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Resistance of planar barriers
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The resistance of planar barriers is discussed for a variety of situations in which difFerent sources
of scattering act incoherently, allowing a semiclassical approach. This includes single barriers, a
sequence of identical parallel barriers, and identical barriers at random angles simulating grain
boundaries. Existing results are related, and only limited extension of these is provided. The case
of a single barrier embedded in a uniformly resistive medium has been treated by Kunze and others.
Kunze's analysis is validated and interpreted via a considerably simplified version of his model.

I. INTRODUCTION

A number of analyses have dealt with the resistance of
planar barriers by themselves, as part of a sequence of
similar barriers, or embedded in a medium with spatially
homogeneous scattering by lattice vibrations.

This author, in 1957, investigated the case of a se-
quence of incoherent and identical barriers. Sorbello has
examined the case of single barriers, as well as barriers in
a homogeneous medium providing additional scattering.
Laikhtman and Luryi also treated the case of a single lo-
calized barrier embedded in a uniform resistive medium.
A sequence of papers &om the Chemnitz group cites
additional papers beyond those we have listed. This note
is intended to provide some comments on this field and
the relationships among existing results, without neces-
sarily adding much to the list of available results.

We concentrate on the case where di8'erent sources of
scattering act incoherently, allowing a semiclassical treat-
ment. We will emphasize two-dimensional barriers in a
three-dimensional medium. The case of linear barriers
in a two-dimensional medium difFers only in trivial ways
and the modification applicable to that case will be de-
scribed for some results. Magnetic field eKects will be ig-
nored. The barriers will be assumed to be homogeneous
and translationally invariant, causing specular reflection
and transmission depending on the angle 0 relative to the
normal to the plane.

II. SINGLE BARRIERS WITHOUT BULK
SCATTERING

Mesoscopic physics has invoked two principal results
for the case of a single quantum mechanical scatterer.
If the potential is measured in reservoirs that are wide
compared to the leads leading to the obstacle and the
reservoirs connected in a nonreflective way to the leads
leading to the scatterer, then

where t is the transmission matrix of the scattering el-
ement, defined in terms of the transverse modes in the
leads. Equation (2.1) allows for a twofold spin degeneracy
for each transverse mode. Alternatively if the potential
difference is measured in the leads, and averaged over a
region large enough to eliminate quantum oscillations we
find7
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where the integration extends over the whole 4' range
of possible directions of motion. T(0) is the transmis-
sion probability for carriers incident at an angle 0 with
respect to the normal to the scattering plane. k~ is the
wave vector at the Fermi surface. In the case of a two-
dimensional medium with a linear barrier the integral
extends over the 2m range of available directions. The
prefactor in front of the integral becomes e k~/4m 5, in
that case.

Sorbello's corresponding result for Eq. (2.2) applied to
the plane barrier is
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T; measures the total transmission probability into the
ith channel, if all the incident channels on the other side
are occupied. Similarly R; denotes the total reflection
probability into channel i, if all the incident channels on
the same side are occupied. e, is the longitudinal velocity
of the ith channel. The results in Eqs. (2.1) and (2.2)
become identical in the small transmission limit.

Sorbello2 has applied Eqs. (2.1) and (2.2) to the plane
barrier. Equation (2.1) for the conductance of a planar
barrier, per unit area, yields

(2.1)

The conductance, per unit width, of the linear barrier in
a two-dimensional medium has the prefactor e k~/2mb,
instead.
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III. INCVHEB. EN T SUCCESSIVE BAB.B.IEB.S

This author showed that the conductance per unit
volume for a series of parallel barriers is

dO
~

cos0
~

1 —R(0)
(3 1)

The case of the plane barrier with leads whose cross-
sectional area is less than that of the barrier has also
been treated, but will not be taken up here. McI.ennan,
Lee, and Datta have analyzed a number of tunneling
problems numerically, via a KadanoK-Baym-Keldysh for-
malism. They exhibit the detailed spatial variation of
the electrochemical potential and of the electrostatic po-
tential near the barrier. These results, while conveying
important insight, are not easily relatable to the ana-
lytical results presented in this paper. There is also a
huge body of literature motivated by resonant tunneling
devices, and we cite only two examples. ' Papers in
this category typically emphasize nonlinearity, numerical
simulation, and Wigner distributions, and do not allow
easy comparison to analytical results. The highly local-
ized voltage drop expected for a planar barrier has been
studied with scanning tunneling potentiometry.

