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Intrinsic optical anisotropy of quantum wells in cubic crystals
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The intrinsic optical anisotropy of fiat quantum wells (FQW s) grown from cubic materials is investi-
gated on the basis of an envelope-function approximation. It is shown that optical polarization effects in
(11N)-oriented QW's are caused by the warping of the hole energy spectrum, and that they are the more
pronounced the stronger the anisotropy of hole effective masses is. An analytic dependence of the opti-
cal matrix elements on the thickness of the QW's is found. Qualitative estimates of the intrinsic optical
anisotropy for (100)-oriented QW's in GaAs and A1As are given.

I. INTRODUCTION II. THEORY

In recent years, optical polarization effects in sernicon-
ductor microstructures have been discovered. In particu-
lar, the optical anisotropy in Rat quantum wells and su-
perlattices was observed in the luminescence, ' the pho-
tocurrent, and the reQection spectra.

The strong polarization anisotropy of the excitonic
luminescence excitation spectra has been attributed to
the corrugation of heteroboundaries. ' The essential ar-
gument in the above claims is the increase of the
anisotropy e6'ects, with the decrease of the quantum well
(QW) thickness.

On the other hand, it is obvious that the optical
response of the confined media is nonlocal. As a result,
the QW's must exhibit intrinsic optical anisotropy. It is
known that the optical properties of the two-dimensional
structures are di6'erent in the growth direction and in a
plane of the layer. In addition, the phenomenological
treatment shows that the optical constants in the cubic
QW's oriented along the crystal directions other than
(111) and (100) depend on the direction of the polariza-
tion of light in the plane of the QW. Therefore, the QW's
grown in the crystal directions of low symmetry exhibit
not only in-plane (for light propagating along the plane of
the well), but also transversal (for light propagating in the
growth direction) anisotropic optical eff'ects.

In Ref. 8, numerical calculations of the intrinsic in-
plane optical anisotropy (IOA) for CxaAs/A1As QW's
were given. The well-width dependence of optical anisot-
ropy was attributed to the presence of the split-o6' state.
In reality, there is obviously a coexistence of the IOA and
the anisotropy due to technological reasons such as sur-
face corrugations. Therefore, it is important to theoreti-
cally investigate the possible microscopic mechanisms re-
sponsible for the IOA, and to estimate quantitatively the
e8ects anticipated. In the present paper, the results of an
analytic calculation of the IOA in (11N)-oriented cubic
QW's are reported. This is, to our knowledge, the first
report on the analytic investigation of the IOA in depen-
dence of the well thickness and orientation.

where I'„' is the matrix element of the mornenturn opera-
tor I"

{P,")„=(nc~e,P, ~mv ), (2)

where the unit vector e coincides with the direction of the
light polarization.

In Eqs. (1), (2), the index i = llh, 21h, lhh, 2hh desig-
nate the bands of light and heavy holes, index c corre-
sponds to the conduction band, n and m are quantum
numbers of electrons and holes. The functions ~mv ) and
nc) are the hole and the electron wave functions at

the Brillouin-zone center at the point ki=O(~ki~
=Qk +k~). The energies E„„(k)aire the electron
and hole energies of the conduction and valence sub-
bands, respectively.

For light linearly polarized parallel to the plane of the
QW, the anisotropy of the transversal components of the
dielectric tensor e„and e leads to the intrinsic optical
anisotropy in the QW s, i.e., to the linear anisotropic op-
tical spectra of absorption and reAection, as well as to the
intrinsic birefringence. On the other hand, Eq. (1) shows
that the anisotropy of the dielectric tensor is a conse-
quence of the polarization dependence of the interband
optical transitions. Therefore, the anisotropy of the rna-
trix elements is responsible for the intrinsic anisotropic

Vfe consider an isolated quantum well grown in a
[11N] direction, which we take as the quantization axis z.
Hence, the axis z is oriented along [11N], the x axis is
oriented along [110], and the y axis is oriented along
[001] (for N=0), [112] (for N =1), [111] (for N =2),
[332] (for N =3), etc.

