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A transport theory is developed for multibarrier mesoscopic devices that contain a random
configuration of short-range impurity potentials. The theory is based on the self-consistent second Born
approximation within the Keldysh formulation. The self-energy of the system is estimated to describe
the average two-terminal resistance of an ensemble of nearly identical systems. The theory describes the
transition from the ballistic to the diffusive regime of operation as a function of a disorder parameter
characterizing the density as well as the strength of the impurities. It is shown that as the strengths of
the elastic tunnel barriers are increased, the transition from ballistic to diffusion regime occurs at larger

values of the disorder parameter.

I. INTRODUCTION

Investigations into the role of elastic barriers on the
transport properties of mesoscopic devices have been an
active area of research for many years. References 1-6
are a few examples that include the effects of scattering
from known tunnel barriers on the transport of electrons
in mesoscopic devices. These theories have been reason-
ably successful in describing electron transport in devices
using a sample-specific Hamiltonian.

In this paper, we deal with the transport properties of
devices that in addition to known tunnel barriers contain
a random configuration of impurities. We restrict our
model to devices with large lateral cross sections. The
current flow is considered to be one dimensional (1D).
The primary objective is to determine the effects of the
random impurities on the average electrical characteris-
tics of nearly identical multibarrier systems. The effects
of such scattering are generally included in transport
models via a phenomenological constant imaginary po-
tential’® or a constant mean free path.” The imaginary po-
tential or the mean free path is related to a constant
phase-breaking or relaxation time. We intend to show
that such an approach may have limited validity only for
devices without any potential barriers. In the transport
model presented in this paper, the phase-breaking time is
not a constant, rather it is a function of both the space
and the energy.

We note that while a large variety of the devices have
finite cross sections, much of the attention has been fo-
cused on strictly one-dimensional systems.>”>® This was
also pointed out by Fertig, He, and Das Sarma’® who in-
vestigated the effects of elastic impurity scattering in
double-barrier quantum well (DBQW) structures. The
authors used a microscopic perturbation theory based on
Green’s functions with an energy-independent self-energy
and a tight-binding model. An obvious consequence of
neglecting multidimensionality of DBQW?’s is that one
must ignore the scattering processes that allow the trans-
verse momentum to change.’

Our transport model is based on the nonequilibrium
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Green’s function technique (the Keldysh formalism).!0~12

The Keldysh formalism has been proven to be quite suc-
cessful in describing mesoscopic devices in the presence
of disorder and inelastic scatterings.!3~!” There are some
advantages of the Keldysh technique over other methods;
unlike the Kubo formalism, the Keldysh approach can
describe the nonlinear response of mesoscopic devices un-
der large bias and at nonzero temperatures. Moreover,
the Green’s functions in the position coordinates allows
determination of the spatially varying local quantities of
interest, such as the local density of states. This is partic-
ularly important for our model, as will be shown later.

Suhrke, Wilke, and Keiper'(’ have used the Keldysh
technique to develop a transport model for quasi-1D
quantum wires. Their model considers inhomogeneity
only in the transverse directions due to the lateral
confinements. This makes their model inapplicable to
some multibarrier devices in which the inhomogeneity is
in the direction of the current flow. Recently, Davido-
vich and Gornsztejn!” used the Keldysh formalism to an-
alyze the effects of an impurity layer of known
configuration in the barriers of a 3D DBQW device on
resonant tunneling.

Previously, we used the Keldysh formalism in develop-
ing a generalized transport theory for devices that con-
tain random impurities.'®* The model describes the aver-
age transport properties of an ensemble of similarly
prepared 3D multibarrier structures containing random
potentials. The model does not assume any particular
form either for the impurity potentials or for the device
geometry and it is valid for arbitrary voltages and tem-
peratures, if one ignores other forms of scattering. A
drawback of the theory is that it requires the knowledge
of full green’s functions, which needs to be computed us-
ing a nonlocal form of the self-energy.