confined by guiding walls with a transverse wave func-
tion, say

@ = cosk x sink„y, (3.3)

for a rectangular guide. This can be considered a super-
position of traveling waves

exp(+ik x) exp(+ik„y). (3.4)

B Bg R2
T Tg T2

(3.5)

For a series of n identical barriers, each with the same
value of Rp/Tp we have

The mode in Eq. (3.3) propagating in the z direction with
wave vector k„will be transmitted and reHected accord-
ing to the respective probabilities T(0) and R(0), where
0 is defined by the orientation of the vector (k, k&, k, ).
The transport along this one-dimensional quantum chan-
nel is uncoupled to other channels. We have an electro-
chemical potential pL, at the left end of the chain and pR
at its right end, with pL, and p~ the same for all of the
parallel channels.

Two barriers in series, scattering incoherently, yield an
effective ratio of R/T for the combined set; '

R/T = n(Rp/Tp), (3.6)
Here JV is the linear density of barriers. In the two-
dimensional medium the prefactor becomes modifiied as
described in connection with Eq. (2.3). Equation (3.1)
corresponds to a resistance for a single unit area barrier

1 —R(0)
R0 cos0

i
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The derivation of Eq. (3.1) invoked the fact that in the
case of many barriers we could expect the carrier velocity
distribution to be uniform along most of the chain. (To
avoid the need for a subsidiary explanation consider the
case where the screening length is short compared to the
typical carrier spacing. Furthermore, assume that the
uniformity of velocity distribution applies to spaces which
are a few screening lengths away from any barrier. )

The fact that a long sequence of identical barriers
should establish a space-independent velocity distribu-
tion is plausible. But it is, perhaps, in 1995, after a great
deal of contact with disordered. and mesoscopic systems
not as compelling as it seemed in 1957. The rejecting
barriers only couple motion along two directions to each
other. That leaves many uncoupled. channels, related to
each other only through Poisson's equation, i.e. , through
the requirem. ent for neutrality. We may question whether
that is enough to maintain a spatially uniform relation-
ship between all the velocity classes. One way out: Add.
a little random thermal background scattering. This can
be small enough to have relatively little inhuence on the
resistance, but d.ecouples the behavior in far-apart por-
tions of the system. Thus the spatial uniformity in the
velocity distribution becomes justified.

We do not, however, need to rely on this indirect sort of
reasoning. I et us return to the original problem without
added background scattering. Consider a typical mode,

rejecting the addition of identical series resistances ex-
pected in the incoherent case. The drop in electro-
chemical potential in each channel corresponding to a
transverse mode af Eq. (3.3), and across each barrier, is
(pl, —p~)/n. If we think of the current in each of the
uncoupled channels as comprised of an excess density in
the carriers moving to the right and a deficit density in
the left Inoving population, those deviations &om equilib-
rium must be constant along the chain. Furthermore, for
that distribution each channel is self-screening. No fur-
ther Coulomb coupling between channels is needed. That
justifies the assumed departure point for the derivation
of Eq. (3.1).

The result in Eq. (3.1) need nat be derived by the
route discussed above, but can be viewed. as a conse-
quence of Eq. (2.4). For a long chain of barriers R(0)
approaches unity. Then the integral in the denomina-
tor of Eq. (2.4) becomes 4m. In the same approximation
Eq. (3.5) becomes T(0) = T(0)/R(0): [Tp(0)/Rp(0)j/n.
If these results are entered into Eq. (2.4), it reduces to
Eq. (3.1). Laikhtman and Luryi compare their results
for the resistance of a barrier embedded in a uniformly
conducting medium to the resistance of a single barrier
as given by Eq. (3.2). They imply that this was derived
as the resistance of a single barrier exposed to Aux from
two reservoirs. But that would lead us to Eq. (2.3) or
Eq. (2.4), applied to a single barrier. Those results are
not equivalent to Eq. (3.2).

