
PHYSICAL REVIEW 8 VOLUME 52, NUMBER 15 15 OCTOBER 1995-I

Hole subbands in strained quantum-well semiconductors in [hhk] directions
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We give a general formulation for both the Luttinger and the Bir-Pikus Hamiltonians with a spin

quantization parallel to the [hhk] direction. This allows one to obtain the hole subbands for any growth

direction parallel to [hhk]. The results are given explicitly in the [001], [111],[110],and [112]directions.
We show that the axial approximation is exact if the wave vector parallel to the plane (hhk) is equal to
zero for (hhk) =(001) (a well-known result) or (111)but that this is noi strictly true for (110) or (112).
We clarify the link between the axial mass and the cyclotron mass. We then present a method of numer-

ical calculation that is suited to any asymmetric quantum well. We discuss the eKciency and the limits

of the Broido-Sham transformation and we show that this transformation is not applicable for the [112]
direction even as a rough approximation. Finally, we give the hole subband dispersion in strained

Cd& Mn Te-CdTe-Cdl „Mn Te quantum wells where, according to the growth direction, the quan-

tum well may or may not be piezoelectric.

I. INTRO)DUCTIQN

The hole subband problem in two-dimensional semi-
conductors (2DSC) was first addressed by Nedorezov'
who performed the calculation for an infinite square
quantum well. The problem was soon solved for quan-
tum wells of different shapes in which the potential in-
cludes an electric field but always inside a single semicon-
ductor. In a finite quantum well, where the wave func-
tion spreads outside the well, it is necessary to use bound-
ary conditions that take into account the peculiarities of
the Luttinger Hamiltonian HL. this allows one to solve
the problem in the e6'ective-mass approximation,
which is the framework of this paper. Many methods
have been proposed depending on the problem of in-
terest. ' The first investigations were related to a [001]
growth axis. These were extended to stressed 2DSC
(Refs. 14—16) then to strained 2DSC (Refs. 17—19) de-
scribed by the Bir-Pikus Hamiltonian Hzp. The Hamil-
tonian to be solved is H=HL +HBP+ V(z) where z is the
direction of the growth axis; V(z) defines the quantum
well and. depends only on the difference in chemical corn-
position between the well and the barrier. The interest in
strained semiconductors increased when it was realized
that for growth axes other than [001] a piezoelectric field
renders the quantum well asymmetric. ' (Of course
asymmetric structures can be created without any electric
field. ' ) This led to studies of 2DSC most particularly
in the [111] directions'9' and also in the [112] direc-
tions, "which have shown theoretically as well as experi-
mentally that the piezelectric coeScient is highly depen-
dent on the strain in CdTe. Other low-symmetry
directions have also been studied for other purposes.
The aim of the calculation differs depending on whether
one is interested in either the warping or the density of
states. ' In the latter case, where an average is needed,
the axial (or "cylindrical" ) approximation ' ' is partic-

ularly suitable. New methods to calculate the hole sub-
bands were introduced and indeed almost each new case
so far considered is a particular one. ' ' ' ' A com-
mon point in all of these papers is that the growth axes
considered are in [hhk] directions. The purpose of this
paper is to give a general method provided the Hamil-
tonian used is of the shape 8 given above. For that we
use a description of Hr (as well as Htip ) as a combination
of tensor operators. In doing this, we discard the linear
k term that results from either the lack of symmetry in-
version in the zinc-blende structure ' or the strain-
induced valence band splitting: this is justified consid-
ering the inaccuracy of the Lut tinger parameters (see dis-
cussion below) in CdTe, to which we apply our results in
this paper. In the framework we obtain a general formu-
lation that allows one to perform the same kind of calcu-
lation whatever the [hhk] direction.

The layout of this paper is as follows: In Sec. II we
derive the general formulation of both HL and Hgp,
which allows one to obtain these two Hamiltonians re-
gardless of the axis of quantization. In Sec. III we give
the general relation that provides HL +Hap in [hhk]
directions. The explicit results are given in Sec. IV for
[001], [111],[110],and [112]. In Sec. V we discuss the ac-
curacy of the axial approximation, which is used to get
the hole subbands, and we show to what extent it is possi-
ble to assign an effective mass to a hole subband. In Sec.
VI we give the principles of our method of numerical cal-
culation of the hole subbands; i.e., we discuss the
modifications of the calculation of Ref. 10, which is well
suited to superlattices but not so well to quantum wells;
we also discuss the validity of the Broido-Sham transfor-
mation, which permits the solution of a real 2X2 matrix
instead of the usual complex 4X4 matrix. A summary is
given in Sec. VIII. In the Appendix we give the matrix
form of the tensors used in Secs. III and IV, which allows
one to get Hl +HBP regardless of the direction [hhk].
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Throughout the paper we take atomic units A =m0 = 1.
The Hamiltonians are hole Hamiltonians.