The primary purpose of this paper is to obtain trans-
port equation for the multibarrier devices described ear-
lier. To simulate these devices, we consider inhomogenei-
ty in the direction of the current flow; however, we as-
sume that the system is translationally invariant in the la-
teral plane. In the model, the tunneling barriers are in-
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cluded in the Hamiltonian. The effects of the randomly
distributed short-ranged impurities (represented by 6-
function potentials in space) on the expected transport
properties will be included via the self-energy. The self-
energy, resulting from the ensemble averaging process,
leads to irreversible damping (or phase breaking) of the
electron wave.!” We derive an expression for the phase-
breaking scattering rate that is shown to be proportional
to the local density of states. It is recognized that the use
of terms such as phase breaking, associated with elastic
scattering, may surprise some readers. However, the
impurity-averaged perturbation theory with an elastic in-
teraction in conjunction with coupling to reservoirs does
lead to phase breaking within the self-consistent Born ap-
proximation. In fact, in the linear regime of operation,
Hershfield has shown the equivalence of the scattering
formulation (the Landauer formula) with dephasing and
the self-consistent Born approximation.?®

Although the transport properties of mesoscopic sys-
tems are well studied in both the ballistic and the
diffusive regimes, there has been relatively less research
on the transition behavior. Recently de Jong’ calculated
the average resistance of an ensemble of similarly
prepared wires from the ballistic up to the diffusive re-
gime using a semiclassical approach. Our transport mod-
el is used to study the average resistance of the devices
with large lateral widths in the ballistic regime (L ,>>L)
as well as the transition from the ballistic into the
diffusive regime (L 4 <L), where L, is an effective phase-
breaking length and L is the length of the device.

In Sec. II, we derive a position and energy-dependent
electron phase-breaking time for arbitrary device struc-
tures. Sections III and IV contain derivations to our
transport equations applicable to arbitrary and multibar-
rier device structures, respectively. Section V includes
some numerical results. The conclusions are summarized
in Sec. VL ‘

II. SELF-ENERGY AND THE PHASE-BREAKING TIME

We consider devices with a random distribution of im-
purities of concentration n, and assume that the impurity
potential is uncorrelated and is very short ranged so that
for an impurity at location R, the potential U(r) is

U(r)=V,8%(r—R) . (2.1)

It is obvious that the presence of random impurities
leads to fluctuations of the transport quantities from one
sample to another. In small devices, such fluctuations
can be significant; for a review of the effects of localiza-
tion and fluctuations on the device properties, see Ref.
21. However, our interest is in the behavior of a class of
devices rather than in that of a particular sample. Thus,
the averaging over the ensemble of the impurities needs
to be performed?? to obtain an estimate of the expected
values of the transport coefficients. However, it is known
that in 1D systems, where all states are localized, the is-
sue of averaging is very subtle.”>2* On the other hand,
the situation is quite different in higher dimensions par-
ticularly for low impurity densities. The corrections due
to weak localization in multidimensions have been shown
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to be much smaller than other relevant contributions.”??

In 3D devices, the linearized form of the nonequilibrium
Green’s function techniqué (particle-particle correlation)
is expected to give identical results as that of the Kubo
formalism (current-current correlation) (Ref. 13) within
the scope of the second Born approximation. Moreover,
the resulting impurity-averaged quantities follow the en-
velopes that contain the fluctuations.

We average over the ensemble of the impurities de-
scribed by Eq. (2.1). Using the second Bron approxima-
tion and neglecting all diagrams with intersecting interac-

tion lines, the self-energy can be written as'®!°
z(rl,rz;tl,tz ):no V%G(rl,r2;t1,t2 )53(1‘1—1'2) . (2.2)

The general form of the Dyson equation in the Keldysh
formalism!!1? i

is given by Mahan'?
E(XI,X2)=G_0(X1,X2)+de3dX4G_0(X1,X3 )2(X3,X,4)
XG(X4,X,) , 2.3)
where X =r,t, and 3 and G are (2X2) matrices given as
_3<
DA

|6 —e<| _ |z
¢=l6> —¢, |’ 2~

Thus, using Eq. (2.2), the off-diagonal elements of the =
matrix'? are given as

31,0t 1,t,)=n, V3G 1,1yt ,,t,)83(r,—1,) , (2.4)

where a=> or <. Equation (2.3) is a (2X2) matrix
equation involving four different Green’s functions from
which we obtain the retarded Green’s function GX
defined by the relation