IV. BAB.B.IEB.S AT B.ANDOM ANCLES

Section III dealt with a series of parallel barriers. What
if the planes are angled at random, approximating a se-
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ries of highly resistive grain boundaries? One approach
would be simply to average the resistance per boundary
and for a unit area Rb, as specified in Eq. (3.2), over all
possible angles for the boundaries relative to the direction
of current flow. Assume a current i flows in the z direc-
tion. For plane boundaries whose normal is at an angle 0
to the z direction the current flow component perpendic-
ular to these boundaries will be icos 0. This produces a
voltage drop iRb cos 0 across that boundary. If there are
n of these boundaries per unit length, in the direction
separating them, we will encounter ncos0 of them, per
unit length, moving in the z direction. Thus the electric
field in the z direction will be iBgn cos 0. Averaging over
all directions yields 3iRpn, or a resistivity 3Bpn. Note
that n is also the grain boundary area per unit volume
and we can thus write the resistivity as 3BpA, where A is
the grain boundary area per unit volume. We now con-
tinue to provide an alternative derivation for this result,
which makes the approximation involved more explicit.

A set of well conducting volumes separated by highly
resistive boundaries can be considered to be a two-phase
medium, frequently treated by e8'ective medium theory
and related approaches. In our case the grain bound-
ary material is continuous and the disjoint grain volumes
are embedded in that. The approximation particularly
suitable for that is the Clausius-Mossotti approximation
of dielectric theory. In the heterogeneous media field
it is often ascribed to a nonexistent Maxwell-Garnett
Geld. The history of that erroneous terminology has been
discussed.

In the Clausius-Mossotti approximation "
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where e is the fraction of grain boundary volume. Equa-
tion (4.2) is equivalent to

3+ 2c
op) (4.3)

which for ~ && 1 becomes

CT = 30O/E. (4.4)

Equation (4.4) can also be vrritten in terms of resistivities
as p = poe/3. The volume fraction e can be replaced by
tA where t is the thickness of the layer and A the area per
unit volume. Thus p = potA/3. But pot is the resistance
Rs per unit area. Thus p = RgA/3, as derived by the
earlier procedure, averaging over angles.

Our second approach allows us to understand the na-
ture of the approximation involved. The interior of the
grains is represented by a macroscopic infinite conductiv-

Here o. is the efFective conductivity, o.i the conductivity
of the material taken to be discontinuous and o.p that of
the continuous material. gi is the volume fraction of the
discontinuous component. o i will be taken to be infinite.
Therefore

ity that permits the current flow to be incident normally
on the high resistance boundaries. The necessary change
of direction in current flow, within the interior of the
grains, is presumed to come free of charge; no electric
field is required for that. Actually fields have to be there
and the condition of normal incidence on the boundary
may not be satisfied. If the boundary of the region is a
tunneling barrier and if its transmission probability de-
pends critically on the incident angle of the carrier (as is
often the case), then the representation of the barrier by a
simple conductance becomes a poor approximation. But
that approximation, though potentially important, is a
secondary consequence of the fact that the incident veloc-
ity distribution depends on the detailed kinetics within
the grain volume.

V. BARRIERS IN RESISTIVE MEDIUM

We now come to the case where the barrier is em-
bedded in a medium whose scattering behavior gives us
a flux incident on the barrier difFering from that pre-
sumed in Eqs. (2.3) and (2.4). These equations assume
that all the carriers incident on one side of the barrier
are characterized by the same electrochemical potential.
This difFers, for example, from the typical shifted Fermi
sphere found in a lead characterized by a relaxation time
for carrier scattering. The resulting complications have
been stressed by Lenk and by this author. The one-
dimensional case of a barrier in a resistive medium was
treated long ago. This case is particularly simple because
the question of velocity distribution for incident carriers
over a Fermi half sphere does not arise in that case. In
one dimension the magnitude of the incident current de-
Gnes the velocity distribution completely. As a result
the resistance of the extended medium and that given by
Eq. (2.2), for the barrier, just add to yield the total resis-
tance. The one-dimensional case was revisited by Eranen
and Sinkkonen, with an extension to the nonlinear case.

In general, when we have current flow past successive
obstacles of difFering character, the current has to be par-
tially transferred from the velocities best transmitted by
one obstacle to those best transmitted by the other ob-
stacle. This transfer is an irreversible event, typically
manifested by a contribution to the overall resistance. It
is very similar to a spreading resistance that occurs when
a narrow conductor impinges onto the flat end of a wider
conductor. It is also similar to vertical transport, i.e. , the
situation where carriers have to be shifted to a difFerent
energy ' ' ' to be transmitted most efFectively.