2
pjk =3PJpk ~p P

Jjk =(3/2)(J) Jk+ JkJ& ) —5p, J
(2.4b)

(2.4c)

II. GENERAL FORMALISM

A. Notation

P+Q
—S* P —Q

0

[3 1)

(2.1)

All of the matrices used throughout this paper are of
the form:

(2) —
(

3 )1/2-0 2 zz ~ (2.4d)

Useful relations can be found in Refs. 33 and 34. In
particular these two tensors have vanishing traces.

The second-rank tensor operators can be reduced to ir-
reducible spherical tensors of ranks 0, 1, and 2 denoted
:-' ', :-"',and:-' '. There is one component of:-' ' (:-' '),
three components of:-'" (:"0(", :-~1), and five com-
ponents of:"' ' (:-o ', :"+,', =Pz). Here we only need:-' '

(see the Appendix of Ref. 33 for details on =' ' and:-'"),

P+Q

where the axis of quantization z is arbitrary. The axes
Ox, Oy, Oz must be defined with respect to the axes [100],
[010], [001] of the crystal. P, Q, R, S are combinations of
k, k, k, and of the Luttinger parameters y1, y2, y3.

For the wave vectors we shall use kI~ and k+ defined as

k~(
—k +k, kg =k +ik .

For the Luttinger parameters we define the linear corn-
binations:

~(2)=~, —+(=, t=, ),
+2 2 xx yy

—t xy )

so that, for example,

p(2) (
3 )1/2(3p2 p2)

Py1 = + 3P+Pz

p(2) 3 2
+2 2p+ ~

(2.4e)

(2.4f)

(2.4g)

(2.4h)

(2.4i)

rs=(r3 r»—/2
y =(y, +r, )/2,

y, =(3r +2y )/5.

(2.2a)

(2.2c)

B. Luttinger Hamiltonian

We shall see below that y, is needed to describe the
spherical part of the Hamiltonians (as the notations are
not the same in Refs. 7, 30, and 33 we are led to use our
own notation). H [hjk] indicates that the Hamiltonian H
is written with a z axis of spin quantization parallel to
[hjk]. This is a short, but convenient, notation and the
axes Ox and Oy or, what amounts to the same thing, the
usual Euler angles (a,P, y) must be specified each time.
In the following we use mainly H[hjk] or sometimes
H [a,P, y] when there may be any ambiguity.

+[p( ) J(2)+p( )J( ) ] (2.4j)

It will be useful to use

i p(2) J(2)
s 9 (2.4k)

In fact we do not need the entire product p' 'g J' '

(one part of which is the scalar product) but only
[P' '(3) J' ']' ', which has nine components. These com-
ponents can be obtained from the Clebsch-Gordan
coefficients, namely,

with p+ =p +/p, .
The same holds for the second-rank tensor J' ': it is

straightforward to write each component of J' ' as a 4 X4
matrix.

We now need the scalar product P' '-J' ' and more
generally the tensorial product p' ' J' ',

p(2).J(2)—p(2)J(2) p p(2) J(2) +p(2)J(2) q
0 0 L —1 1 1 —1&

The usual Luttinger Hamiltonian is

HL [001]=—,'(yi+ —,'y2)k —y2[kx J„+c.p. ]

y3[k ky(J„Jy+—JyJ )+c.p. ] . (2.3)

In Eq. (2.3) the axes x, y, and z are, respectively, paral-
lel to [001], [010],and [001] as usual. c.p. means circular
permutation.