GR(X,,X,)=6(t;—1,)[G” (X;,X,)—G <(X,X,)] ,

(2.5)

because much of the transport properties of the system
can be obtained from the information about the GX. The
details of the derivations for the retarded Green’s func-
tion are shown in the Appendix. Using Egs. (A7), (A8),
and (A3) of the Appendix, finally we obtain,

ifi 1

E—H NRELCE (SR N
mod(rl) T¢(r1;E)

> GR(r,,1;E)

=8%r,—1,), (2.6)

where H (r\)=H(r))+o(r;E). o comes from the

real part of the self-energy and is defined in the Appen-

dix. The term 74 represents the electron phase-breaking

time due to impurities and is given by
1 _ 2wy, )

o6 E) P VoNo(nE) .
Here Ny(r;E)=—(1/m)Im[G®(r,r;E)] represents the
spatially varying local 3D density of states (DOS). In-
terestingly, the expression for 7, given by Eq. (2.7) agrees
with the expectation that for elastic phase-breaking
scattering, the inverse phase-breaking time (i.e, the

2.7
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scattering rate) is proportional to the density of states.?’
At zero temperature and for homogeneous systems, it
reduces to the well-known expression 1/7,
=(2mn, /#)ViNo(Ep) for the electron phase-breaking
scattering time,!® where the DOS is a constant in spatial
coordinates evaluated at the Fermi energy level.

III. TRANSPORT EQUATION
FOR ARBITRARY STRUCTURES

An equation for the current density for arbitrary mul-
titerminal structures can be derived using the “less-than”
Green’s function G <(r,,ry;E) contained in the off-
diagonal element of the (2X2) matrix equation.!* Thus,
using Eqgs. (A1) and (A3), one obtains

G (r,,13E)= [drdr’'GR(r,,r; E)X<(r,r";E)

XGAr',r;E) . (3.1

Now, upon substituting Eq. (2.4) in Eq. (3.1), and using
the relationships G 4(r;,r;;E)=G®*(ry,r;;E) and
n(r;E)=—(1/27)iG <(r,r;E), we obtain an expression
for the electron density:

n(E)=n,V} [ dr'|GR(r,t';E)|*n(r';E) . (3.2)

Although the integral equation for the electron density
has been derived assuming a local form of self-energy, it
may be mentioned that a similar integral relationship also
holds for the generalized electron distribution function
n(r,ry;E)=—(1/27)iG <(r,,1,; E) when the self-energy
functions assume a nonlocal form.!® The self-energies be-
come nonlocal when the impurity potential is not con-
sidered to be a & function in space.

When voltages are applied at the contacts of a mul-
titerminal device, the current in the ith terminal is given
by the equation

I,= [dE [3(r;E)dsS,; , (3.3)
where
— _eﬁ ’ < ’
JE)= (V=V")G (1,0 ;E)|,=p - (3.4)
drm*
Using Egs. (3.1) and (3.2) in Eq. (3.4),
J(r;E)=;e;n,,V(2,fdr'IGR(r,r’;E)l2
X[#VO(r,r’;E)]n(r;E) , (3.5)

where GX(r,r';E)=|GX(r,r'; E)|exp[if(r,r';E)].

IV. TRANSPORT EQUATION
FOR MULTIBARRIER MESOSCOPIC SYSTEMS

The device structure considered in this paper can be
schematically represented by Fig. 1. The device has three
regions. Regions I and III are made of the same material
that need not be ideal. Region II of our device contains
all the barriers and the wells. We assume that the devices
are translationally invariant in the lateral plane (the y-z
plane). The Hamiltonian can be decomposed into the
lateral and the longitudinal components. Then,
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FIG. 1. The schematic diagram of our device. R, (R,)
represents the coherent reflection coefficient evaluated at the
boundary between the left (right) contact and the device con-
taining random impurities.