We analyze QW's with direct dipole allowed interband
transitions. The resonance part of the dielectric tensor
e;~ (co) is given by the expression

(& )„(PJ')
fico E„(ki)+E—, (ki)+t'y
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~nc & =S &y,f„(z). (3)

The hole basic function,
~ J,j ), coincide with the eipen-

functions of the operator of the total momentum J= l +s
and its projection j. In the ~J,j) basis, the spin-orbit in-
teraction Hamiltonian matrix is diagonal, and the valence
bands I s and I 7 are completely split at the I point. For
kAO, the I's and I 7 states are mixed depending on the
ratio of the hole kinetic energy and the spin-orbit split-
ting b,„.In the case of QW, the mixing of I s and I 7
states is governed by the ratio of the hole quantization
energy and the energy difference between the I 8 and I 7
subbands. Therefore, this ratio depends on the QW

optical effects in QW's.
In the framework of the efFective-mass approximation,

electronic states are the products of the envelope function
in the z direction and the basic functions of the bulk crys-
tals. For the conduction band I 6 the basic functions ~S )
have s-like symmetry. Thus, the electron wave functions

~
nc ) are given by the expression

thickness. We shall assume that the splitting 6„is large
compared to the quantization energy e and threat the
I.,—r7 mixing by perturbation theory. We use a type of
the perturbation theory described by Lowdin' and calcu-
late the size corrections for the simples model of QW
with the infinitely high potential barrier. " In other
words, we assume that the potential barrier V is much
larger than the quantization energy E'q and the penetra-
tion into the barrier can be neglected for a first approxi-
mation. Evidently, the first condition ( hso )&e~ ) is
stronger if the potential barrier is large compared to the
spin-orbit splitting, while the second condition ( V))e )

is stronger in the opposite case (b,„&V). In our approxi-
mation, the electron wave function f„(z)is given by

f„(z)=V 2/L sin n m —, n = 1,2, . . . ,
z

where L is the QW thickness. At the Brillouin-zone
center, the 6 X 6 matrix of the Luttinger Hamiltonian for
[11N]-oriented QW s in the

~ J,j ) basis can be written as

H= —e

P+Q

P —Q

. L

i v'2—Q
iv 3/2L—*

i v'2M"—

i v 2M—

i v'3/2L
—i v'2Q

. L*

.L*
l

2
i v'2Q iv'3/2L iv 2M 6+P—

i v'2M' i v 3/2L—' i v 2Q
. L
v'2

where

and

AXm
&m=

2mp
K =m~/L, m =1,2, . . . ,

teraction are given by

Imv) = y a'.

j=+1/2, +3/2

In Eq. (5), the functions P, Q, L, and M are equal to

P=yi, Q=2yz(-,'co"X—1»
L =Q—,'y3(1 i) sin2y, — (8)

l3/2 j) l1/2, s)H

s= +1/2

X
~

—,', s ) sin(IC z) .

M =v'3i y 3cos y,
g being the angle between the z axis and the crystal direc-
tion [110]. In Eq. (8), y„yz,and y3 are the Luttinger pa-
rameters.

Because of the mixing of the hole basic states, the hole
wave functions ~mv ) in the first order on the I s

—I 7 in-

The basis functions
~ J,j ) can be expressed in terms of

the space functions X, Y, and Z and the spin functions a
and P:
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~
—,', —', ) =

—,
' {(1 —i)[Z cosy —Ysiny]+(1+i)X]a,

g, —,
' ) = {(1—i)[Z cosy —Y siny]P+ (1+i )XP

The coefticients a~' are de6ned by

—2V 2[ Y cosy+Z siny]a],

I
3, ——') = {(I+i)[Zcosy —Ysiny]a+(1 i—)Xa1

2~3
+2&2[Y cosy+ Z siny]P],

g, —
—,
' ) =—{( 1+i )[Z cosy —Y siny ]+ ( 1 —i)X ]P,

(10)

g 11h

Q+5

21h]

0

0
M

A

Q+5

~ —,', —,
' ) = {(1—i)[Z cosy —Y siny]P+ (1+i)XP

1

+&2[ Y cosy+ Z siny]a J,
~

—,', —
—,
' ) = {(1+i)[Ysiny—Z cosy]a —(1 i)X—a

—L
Q+5

1hh ]— 0
—M

{a 2hh]

—M
0

Q+5
L*

++2[Ycosy+Z siny]P] . where

and

=1/25(Q+5),

5(y)=1/ rz(cos y+4sin y —sin 2y)+3r3(cos y+sin 2y) .

