ) ) TATA

As can be seen from Eqs. (4)-(7) the e8'ective inter-
action between the first-order perturbation and that of
the second-order theory the effective interaction is not
changed in the form though the coupling constants have
changed significantly (which will change the ground-
state energy estimate considerably). For TAF, one can
get an estimate of the ground-state energy Eg, from
(7); Es, ———0.343NJ + e", NJ/3, where e", is the
ground-state energy in units of the coupling constant per
site of the chiral-spin Hainiltonian given above [i.e. , the
ground-state energy per site of 3('R,&

—iosN J)/J].
Finite-cLuster diagonalizations show that the ground-
state energy of the simple Heisenberg Hamiltonian is
higher than that of the chiral-spin Hamiltonian given
above, i.e., es, ) e", (for a six-site cluster the ener-
gies are —3.4 and —4.3, respectively, for Heisenberg and
chiral-spin models). This gives an estimate, for TAF,
of Eg: 0 5145%J. For KAF the estimate for the
ground-state energy from a six-site cluster diagonaliza-
tion of the effective Hamiltonian given in Eq. (6) (there
are 1280 states in the S' = 0 sector in this case) is

Es, = —(iss + 's )NJ = —0.426N J. However, these
estimates for the ground-state energies cannot be used
as variational estimates as we have used a second-order
perturbation theory for calculating the efFective Hamil-
tonian. For investigating variational trial wave functions
one should use the effective Hamiltonian from perturba-
tion theory, as we discuss below.

Now we will rewrite the eQ'ective Hamiltonian from
first-order perturbation theory given in (3) in a more
transparent form. First, we note that the interblock in-
teractions are causing transitions between the two chiral
states of a block, as is clear from the appearance of the
y+ operators. The chirality of a block is changed by a
permutation of the spin labels. This implies that one
can explicitly construct the chirality operators using the
permutation operators. I et us define a permutation op-
erator Pi, which permutes spins 123—132 of a given block,
and similarly P2 and P3 exchange spins 1,3 and 1,2, re-
spectively. The P operators can be written in terms of
the spin operators, for instance Pi ——2(s2 ss+1/4). The
action of the permutation operators on the chiral states
is seen exp»citly Pil+) = ~l ) and Pil —) = ~'I+).
Let us denote by e, the operator of a bond opposite to
site i in a block. We have (ei + e2 + es) = —3/4 and
—3/4 & (e,) & 1/4. The chirality operator y is defined
as a commutator of P operators through

z Z 2i
[P2, Pi] = (e2ei —eie2),

2 3
'

3

and the operator y is just half of P3. It is interesting to
note that a similar construction can be used to construct
the chirality operators in terms of the spin operators di-
rectly even in a general case of more than three spins,

in contrast with the usual practice of defining y in terms
of fermion operators.

It is easy to check that the T operators appearing in
the efFective Hamiltonian are related to the permutation
operators through T = Ps/2, T = P2/2, and T
Pi/2. The effective Hamiltonian has a very simple form
in terms of the bond operators. For instance two blocks
l and m on a kagome lattice, with block spins S~ andS, connected at sites i(l) and j(m), have the effective
interaction

9
—JSi . S~e;(l)e~ (m).

This has a physical significance, in terms of a valence
bond trial wave function, that the block spins prefer that
the bonds opposite to the connecting sites to be in singlet
so that the block spins can form a singlet too. The frus-
tration of the original lattice translates into frustration
for the block spin bonds. For TAF the scenario is differ-
ent, as a pair of blocks standing upright are connected
by two bonds of the original lattice, between the vertex
of the lth block [vertex site i(l)] and the base of the mth
block with [vertex site i(m)]. The interaction between
the block spins is —16/9JSt S e, (l)[3/4+ e;(m)].

With the effective bond strengths expressed in terms
of the original bond operators, we can now investigate
chiral-ordered states of the original lattice. Let us try
a trial wave function ~g) with chiral ordering on the
original lattice, which implies for each block that we
choose one of the chiral states. In any of the four chi-
ral states of a given block, all the bond operators have
an expectation value e; = —1/4. This means that the
block spins interact with a strength of 2/9 J for TAF, and
1/9J for KAF for this trial state. This gives us a bound
@TAF(4') '5 4 + gy@TAF implying &TAF(Q)
which is significantly larger than the energy of the valence
bond state we discussed above. Similarly for the case of
KAF, one can see that chiral-ordered variational states
have energies well above the other variational states.
However, one can try other variational states, partic-
ularly the resonating-valence-bond-type states are very
convenient to work with in this respect. If a triangle has
a singlet valence bond, it implies that one of the e, is
equal to —3/4 and the others vanish. That is, four out
of the six bonds incident on a particular site on the ef-
fective lattice have an exchange strength of zero. And
the expectation values are calculated straightforwardly,
as the efFective model decomposes into cluster Hamilto-
nians. An investigation of various variational trial states
on the effective model is in progress.

In summary, we have established an efFective Hamilto-
nian in terms of block spins and chirality for both kagome
and triangular lattices, using a block-spin perturbation
theory approach. A further level of blocking is not suit-
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able because of the existence of low-lying excited states.
The effective model has a simple physical way of under-
standing in terms of the permutation and bond opera-
tors of the triangular blocks of the original lattices. The
bond operator expectation values of the blocks can be
effectively used in variational valence bond wave func-

tions. Chiral-ordered wave functions are seen to be high
in energy compared to other simple trial wave functions.
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