H(r)=H(x)+H(p), where p=(y,z) and H(p)=(#*/
2m* )Vg. If a quantity g is a function of two coordinate
variables r; and r,, is can be expressed as g(r,,ry;E)
=g(x,X,,p1—pyE). One can Fourier transform it with
respect to the relative transverse coordinates as shown
below:

1 K (. —
gul,rz;E):Wfdkng(xlyxz,ku;E)elk” or=p2) .

4.1

Moreover, if a quantity is a function of a single coordi-
nate variable r, it becomes a function of x only, so that
T¢(r;E)-—>~r¢(x:E), n(r;E)—>n(x;E), Jr;E)—>J(x;E),
etc. Thus, writing GR(rl,rZ;E ) in a form given by Eq.
(4.1), and operating on it by the H(p), Eq. (2.6) can be
written as

212
2m*

. #i

E— Sy a—
274(x;E)

—H oq(x)+ GR(xy,x,,k;E)

=8(x1_X2) . (4.2)

Here G R(xl,xz,k”;E ) is the one-dimensional Green’s
function that depends both on the total energy as well as
the transverse wave-vector k”. In related work, Lake and
Datta?® tried to decompose the Green’s function for a
similar structure. However, their 1D equation does not
contain the term ﬁzkﬁ /2m* because of an algebraic error.
Neglect of this term will introduce serious mistakes in the
results.

Using the properties of the transverse invariance and
the definition of 7, as given by Eq. (2.7), the current den-
sity is expressed as a sum of the 1D transverse mode
current densities:

(4.3)

J(x;E>=#)2fdk”J<x,k”;E> :

27

where
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Yo,k E)=—"2n,V3 [ dx'|GR(x,x" k;E)|?

52 0(x,x" k) |n(x";E).
ox

(4.4)

Since elastic phase-breaking processes due to impuri-
ties do not change electron energy, current continuity is
maintained at each energy separately. In other words,
(8/0x)J(x; E)=0. Equation (4.4) can now be solved for
each transverse mode along with the appropriate bound-
ary conditions for the injected currents described by

0,k B)=—S[1=R, (ki E)]fo(Epir ) 4.5)
V(L kGE)= =~ 1= R (k)1 o( Eopig) (4.6)

Here, we assume that the contacts are in thermal equilib-
rium characterized by single chemical potentials y; and
pg for the left and the right contacts, respectively. The
distribution functions f; in the contacts is approximately
the Fermi-Dirac distribution. The coherent reflection
coefficient R,(R_) is evaluated at the left (right) boundary
between the contact and device.?® Consequently, the
term like [1—R,(k; E)] does not represent the transmis-
sion probability across the full length of the device; it
merely estimates the fraction of the electrons that are in-
jected across the contact-device interface. Although con-
tacts are usually treated as ideal thermal reservoirs that
absorb and thermalize all incident electrons before rein-
jecting into the device, such a description is often not val-
id.?” In case of nonideal contacts, the conductance prop-
erties of the device, measured between the contacts, may
be significantly modified by the nature of the contacts.?®
Following Oakeshott,? we will model the contacts as im-
perfect ones, which are represented by strongly disor-
dered regions characterized by a constant phase-breaking
time.

In steady state, the current [Eq. (4.3)] is independent of
position and the total current J; is obtained by integrat-
ing Eq. (4.3) over energy E. Noting that the applied volt-
age is given by eV, =(u; —puz ), the conductance is deter-
mined from the relation G =J;/V,. The expression for
the conductance can be recast into the familiar general
form

G———fd

Here T 4(E) is the effective transmission coefficient
summed over all the transverse modes at energy E. It is
given by the equation

afO(E)

el E) - 4.7)

T E)=— [ dk,dk|[1—R,(k;E)]

X Ty (kjkE) . 4.8)

Tr_rk,k;E) is the fraction of the injected electrons
from the left reservoir with transverse wave-
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vector k; that leaves the device from the right with
wave-vector kj. We have verified that for small biases.
Ty ,r(kj,k;;E) are independent of the current flow
through the device.