(12)

%'e consider two first interband transitions from
heavy-hole and light-hole subbands with quantum num-
ber m =1 to the conduction subband with n = 1, and cal-
culate the following relative quantities:

/p'h/2 —/p'h/

(pl'(2
(13)1h, hh

where
~pl, h ~2 ~pll, lb~2+ ~p21, 2h~2 (14)

The quantities 5,„and5„„describethe degree of the opti-
cal anisotropy. Thus, according to the relation (1), they
determine the normalized intensities of the differential
optical spectra, related with the contributions of the opti-
cal transitions from the light- and heavy-hole subbands,
respectively.

By inserting Eqs. (4) and (9)—(11) into Eq. (2) the ma-
trix elements are calculated. The quantities 5,h and 5„„
are found to be

where the function 5(y) is determined by the Eq. (12)
and the function a (y) is equal to

a(y) =cos y(1 —3 sin y) . (16)

The other functions in Eq. (12) are given by the expres-
sions:

r g(y) =5(y)+&(y),

~(x)=rP(x)+r r(x»
P(y) =(—,'cos y —1)(1—3cos y),
r(y)= ——', sin 2y .

(17)

III. DISCUSSION

In the particular case of y=0 and large well thickness L,
these results coincide with those found by Kajikawa,
Hata, and Isu."

3(r2-r. )
~lh 2

~hh 2

5(y)+ [25(y)+1]
r+ x 3~x

A27T2 1

X a(y),
2mo

+ [2b,(y) —1]

AmX a(y),
2moL, 5„

Our analytic results [Eq. (15)] enable us to make the
conclusions on the intrinsic optical anisotropy in [11N]-
oriented QW's grown from cubic materials. In this sec-
tion, we discuss the theoretical results and give their
comparison with the known experimental data.

(i) First of all, note that the in-plane optical matrix ele-
ments are isotropic in (100)- and (111)-oriented QW's.
Indeed, the function a(y) in Eq. (16) is equal to zero at
y=n. /2 and y=arcsin(1/&3). In the other (11N)-
oriented QW's, the interband optical matrix elements are
anisotropic, depending on the direction of the light polar-
ization in the plane of the QW. This optical anisotropy is
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caused by the nonanalyticity of the hole wave functions
in the vicinity of the center of the Brillouin zone, and, as
a consequence, by the mixing of light- and heavy-hole
states. The anisotropy vanishes if the zone-center Lut-
tinger Hamiltonian is diagonal [as for (100)-oriented
QW's], or if the hole states mixing is independent of the
hole mass parameters yz and y3 [as for (111)-oriented
QW s]. Note, that a similar mechanism is responsible for
the optical anisotropy in bulk crystals with spatial disper-
sion.

As follows from Eq. (15), the difFerence between the
matrix elements corresponding to two perpendicular po-
larization of light (along axes x and y) is proportional to
the difFerence of the material parameters (yz —y3). In a
bulk crystal, this constant di8'erence is responsible for the
warping of the hole energy spectrum in the I 8 valence
band.

(ii) It may be seen from Eqs. (15) that the quantities 5~h

and 5hh have opposite sign. ' This means that the polar-
izations of the peak values of the heavy-hole exciton and
light-hole exciton are opposite to each other in the opti-
cal spectra: one peak is strengthened for X (or Y) polar-
ization, while the other is emphasized for Y'(or X) polar-
ization. ' The sign of 5ih and 5hh is changed at an angle y
around 35 . And so, the (110)-oriented QW and, for ex-
ample, the (113)-oriented QW showed the opposite
behavior.