Let us now consider operators such as p or J.
(j=x,y, z), denoted:- .. Following Refs. 30 and 33 we in-
troduce now the second-rank tensor operator = of com-
ponents "Jk such as

TM =[p(2)e J(2)]~~, m=0, +I,+2, +3,+4,
T+4 =P*2J~2

(2) (2)

2
—1/2[p(2) J(2) +p(2)J(2) ]

—7 1/2[( 3 )1/2p(2)J(2) +2p(2)J(2)+2 +2 0 +1 +1

+ (
3

)
1/2p(2) J(2) ]

T 7
—1/2I 2

—1/2p(2) J(2) +31/2p(2) J(2)
+1. L k2 +1 +1 0

+3 1 /2p (2)J(2) +2
—1/2p(2) J(2)

0 +1 +1 +2&

T (70)
—1/2[p(2) J(2) +4p(2)J(2) +6P(2)J(2)

(2.5a)

(2.5b)

(2.5c)

(2.5d)

(2.5e)

Jk 2( J' k+ k j) ~J'k™ (2.4a) +4p(2) J(2) +p(2) J(2) ] (2.5f)

Now [p,py ] =0 while [J„,Jy ]=iJ, (and circular per-
mutation) so that the corresponding second-rank tensor
operators are

It will be useful to use t0 and t~ defined by

t() =(&70/9)TO, (2.5g)
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tM = ,'(T—M T—
M»—

tM= —,'(TM+T M), M=2, 4 .

(2.5h)

(2.5i)

where y is to be replaced by P.
In the same way HBP[001] may be obtained from Eqs.

(2.7a) and (2.7b) by changing y to P.

All of the tensors (t, and the t~) needed to write the
Hamiltonians as matrices are given in the Appendix.

We now introduce a "spherical" Hamiltonian H„
which does not depend on the axes:

III. LUTTINGER AND BIR-PIKUS HAMILTONIANS
IN [hhk] DIRKCTIQNS

A. [hkl] directions

H, =
—,'yak +y, t, ,

so that the usual Luttinger Hamiltonian is

HL [001]=H, +ys[coto+c4t~ ],
with

In this case,

(2.6)

(2.7a}

(2.7b)

In the general case HL [hkl] reads

HL[hkl]=H, +ys g C~.(hkl)T ~ (3.1)

where T~. are operators quantized along the axis [hjk]
while in Eq. (2.7a) TM is quantized along [001].

The new axes can be de6ned by the Euler angles
(a,P, y} and

(2.8a) TM [001]= g TM.RM.M( —y, —p, —a), (3.2)

R =(V'3/2)( —
y k' +y,k', ),

S =v'3y, k, k

(2.8b)

(2.9a)

(2.9b)

where R~M (a,p, y ) is the matrix representing the
(a,p, y) rotation in the J=4 representation and is given
by

R~M. (a,P, y ) =exp( i aM)rM~—(P)exp( i y M—'), (3.3)
A very useful approximation is the axial approxima-

tion. This approximation can be understood in two ways.
The first ' is to assume ys=0 only in Eq. (2.9a) (which
does not mean that y2=y3 elsewhere), the second is to
make c~ =0 in Eq. (2.7b). These two methods are identi-
cal in [001] directions and amount to neglect of the warp-
ing in the (k„,k«) plane: this is straightforward in the
6rst method; the advantage of the second, however, is
that it is possible to generalize this approximation in oth-
er directions.

C. Bir-pikus Hamiltonian

The usual Bir-Pikus Hamiltonian HBP [001] is

Hsp[001] = —a g E;; bg E,,[J; ——',—J ]

rMM. (P) is a function of g=cosP/2 and i) =sinP/2 given
in Ref. 34. Finally,

TM [001]=
4

T eiyM r4 ('P) eiaM (3 4)
M'= —4

B. [hhk] directions

Equation (2.7a) then allows one to obtain Ht [hkl] as a
function of TM, [hkl].

We note that our formulation is very near but not iden-
tical to the one of Ref. 30 where the authors rotate the
operators while it is more convenient in our case to have
the axes rotated. The framework being given, we now
deal more precisely with the [hhk] directions.