V. RESULTS AND DISCUSSION

In this section, we present results of the self-consistent
solutions to Eqgs. (2.6) and (2.7). The numerical technique
used in the calculations are similar to that discussed in
the appendix of Ref. 15. Results presented in this paper
are for zero temperature and small bias voltages. Appli-
cations of our model to the nonlinear regimes and/or at
finite temperatures will be presented elsewhere. In this
paper, the strength and the density of impurities is
quantified by a single dimensionless parameter
B=3.24X10%n, V2, where n, and ¥, are in Systeme In-
ternational units.!® Using this definition, we rewrite Eq.
(2.7) as 74,=5.33X10*' /BN, sec. The contacts, modeled
as strongly disordered regions, have a constant 7, of
10713 sec.

In Fig. 2, we present theoretical plots of the phase-
breaking time 7, as a function of position x for a DBQW
device. The widths of the well and the barrier reglons are
50 A and 30 A, respectively; the barrier height is 0.3 eV.
The lowest resonant energy E for this well is approxi-
mately 0.08 eV. To generate these plots, we have used
two values of Fermi level E and B=0.1. The boundary
conditions are applied at the contacts that are located
1000 A from the barriers. Notice that for a given Ep, the
phase-breaking time in multibarrier devices varies by
more than an order in magnitude. This is because of the
energy and spatial variation of the 3D density of states
(see inset) for such structures. Thus, it is our opinion that
in transport models for disordered multibarrier device
structures, the use of phenomenological constant phase
breaking or relaxation time or constant mean free paths
may only be reasonable only for homogeneous devices.

Figure 3 shows plots of the theoretical two-probe con-

Nyp Vs X

—-—- E.=0.05 eV
—— E=0.158V

200 |
p=0.1

7,(10%s)

barrier locations

; I a

0 1000 2000

position x (/3)

FIG. 2. 74 vs x for DBQW device for two different values of
Ep. The inset shows the 3D density of states as a function of x.
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FIG. 3. Two-probe conductance G as function of the reser-
voir chemical potential u; for three different values of the dis-
order B for the DBQW device.

ductance (per unit area) as a function of the chemical po-
tential u; in the left contact of the aforementioned
DBQW structure. The plots are for three values of 8. As
expected,” the conductance makes a sharp jump at
u; =E,. However, the transition width increases with
increasing disorder and the conductance does not satu-
rate beyond pu; =E,. We think that the saturation
characteristic seen in Fertig, He, and Das Sarma’s con-
ductance curve’ stems from the fact that their coupling
coefficients between the well and the reservoirs are energy
independent.

Let us now consider a different device (of length L) that
contains a single 20-A barrier of height V at its center. In
Fig. 4, we show the average two-probe resistance per unit
area R =1/G as a function of the disorder parameter 8
and L =2250 A. As indicated in the figure, the plots cor-
respond to three values of the barrier height V. Note that
the shapes of the plots are almost identical. As expected,
the resistance is larger for larger barrier heights. Each of

5.0 : : : ,
—— V=00eV /
------- V=0.2 eV ;
40 | —-—- V=04eV /
W=02eV
o 3.0 |
N
=
'To e e e e e T
220 >~ 2.3X 10" h/2¢e’
o
tofb
0.0 - , .
0.00 0.01 0.10 1.00 10.00
B

FIG. 4. Resistance R vs disorder 3 for a single barrier device
for three different values of the barrier height V.
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FIG. 5. Resistance R vs length L for a single barrier device
of barrier height ¥ =0.4 eV for three different values of 3.

the curves is virtually flat for small values of B and it in-
creases significantly only when 3 exceeds a certain critical
value (B,). Note that while we have used values of 8 up
to ten, such values may violate the assumption of low im-
purity density.