(iii) The first term in Eq. (15) describes the contribution
of the I 8 states and defines the optical anisotropy in the
wide QW's, where the mixing of the I and I states
can be neglected. In addition, this term does not depend
on the height of the potential barrier at all. This is im-
portant, since it enables us to calculate the minimum rel-
ative anisotropy exactly. From Eq. (15) follows also that
for QW's grown from the same materials, the optical an-
isotropy has its maximum value for the (110) orientation.
Indeed, the dependence on the well orientation is de-
scribed basically by the function a(X).' The function
a(X) is defined by the Eq. (16) and given in the inset of
the Fig. 1. It may be seen that it is maximal at g =0.

As an example, the optical anisotropy in the wide
QW s grown from GaAs is given in Fig. 1. Figure 1

shows the functions 5&h and 5hh ~n dependence of the
direction of the quantization axes. The following value of
the band parameters were used: yz=2. 1 and y3=2. 9. It
may be seen that the optical anisotropy in (110)-oriented
GaAs QW reaches the value 0.17 for 5hh and ( —0.34) for
5&h. The anisotropy for the 1hh-1c transitions has a max-
imum for the (110) polarization and a minimum for the
(100) polarization, while for the 1lh-lc transitions the an-
isotropy shows the opposite polarization dependence.
The optical anisotropy is smaller in QW's oriented along
directions other than [110]. In [112]- and [113]-oriented
QW's the quantities 5&h and 5hh change their sign.

(iv) The second term in Eq. (15) is related with the
spin-orbit split valence band I 7. It may be seen, that the
mixing of the I 8 and I 7 states leads to the dependence of
the optical anisotropy on the well thickness L. The an-
isotropy increases with decreasing thickness as 1/L .
Such a dependence on the well size is a consequence of

I
'

I
'

I
'

) '
I

0.2

0.0

0 10

(11o )

20 30
t

40

( 111 )

I i t

60
t 60

(112) (

X(«g)

40 60 80

x(d,eg)
70

113 )

80 90

(oo1)

FIG. 1. The in-plane anisotropy 5, as a function of the angle
y between the quantization axis z and crystal direction [110]. 5
is defined by Eq. (15). The designations hh and lh indicate the
heavy- and light-hole subbands. The inset shows the function
a(y} vs the angle y. The function a(y) is defined by the Eq.
{16).
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FIG. 2. The in-plane anisotropy y =5+ 1 as a function of the
well width L for [110]-oriented CiaAs QW (a) and AIAs QW (b).
6 is defined by Eq. (15). The designations hh and lh indicate the
heavy and light valence subbands. The cross and open circle are
experimental data points from Refs. 1 and 4.

the approximation used: the large spin-orbit splitting and
infinitely high potential barrier. In this case, the mixing
of the I 8 and I 7 states is treated as a perturbation and
the quantization energy is proportional to the 1/L . The
well size region where this approximation is valid de-
pends on the specific structure of the QW's.

The finite potential barrier quantum well can be con-
sidered as an infinitely high potential barrier QW, with an
effective thickness L wider than the geometric size L of
the QW. Then, the Eq. (15) preserves its form with the
replacement of the I. by the L, and„ therefore, the size
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TABLE I. The quantities 5&h and 5hh in dependence of the well thickness L. In the columns (Ref. 1), (Ref. 4), and (Ref. 5) the ex-
perimental data by Gershoni et al. , Kajikawa et al. , and Belousov et al. , respectively, are given. The columns (Ref. 8) and (Ref. 8)
contain the results of the numerical calculations by Nojima for GaAs/Alo 7Gao 3As QW's and for GaAs/A1As QW's (indicated by the
dagger j'). In the column (Cal. ), the calculations based on Eqs. (15)—(17) are given.

(110) QW'sWell
Size ~hh ~lh

L (A) (Ref. 1) (Ref. 4) (Ref. 8) Cal. (Ref. 8) Cal.
~hh ~lh

(Ref. 8)~ (Ref. 8)~

(113) QW'8

~lh

(Ref. 5) Cal.
~hh

(Ref. 5) Cal.