2d
X«

J J+JJ
+c.p. . (2.10)

p&= —2a, /32=b, p3=d/&3, (2.1 1)

Hnp[001]= —,'[/3, + —,'P2] g c.;;
—

P~ g E;g;

P3[e «(J,J«+J J—)+c.p. ] (2.12)

(2.13)HBp [001]= —,'P, g c;;+P,r, +Ps[ ,'ro, +r4], —

The [hhk] directions define a new axis of quantization
(z axis) but the new axes x and y are still to be defined.
An initial idea might be to rotate the axes so that Ox and
Oy are symmetric with respect to the (110) plane: then
Ox and Oy play the same role. This can be performed us-
ing results from Ref. 35 for the [111]direction and is an
appropriate method if there is no strain. However, when
the strain has to be taken into account this leads to
numerous nonzero strain tensor components c,; . In order
to use the fact that the (110) plane is a symmetry plane
when the growth direction is [hhk] it is preferable to put
the x axis in the (110)plane: this maximizes the number
of zeros in the strain tensor s," and in fact, for i', only
the term c.„, can be nonzero. The y axis is then deter-
mined. For the usual Euler angles (a,p, y ) this amounts
to taking

where the only di6'erence between tM and ~M is that k; k
in tM has to be replaced by E;. in r~. p, and ps are simi-
lar to y, and ys and are defined by Eqs. (2.2a) and (2.2c)

a =n./4,
P=arccos[k(k +2h )

' ], y=0 .
(3.5)
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From now on we keep these values for a, P, and y. Us-
ing the definitions of Sec. II and the equations of para-
graph IIIA, a lengthy calculation shows the I.uttinger
Hamiltonian HI [hhk] now reads as

4

HI [hhk]=H, +ys g cMtM (3.6a)

with

co= —,'(I+60/ iI"—20$ g ),
ci =2V14gg(g —g )(1—6g g ),
c2=4v 7g vg(1 —6g q ),
c, =2&2Eg(g' —g )(1+@'q ),
c4=12$ g +4/ rj 1. —

(3.6b)

(3.6c)

(3.6d)

(3.6e)

(3.6f)

The set of Eq. (3.6), which gives explicitly HI, is the
keystone to obtain Hamiltonians for a growth direction
parallel to [hhk]. With the matrices given in the Appen-
dix, this set allows one to obtain any Hamiltonian of in-
terest here by a straightforward calculation. For exam-
ple, Table I gives the coefticient c~ in four directions. In-
cidently we can note that c4, which is equal to —1 in
Table I, is not identical to the coefficient c& (which is
equal to 1) of Eq. (2.7); this results only from the fact that
the new y axis is no longer parallel to [010] and thus the
phase is not the same. The axial approximation here
amounts to make cM =0 for M & 0: only the first term co
is kept.

In the same way the Bir-Pikus Hamiltonian now reads
with the same notation:

IV. MATRIX KI.KMKNTS

We first give the matrix elements of HL [hhk] and then
those of Hiip[hhk]; the potential problem is briefiy con-
sidered at the end of this section. It is understood that
the phases are defined by Eq. (3.5).

In these matrix elements the following linear combina-
tion of Luttinger parameters,

y„=(ny&+pyz)/(n +p), (4.1)

is useful. The Eqs. (2.2b) and (2.2c) are the most impor-
tant particular cases of Eq. (4.1).

A. Matrix elements of HL

[001] direction:

plicable [see Eq. (16) of Ref. 33]. Second, if b, does not
equal zero, it is not possible to write the whole Hamil-
tonian describing I 8+I 7 as a sum of tensor operators
and therefore to obtain a set of equations like Eqs. (3.6)
and (3.7). It is still possible to use the axial approxima-
tion for a growth direction parallel to [001] but not for
other directions: this results mainly from the fact that
the Hamiltonian describing the axial approximation in
[hhk) directions cannot be deduced from the Hamiltoni-
an describing the axial approximation in the [001] direc-
tion by a simple rotation.

We have now the framework to calculate the Hamil-
tonians. In the following we give the matrix elements of
HL [hhk]+Hsp [hhk].

H~p[hhk]= —,'P, g e,, +13,r, +13s g cMrM (3.7)

I'+g =—'(y +2y )k, + '(y +—y )k~~

Z = —(&3/2)yk' —(~3/2)y, k',
(4.2a)

(4.2b)

Of course, the axial approximation has no meaning for
the Bir-Pikus Hamiltonian and we must keep all the
terms.

Finally we can wonder if the above method, summa-
rized in Eqs. (3.6) and (3.7), is applicable when the spin-
orbit splitting 5 is weak (as, for example, in silicon) or in
other words when both bands I 8 and I 7 are to be taken
into account simultaneously. First, if 6 equals zero
(spin-orbit interaction neglected), the above method is ap-

S=&3y,k k, .