The total additional resistance due to a planar barrier,
in a medium characterized by a relaxation time 7, has
been evaluated by several investigators ' ' ' in a way
that does justice to the efFects we have just discussed.
Kunze presents a particularly detailed physical picture
of the spatial distribution of the electrochemical poten-
tial in the vicinity of the barrier. I will go on to discuss a
very simplified toy model of Kunze's analysis, which will
contain most of its essential physical ingredients, with-
out the need for computer analysis. The toy model is
also closely related to concepts in Sec. II of Lenk's dis-
cussion.
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Our toy model will consist of carriers in n parallel and
identical one-dimensional channels. Carriers can be scat-
tered between these channels. The population moving in
a given direction, in a particular channel, will be assumed
to relax with a relaxation time 7 towards the average pop-
ulation for all 2n combinations of direction and channel,
at that point in space. A barrier will be presumed at
x = 0, which totally blocks n —1 of the channels. The re-
maining channel, designated by the subscript 0 hereafter,
will have a transmission probability T at the barrier.
Thus, far &om the barrier, the current will be distributed
uniformly among all n channels, but will have to be fun-
neled toward the distinguished channel, near the barrier.
We will proceed by considering the diffusion of uncharged
carriers and then employ self-consistent screening, or the
Einstein relation, to yield a conductance.

Let p+(x) be the total carrier density, summed over all
channels, moving to the right, and p (x) to be the den-
sity for left moving carriers. The relaxation time approx-
imation, applicable as long as we are not at the barrier,
yields

Gp+
dt

(5.1)

Let v be the carrier velocity. Then, in the steady state,
we can invoke

7-(dp+/dt) = 7v(BP+-/Bx) (5.2)

Equation (5.2) inserted into Eq. (5.1), and using A = v7,
yields

t9p+ 1
a. = —~('--") (5 3)

Similarly we find

Op 1
~( —— +). (5.4)

po+
A

(5.5)

Equations (5.3) and (5.4) show that p+ and p change in
the same way with position. That is necessary if current
fIow, proportional to p+ —p, is to be conserved.

Let the right and left moving densities in the preferred
channel be po+ and po, respectively. Relaxation toward
the average density, (p++ p )/2n, then yields via similar
reasoning as above

po+ = p+/'n Po =—P /—ii~

p ——1— (5 7)

j is the resulting particle Aux that satisfies

j = v(p+ —p ). (5 8)

(III) A redistribution between unequally populated chan-
nels, with their difI'erence decaying to the right. In that
case ps+ ——8+exp( —x/A), and p+ ——p = po

——0. For
b+ ) 0 this puts excess right moving carriers into the
distinguished channel, compensated by a negative den-
sity in all other right moving carrier populations. (IV)
A similar unequal occupation decaying to the left with
po

——b exp(x/A), and p+ ——p = po+: 0.
Clearly solution (III) remains unbounded only on the

right side of the barrier and solution (IV) only on the
left side. (III) and (IV) can only be invoked where they
remain bounded. We must now find a superposition of
(I), (II), and (III) on the right side, and (I), (II), and (IV)
on the left, which satisfy the following: (A) The same
particle fIux j, uniformly distributed over all channels,
exists on the far right and the far left. (B) The flow in
all of the n —1 undistinguished channels vanishes at the
barrier at x = 0. (C) The flow away from the barrier in
the distinguished channel, on each side, is related to the
incident How in that same channel through the refIection
and transmission probability for that channel.

No physical insight is gained through the elementary
algebra represented by (A), (B), and (C). We do note,
however, without further analysis, that the total carrier
density varies, in space on each side, only through solu-
tion (II). The redistribution between channels given by
(III) and (IV) does not affect that. Therefore the net
concentration gradient is spatially uniform. After invok-
ing space charge neutrality, that means the electric field
is uniform, except within a few screening lengths of the
barrier. The additional voltage drop resulting &om the
insertion of the barrier, including that attributable to the
redistribution between channels, all occurs at the barrier.
The results of Sorbello and Kunze are more complex
than that because they do not assume identical channels,
as we do, away from the barrier. Sorbello and Kunze
can get transport fields near the barrier that can be larger
or smaller than those far away, depending on their choice
for R(8). Our actual voltage drop, resulting &om inser-
tion of the barrier, arises entirely from the discontinuity
in solution (I) at the barrier. With the omitted algebra
we find an additional resistance, due to barrier insertion:

po — p++ p — po-
t92: 2nA

+ (5.6)
her f11)'
e' (T n) (5 9)

Equations (5.3)—(5.6) are a set of four coupled first-
order linear di8'erential equations. On each side of the
barrier they can readily be shown to have the following
four elementary solutions, which can be superimposed to
yield all others. (I) A spatially uniform density change,
the same for all channels, and without current flow. (II)
A uniform current fIow, equally distributed over all chan-
nels. It satisfies

It is the simplicity of this result, discussed in the next
section, which warrants our crude model.