200
90
65
54
47
40
35

0.42

0.2
0.2
0.26
0.34
0.39
0.46
0.5
0.56

0.17
0.23
0.3
0.38
0.42
0.45
0.64

—0.38
—0.4
—0.46
—0.49
—0.53
—0.61
—0.69

—0.34
—0.4
—0.45
—0.47
—0.5
—0.53
—0.57

0.19
0.3
0.43
0.52
0.64
0.79
0.9

—0.39
—0.42
—0.45
—0.5
—0.55
—0.58
—0.64

—0.07
—0.09
—0.11

—0.21

—0.07
—0.09
—0.1

—0.16

0.1

0.12
0.13

0.25

0.15
0.16
0.17

0.21

corrections decreases. In that way, our calculations
overestimate the values of the anisotropy compared to
the real model of the finite potential barrier QW's. Ap-
parently, it follows from this that the optical anisotropy
is larger in QW's with high potential barrier. By using
Eqs. (15), the relative optical anisotropy in dependence of
the well thickness was calculated for the [110]-oriented
GaAs and A1As QW's. The following values of the band
parameters were used: @2=2.1, y3=2. 9, 6„=340meV,
for GaAs and ye=0. 78, y3=1.57, 6„=280meV, for
A1As. Figure 2 sho~s the plot of the functions

y,h=5,h+ 1 and y„„=5h„+1vs the well thickness L for
GaAs QW's [Fig. 2(a)] and for A1As QW's [Fig. 2(b)].

One can see that the anisotropy of the optical matrix
elements reaches significant values, e.g. , in the A1As QW
at L =50 A, the probability of the 1hh-1c direct optical
transition when the light wave is polarized along the axis
(110) is 1.5 times larger than that of the wave polarized
along the axis (001). On the contrary, the optical matrix
elements of the llh-1c transition is three times smaller for
the former polarization direction than for the latter.

(v) In conclusion, we give the comparison of the ana-
lytic results with the experimental data. The in-plane po-
larization dependence of the optical spectra was observed
in the GaAs/A1As QW's systems. In Refs. 1 and 4 the
[110]-oriented QW's were studied, while in Ref. 5 the
[113]-oriented QW's were investigated. The numerical
calculations of the quantities 5&h hh in [110]-oriented
QW's were performed by Nojima [Ref. 8 (1993)]. The ex-
perimental data by Gershoni et a/. ,

' Kajikawa et al. ,
Belousov et al. , as well as our calculations on the 5&h and

6hh are given in Table I. It may be seen from Table I that
our results are in good agreement with the experimental
data by Gershoni et al. ' and Kajikawa et al. , also shown
in Fig. 2. They are also in agreement with the experi-
mental results by Belousov et ah. , especially for the
quantities 6hh (at the well thickness larger than -50 A).
However, the computed values 6,„areslightly larger than

the measured ones. Perhaps, the experimental data are
underestimated since the heavy-hole continuum overlaps
with the light-hole exciton peak. Our results are in agree-
ment with the numerical calculations by Nojirna for the
well thickness larger than -50 A, with the exception of
the data on the 5hh in GaAs/A1As QW's.

IV. CONCLUSIONS

In this paper, the Luttinger-Kohn eff'ective mass theory
has been used to calculate the interband optical transi-
tions in (11N)-oriented QW's. In (11K)—,XA1, orient-
ed QW's the interband matrix elements are anisotropic.
The optical anisotropy is caused by the nonanalyticity of
the hole wave functions in the vicinity of the point ki =0.
The intrinsic optical anisotropy is the more pronounced,
the stronger the anisotropy of hole e6'ective masses and
the higher the potential barrier of the quantum well.

Our results enable one to compute exactly the
minimum values of the relative optical anisotropy. It is
shown also that the mixing of the I 8 and I 7 states leads
to a dependence of the effect on the QW's thickness. For
relatively wide QW s, this mixing can be treated as a per-
turbation. In this case, the optical anisotropy in finitely
high potential barrier QW's increases with decreasing
well thickness as 1/L . Note, also, that the anisotropy of
the optical matrix elements leads to the intrinsic aniso-
tropic optical effects in quantum wells, such as anisotrop-
ic absorption and reAection spectra, as well as the natural
birefringence.
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