[111]direction:

~—+Q =-,'(yi+ 2y3)k.'+-,'(yi —ys)k
~~

R = —(&3/2)y, k —(4/&6)y k k, ,

S =&3y,2k k, +(&2/3)ysk+ .

[110]direction:

(4.2c)

(4.3a)

(4.3b)

(4.3c)

TABLE I. This table gives the coeKcient C~, which allows one to obtain both the Luttinger Hamil-

tonian and the Bir-Pikus Hamiltonian for the given direction of quantization. The Euler angles are
a=m. /4, P, y=0. The axial approximation, valid for the Luttiuger Hamiltoniau, amounts to taking

el =0 for M) 0. The formulation for a general direction [hhk] is given in the text [see Eq. (3.6)].

hk] [001] [110] [112]

Co

Cl

C2

C3

C4

1/5
0
0
0

—1

—2/15
0
0

4/3
0

—1/20
0

—v'7/2
0

3/4

—1/20
v'7/3
+7/6

1
—7/12
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P—Q =
—,'(y1+ 2y31)k.'+ —,'(y 1 —y31)k

II

+ —,'ys(k —k ), (4.4a)

(P+Q)BP p [~l(28II+ &1 ) )+&3EIIJ.

RBp =SHE =0,
(4.9a)

(4.9b)

R = —(v'3/2)y, 3k +(3/3/4)ys[k
II

—2k, +—', k+ ],
(4.4b)

e3 = —2(C»+2C, z
—2C44)/(C»+2C, 3+4C44)EII .

(4.9c)

S =3/3yk k, +3/3ysk+k, .

[112]direction:

(y 1 + 2y31)k + (y 1—y31)k
II

+ys[ 3/2k—„k,+ —,'(k, —k )],
R = —(3/3/2)y, 3k

(4.4c)

(4.5a)

[110]direction:

(P Q)BP= —,'[p, (2sII+El)] p3, IIj,

R BP
= (3/3/2)psEIIj,

S~p =0,
1=(2C44 —C» —3C,~ )/(C»+ C12+2C44)E

I

.

(4.10a)

(4.10b)

(4.10c)

(4.10d)

+y, [(1/V'6)k k, —(V

—(3/3/2)k+ k, —73/3/24k+ ], (4.5b)

S =~3yk k, +y, I
—(1/'/6)[k'II —2k,'+-,'k' ]

—(1/3/3)k+k, +(3/3/8)k+ J .

(4.5c)

In Eqs. (4.2) —(4.5) the axial approximation is obtained
with y&=0. In this approximation k+ =k =k~~.

[112]direction:

(P+Q)BP =
—,
' [Pl(2E II+ Ei) ]

+(A1EIIi —3 2~sE .»
8 BP

= —ps(3/2/3e„, +3/3/6EII3 ),
SBP 3p12ex~ 2 /3 use IIl

Now we need to introduce

D„2=
—,
'

I 13C11C44—7C,2C44 —4(C,2)

(4.11a)

(4.11b)

(4.11c)

B. Matrix elements of Hzp

Exx ~yy ~~~ ~i ~zz E))l ~~( ~l ' (4.6)

Only the
E~~

component is given by the composition.
We deal in this paper with a strained CdTe well and un-
strained CdMn Te barriers so that

We need the E; components for each direction. We
write

+2[(C44) +(C„) +C„C,2]], (4.11d)

so that

= [1—16(C11+2C12)(C11 Clz+ C44)/(3D „z ) ]E

(4.11e)

and

xz=[ ( 11+ 12)( 44»+ 12)/( 112)]
II

(4. 1 1f)

EII= [a(Cd, Mn Te) —a(CdTe)]/a(CdTe) (4.7) C. Potential

(P+Q)BP —
—,[p, (2EII+ e3 )]+p2eIIj,

&Bp =~a~ =0

El ( C12/Cl 1 )eII

[111]direction:

(4.8a)

(4.8b)

(4.8c)

[where a(X) is the cell parameter of the X compound].
The other components c.;. of the strained tensors depend
on the direction and are given below. ' ' However,
with the Euler angles used only c~~, c~, and c„, may be
nonzero. E and e, are always zero. We use Eq. (3.6)
where y and t~ are to be replaced by p and r~. p„P is
the same function of p3 and I32 as y„P is of y3 and y~ [see
Eq. (4.1)].