Figure 5 shows plots of the two-probe resistance versus
the length L. The barrier height ¥V is 0.4 eV. Note that
the plots contain oscillations for small L due to the in-
terference effects. The interferences are due to multiple
reflections between the barrier and the contacts. The
reflection of an electron incident on the imperfect contact
takes place because of the “impedance mismatch” be-
tween the two regions. Since the region I and III in the
device contain phase-breaking processing, reflected wave
functions from the barrier lose their phase coherence as
they propagate towards the contacts. Consequently, as L
increases, these interference effects decrease and the
curves gradually become linear with slopes that depend
on B. This transition occurs at smaller values of L if the
disorder parameter is larger. Plots for a homogeneous
device (¥ =0, not shown) do not contain such oscilla-
tions because in the absence of the barrier, the interfer-
ence effects due to the multiple reflections from the
device-contact interfaces are very weak.

Figures 4 and 5 clearly show a gradual transition from
the ballistic to diffusive regimes of operation as functions
of the device length and the disorder parameter . Extra-
polating the straight line asymptotes of the plots to L =0
(in Fig. 5), we obtain approximately (1/G{)=2.3X1071®
(in units of & /2e?). This value is the same as that in the
plot in Fig. 4 for the ¥V =0.4-eV barrier case for f=0.
To interpret the numerical results, we use the following

approach. It is known that the expression for the two-
30,31

probe conductance of a 1D chain is given as
> -1
e L
G=-" |1+

For homogeneous mesoscopic devices, the coherent
reflection coefficient R, =~0. Thus, using Eqs. (4.7) and
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(4.8), one can derive an expression for the two-probe con-
ductance as
~1

L , (5.1)

1+ —
2L ,(Ep)

G(Ef)zGo(Ep)

where Go(Ep)=m*Ey /2m#*(e?/7#) represent the num-
ber of the transverse channels per unit area at energy Ep
times the conductance of a single channel e?/7#. The
term L, (Ep)=14Ep)v, (Er) is the phase-breaking
length, where v,, is the velocity of the electron averaged
over all the transverse modes. Since for a homogeneous
system 7, is a constant (for a given [3), the phase-breaking
length is also constant. Thus, the above expression natu-
rally separates the ballistic transport regime from
diffusive transport regime simply by the value of the ratio
L/L,.

The situation is quite different when the device con-
tains a barrier. In this case, the reflections from the bar-
rier contribute to the resistance. However, due to the
phase-breaking scatterings from the random impurities,
the effects of the reflected electrons are localized only in
the immediate neighborhood of the barrier.®! If the
length of the device is less than the extent of the interfer-
ence region, the conductance shows oscillations and can-
not be expressed in the form of Eq. (5.1). However, for
large L, one can derive an expression similar to Eq. (5.1)
(see Eq. (26) of Ref. 31) with Gy(Ep) replaced by
Go(L,Er). Gy(L,Ep) contains the contribution of the
potential barrier to the resistance and is smaller than
Gy(Eg) for V=0. Gy(L,Ey) gradually becomes indepen-
dent of L for large L because the interference effects are
localized only near the barrier.

For nonhomogeneous systems, the estimation of L is
not trivial since it require spatial averaging and averaging
over all the transverse modes. We have, therefore, taken
a simpler approach that uses the numerically calculated
resistance and Eq. (5.1). We define an effective phase-
breaking length as

L=L_G
2 GO—G

Figure 6 shows the plot of L,/L versus B for devices
with L =2250 A. From Figs. 4 and 6, one finds that
whenever L 4 becomes comparable to L, R begins to in-
crease significantly as a function of 3. We can also define
that the transition from the ballistic to the diffusive re-
gime occurs at a critical value of B, when L /L =0.5 (or
simply when R =2R,). Using these definitions, we ob-
serve in Fig. 7 that the transition is influenced by the
strength of the barrier potential. If the barrier height in-
creases, such a transition occurs at a larger value of the
critical disorder parameter .. This can be explained by
noting that the presence of a barrier lowers the density of
state in the immediate vicinity of the barrier. A smaller
density of states in turn reduces the scattering probability
of electrons with random impurities and to observe a
transition from the ballistic to diffusion regime, the disor-
der parameter must be increased.
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FIG. 6. L /L vs disorder B for the devices used in the calcu-
lation of Fig. 4. The horizontal line represents the condition
2L,=L.