VI. INTEKPKETATION OF JESUITS

For n = 1 the above analysis reduces to the one-
dimensional case. Equation (5.9) becomes



RESISTANCE OF PLANAR BARRIERS

(6.1)

This is the well-known result of Eq. (2.2) applied to a one-
dimensional scatterer. Thus, the extra resistance due to
insertion of the barrier into the resistive medium is just
the resistance of that barrier in an otherwise ideal one-
dimensional conductor, confirming earlier results.

In the limit of large n Eq. (5.9) becomes

(6.2)

which is the single channel version of Eq. (2.1). That
agreement, however, is fortuitous. After all, Eq. (2.1)
is derived 6..om a model where the reservoirs widen and
allow geometrical dilution of carriers entering it, before
appreciable scattering associated with the reservoir takes
place. Equation (6.2), however, has carriers going into
other channels because of the assumed background scat-
tering.

Equation (5.9) gives a resistance that increases mono-
tonically with n. The resistance, for n & 1, is larger than
the result of Eq. (6.1). To discuss that, we will refer to the
electrochemical potential, in a channel, or for all channels
taken together, at a given position of space. The electro-
chemical potential, defined here for simplicity only for
the diffusing noninteracting particle case, is simply the
Fermi level that in equilibrium would give the same num-
ber of carriers. The drop in electrochemical potential, in
the preferred channel, at the barrier will be given by the
resistance of Eq. (6.1), multiplied by the total current.
As the barrier is approached and the current transferred
into the preferred channel the electrochemical potential
gradient in that preferred channel has to increase above
the value it has far Rom the barrier. The electrochemi-
cal potential for a/l the channels has a constant gradient
as the barrier is approached, reBecting the diminishing
gradient in the blocked channels.

The increase in the preferred channel exactly bal-
ances the decrease in the blocked channels only in our
eery Simp/e model and is not characteristic of other
treatments. ' '6 The fact that the resistance increase in
Eq. (5.9) exceeds that of Eq. (6.1) for the barrier re-
sistance in the preferred channel implies that there is a

contribution to the total resistance which comes from the
need to transfer carriers between channels. This diBer-
ence, in our model, depends only on barrier properties,
and not on scattering rates. That is again a result of
the simplicity of the model that has only one parameter
w for the resistive background. It can be contrasted, for
example, with the more complex results for the case
where vertical flow (i.e. , in energy) is required and where
the rates for transition in energy can be independent of
the transition rates that determine spatial fI.ow.

Knabchen points out that his result, expressed in his
Eq. (16), consists of the background resistance plus a
contribution that only depends on the barrier, as in our
Eq. (5.9). He then goes on to state that this additivity
verifies Matthiessen's rule. That seems to be an unfor-
tunate choice of words. The term that depends only on
the barrier is not the resistance of the barrier by itself,
as given in Eqs. (2.3) or (2.4), but includes a funneling
resistance whose value is independent of the value of the
background scattering.

We have to add a note of caution to this discussion.
On the basis of our model one might assume that im-
mersing any obstacle in a medium with background scat-
tering will give us a resistance that exceeds the sum of
the separately calculated resistances. That is not always
correct; adding background scattering can reduce the to-
tal resistance. Consider a compound obstacle in which
a left-hand barrier permits good transmission only in a
narrow range of incident angles. This is followed at some
distance by a second layer, which has a similar narrow
angular window, not overlapping the range of the first
window. Adding scattering between the two barriers,
and thereby allowing conversion &om one angle to the
other, will increase the net transmission.

Note added in proof. Recent experimentsz2 have uti-
lized the two-dimensional version of Eq. (3.1) to interpret
the resistance of misfit dislocations in a high-mobility
heterostructure layer.
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