Furthermore we give the linear relations between c,z
and c. , as a function of c.

I~.
Strain tensor components that

are not given below are zero. C; are elastic stiffness con-
stants.

[001] direction:

The entire Hamiltonian is HI +HBP+ V(z) where
V(z) is the potential due to both the valence band offset
and the piezoelectric potential. V(z), which is a scalar, is
diagonal regardless of basis. In unstrained semiconduc-
tors V(z) describes only the valence band offset. PBP
merely induces a shift from V(z). QBP induces a splitting
so that the well for light holes is not the same as for
heavy holes. Furthermore HBp is in general not diagonal;
strictly speaking, when the strain is not zero and differs
in the well and the barrier, the whole potential, which re-
sults from both the chemical potential and the potential
induced by the strain, is not diagonal. The valence band
edge does not correspond to the same wave function in
the well and in the barrier: it is not possible to define,
even for kI~ =0, a quantum well in which the wave func-
tion of the valence band edge is the same inside and out-
side the quantum well. Of course if we deal with an ener-
gy level, this level is the same throughout the sample and
the wave function is well determined. In this sense the
[112] direction, and not the three other cases studied
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here, is representative of the general case. Finally if there
is no strain either in the well or in the barrier we recover
the simple case.

V. ACCURACY AND VALIDITY QF THE AXIAL
APPRQXIMATIQN

P+Q = ,'(y i-+ 2yz)k' =P~+Q~

R =S=O=R~=S~ .

(5.1a)

(5.1b)

We are now in a position to calculate hole subbands for
a [001] growth axis (the parameters used are given below
in Sec. VI D). We take a CdTe quantum well whose
width is 100 A with a barrier made up with unstrained
Co08Mn„2Te, which induces strain in CdTe. We keep
these values (L =100 A, x=0.2) throughout this paper.
Whatever the direction the well depth is slightly larger
than 100 meV (typically 105 meV). Results are given in
Fig. 1 for [001] growth axes. In the CdTe quantum well
the strain induces a light-hole —heavy-hole splitting
VL

—VH (qualitatively drawn in the inset) equal to 23.9
meV. We have also fitted (parabolic) curves with given
masses. There is no exact definition for this kind of

-20

A. Accuracy for k~~
——0

It is well known that the axial approximation is exact
for k~~=0 in the [001] direction. Let us consider what
happens in other directions. In this section P (P„) is the
matrix element of HI without (with) axial approximation.
The same applies for Q (Qz) and R (R„).

[001]direction:

curve. Our aim was to find a mass that can be used in an
exciton calculation: in such a case the parabolic descrip-
tion is valid uy to about the inverse of the Bohr radius,
namely, 0.02 A ' in CdTe. We obtain m=0.20 and 0.55
for H1 and H2, respectively. As usual H and I. mean the
wave functions are pure

~
—,
'+

—,') and
~

—,
'+

—,') at k~~=0.
The so-called diagonal masses [see Eq. (4.2a)], 1/(y &+y2),
are, respectively, 0.16 and 0.30.

[111]direction:

P+Q =
—,'(y, +2y3)k, =P„+Q~, (5.2a)

P+Q =
—,'(yi+2y3i)k. '=P~+Q~

R = —(&3/2)ysk, ,

Rq =0,
S=O=S~ .

(5.3a)

(5.3b)

(5.3c)

(5.3d)

Figure 3 gives the hole subbands for the [110]growth
axis. As in Fig. 1, there is no piezoelectric field in this

(5.2b)

Figure 2 gives the hole subbands for the [111]growth
axis. There is a strong piezoelectric field and the poten-
tial is no longer "fiat" inside the well. Indeed this
piezoelectric field induces a difFerence of 120 meV be-
tween the two sides of the quantum well; this difFerence is
larger than the well depth. VL

—V~ =32.2 meV. For the
same conditions as in Fig. 1 we obtain masses equal to
0.20 and 0.38 for H1 and H2 subbands. The mass 0.20
for H1 was used in Ref. 24 for a variational exciton calcu-
lation. The diagonal masses [see Eq. (4.3a)], 1/(y, +y3),
are, respectively, 0.15 and 0.34.