VI. CONCLUSION

In this paper we present a transport model that deals
with the problem of estimating the expected value of con-
ductance of mesoscopic devices containing random im-
purities and a known configuration of potential barriers.
Our model uses the second Born approximation within
the nonequilibrium Green’s function approach. Using
the process of ensemble averaging, we have derived an ex-
pression for the phase-breaking time for carriers. The ex-
pression for the phase-breaking time is used to describe
electron transport in 3D multibarrier devices. Our calcu-
lated results show that the phase-breaking time in multi-
barrier devices is a function of both the disorder strength
and the local density of states. Its value can vary within
the devices by orders of magnitude.

We have investigated the transition of the device

0 . . .
0.0 0.1 0.2 0.3 0.4
barrier height V (eV)

FIG. 7. The plot of B, vs the barrier height V in single bar-
rier devices. 3. is the value of the critical disorder when transi-
tion from the ballistic transport to the diffusive transport takes
place.
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operation from the ballistic to the diffusive regime. A
simple model based on our numerical calculations is
developed to study this behavior in devices containing a
tunnel barrier. It is observed that the transition depends
not only on the disorder, but also on the strength of the
potential barrier structure. '
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APPENDIX: EQUATION
FOR THE GREEN’S FUNCTION

The derivation for the scattering time shown in this ap-
pendix is similar to that used in Ref. 14. Operating on Eq.
(2.3) with [i#(0/0¢,)—H(r,)] and using the fact that for
the noninteracting Green’s function one has

iﬁg?—__—H(r]) Go(X1,X,)=8%X, —X,)I ,
1
we obtain
m%—m:,) G(X1,X,)=8%X, —X,)I
1

+ [dx,3(X,,X;)

XG(X3,X,). (A1
From Eq. (A1), one obtains the following equation for

the retarded Green’s function G® [Eq. (2.5)]:

lﬁi—H(rl)

GRXx,,xX
ar, (X1,X3)

— [ ax;2R(X,,X;)GR(X4,X,)=8%X, —X,) .
(A2)

Fourier transforming Eq. (A2) with respect to the relative
time coordinate ¢, —t, under the steady-state condition,
one obtains

[E—H(r)]GR(r|,1E)
— [ dr=R(r,, 15 E)GR(r, 1, E)=8%r, —1,) .

(A3)
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The expression for the retarded self-energy term, given
as

SR(r 105t —1,)=0(t, —1,)[Z7(x, 1558, — 1)

—2<(r,r5t,—1,)], (A4)

is also Fourier transformed with respect to ¢; —¢, to ob-
tain

dE' 27(x, 13 E' ) —Z<(r|,1;E")

27 E—E'+ie

=n, V%53(r1—1‘2)

dE' iG > (rl,rl;E')—iG <(r1,r1;E,)

Xf 21

ER(rl,rz;E)=if

E—E'+ie
(AS)
Using relations for the hole density
p(r;E)=(1/2m)iG” (r,r;E), the electron density

n(r;E)=—(1/2m)iG <(r,r;E), and the density of states
No(r;E)=p(r; E)+n(r;E), one can rewrite Eq. (A5) as
the following:

dE' 2mNy(r;E’)
2w E—E'+ie
(A6)

3R(r, 1 E)=n, V38 (r, —rz)f

The real and imaginary parts of 2%(r;,r,;E) from Eq.
(A6) are, therefore, given by

Re[ZR(r,,1;E)]1=0(r; E)8(r;—1,)

Ny(r;E’)

=noV(2,83(r,—r2)Pde’—z~,jIE,——

(A7)

and
ﬁ83(r1—r2)
— R _— =
Im[z (rl,rz;E)] 27‘¢(I'I;E)
27Ny(r;E)
=n, V283 (r,— 1) — " . (A8)

Equations (A7) and (A8) are then substituted into Eq.
(A3) to obtain Eq. (2.6).
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