[110]direction:
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E
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Z,'

-80

-100
0.00 0.02 0.04 0.06 0.08

WAVE VECTOR (A ")
0.10

-40
E

-60

LLj

-80
FIG. 1. Energy of the valence subbands in the axial approxi-

mation for a Cdo. sMno. 2Te-CdTe-Cdo. sMno. 2Te quantum well
whose growth axis is [001]. The width of the CdTe quantum

0
well is L =100 A. All of the other parameters (Luttinger pa-
rameters, etc.) are given in the text. This quantum well has no
piezoelectric field. Hn and Ln have the usual meaning and cor-
respond, respectively, to pure ~

—+3 ) and g+ —') functions at

k~~
=0. The splitting VI —V~ between the valence band edge of

the light hole and the heavy hole inside the quantum well is 23.9
meV. The masses m =0.20 and 0.55 (in free electron mass units)
are obtained by fitting the H1 and H2 hole subbands up to about

o
0.02 A and can be used as in-plane masses for E1-H1 and E1-
H2 excitons. It is hazardous to try to derive a mass for L1 ~ The
so-called diagonal mass is 0.16 for heavy holes and 0.30 for light
holes.

-100
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WAVE VECTOR (A )
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FIG. 2. Energy of the valence subbands in the axial approxi-
mation for a quantum well whose growth axis is [111].The oth-
er parameters are the same as in Fig. 1. In this quantum well
the piezoelectric field is 1.2 meV/A. Hn, Ln, and VL

—V~ have
the same meaning as in Fig. 1. The splitting VL —V~ is 32.2
meV. There are two subbands for each Hn and Ln because
there is no inversion center due to the piezoelectric field. The
masses m =0.20 and m =0.38 are obtained by fitting the H1 and
H2 hole subbands up to about 0.02 A . The so-called diagonal
mass is 0.15 for heavy holes and 0.34 for light holes.
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FIG. 3. Energy of the valence subbands in the axial approxi-
mation for a quantum well whose growth axis is [110]. The oth-

er parameters are the same as in Fig. 1. This quantum well has

no piezoelectric field. "Hn" and "Ln" indicate that, even at
k i

=0, the functions are not pure
~

—+
2 ) and

~

—'+ —' ): this is

due to the fact that the Bir-Pikus Hamiltonian is not diagonal.

The splitting VL-V~ would be 30.5 meV if the oIt'-diagonal 8
element of the Bir-Pikus Hamiltonian could be neglected. (Here

R = —3.1 meV. ) The masses m=0. 15 and 0.20 are obtained by
o —1

fitting the H1 and H2 hole subbands up to about 0.02 A . The
so-called diagonal mass, which could be defined from Eq. (5.3a),
is 0.15 for "heavy" holes and 0.33 for "light" holes.

FIG. 4. Energy of the valence subbands in the axial approxi-
matiou for a quantum well whose growth axis is [112]. The oth-
er parameters are the same as in Fig. 1. In this quantum well

the piezoelectric field is 0.7 meV/A. "Hn" and "Ln" have the
same meaning as in Fig. 3. There are two subbands for each Hn
and Ln as there is no inversion center due to the piezoelectric
field. The splitting VL-V~ would be 30.5 eV if the off-diagonal
R and S elements of the Bir-Pikus Hamiltonian could be
neglected. (Here 8=1.8 meV and 5 = —2.0 meV. ) The masses
m=0.20 and 0.35 are obtained by fitting the H1 and H2 hole

0
subbands up to about 0.02 A . The so-called diagonal masses,
which could be defined from Eq. (5.4a), are identical to those of
the [110]case given in Fig. 3.

direction. However, contrary to the [001] case the Bir-
Pikus Hamiltonian is not diagonal as Eq. (4.10b) shows:
strictly speaking the notation H and L does not have the
same meaniilg as in the [001] and [111]cases. At ki =0
the wave functions are obtained after a diagonalization;
we call H and L the solutions that are, respectively, rnain-

ly ~
—,'+ —

—,') and g+—'). The splitting VL
—VH has no

strict meaning. However, we may define a splitting
VL

—V~ if we neglect o6'-diagonal elements in Hzp.
VL —V~ =30.5 meV. The Bir-Pikus off-diagonal element
is —3.1 meV. The masses are 0.15 and 0.20 for H1 and
H2 subbands. If we define diagonal masses from Eq.
(4.4a), we obtain 1/(yi+y3, ) for these masses that, nu-

merically, are equal to 0.15 and 0.33.
[112]direction:

H1 and H2 have changed.
We notice that X =X„(X=I', Q, R,S) in [001] direc-

tions as predicted and in [111]directions as it could be
guessed but this is not true for other directions. Thus the
axial approximation is not strictly exact in general for

ki =0. (Numerically the difference is of the order of l%%uo

in CdTe and usual semiconductors where y3/yz —1 (0.5;
for silicon where y3/y2 —1=2, this difference is 10%%uo for
low-symmetry directions. ) It is tempting to add the off-

diagonal terms proportional to y&k, in order to restore
the exactitude. However, it would be inconsistent to
keep these terms and not the others, which may be of the
same order of magnitude for kiddo. Therefore we keep
the axial approximation without alteration throughout
the present paper.

~+I =
—,'(yi+ 2y3i)k,'

Z =(&3/6)y, k,',
S =(2/&6)y, k,',
E~ =S~ =0 .

(5.4a)

(5.4b)

(5.4c)

(5.4d)

B. Axial average and. cyclotron resonance

It is clear that for the axial approximation, dropping
the terms in tM (M&0) which give rise to the warping,
gives an average mass, which we call axial mass, in a
given plane of a bulk semiconductor: this axial mass m~
is simply obtained with k, =0.

In the (001) plane,
Figure 4 gives the hole subbands for a [112] growth

axis. As in the [ill] case there is a piezoelectric field
(which induces a difFerence of 70 meV between the two
sides of the quantum well) and as in the [110] case the
Sir-Pikus Hamiltonian is not diagonal. Thus for "H,"
"L," and "VL"—"V~" we keep the definition given
above. The masses are 0.20 and 0.35 for H1 and H2 sub-
bands. As for the diagonal mass, Eq. (4.5a) leads to the
same definition as for the [110]case and therefore to the
same numerical value while the "parabolic" masses for

1/ma =y, +[[7(y2) +3(y3) +6yzy3]/4]' . (5.5a)

In the (111)plane,

I/m~ =yi+[I(y2)'+7(y3)'+4y2y3)/3]'" .

In the (110)plane or (112) plane,

1/m„=yi+[[31(y~) +111(y3) +114y2y3]/64['

(5.5c)
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=y, + t2[{y,)'+ {y,)']I '"

(y3)' —(y2)'

I 2[(y )2+{y )2}]
1/2 (5.6a)

The sign + ( —) corresponds to a light (heavy) hole.
One could imagine taking this mass m z, which is an

in-plane mass, as the cyclotron mass in a cyclotron exper-
iment. %'e can consider how this mass mz is related to
the mass mcR usually used in cyclotron resonance. mcR
in the general case was considered in Ref. 38. Here we
wish only to relate mz to mcR in the simple case as con-
sidered in Refs. 39—41 where the magnetic field is low
(k, =0) and there is no stress.

39,40To first order the mass m cR can be written as

plane. If k, is not zero there is again a warping. In this
last case, which corresponds to a 2D semiconductor, we
need a coherent approximation if we look for a descrip-
tion that does not depend on the direction of the wave
vector kl in the plane [(111),k, &0]: the axial approxi-
mation fulfills this condition. Incidentally we can note
that the axial mass is exactly the same in the (110) and
(112) planes: the same holds for the cyclotron mass.

In short we see there is a slight di6'erence between the
axial mass and the cyclotron mass, the latter is more ac-
curate than the axial mass for k, =O. However, as soon
as k, &0, only the axial mass corresponds to an average:
it is the only one we can use if we look for an average as
the density of states.

VI. NUMERICAL CALCULATION OF HOLE SUBBANDS

where

E= —
—,
' in (100) plane,

in (111)plane,

in (110) plane .

Now we can write Eq. (5.5) as

»m~ =yi+I2[(y2) +{Y3) ]+sil(y3)
—(y, )']+,(y —y )'[ '

(5.6b)

(5.6c)

(5.6d)

(5.7a)

A. General framework

In Ref. 10 the authors project 8 on a Fourier basis
I f» &. To sum up their method we take the example of
the conduction band in a semiconductor where the only
direction of interest is z and the efFective mass m is not
constant, m =m(z). We write here y=y(z)=1/m(z)
and V= V(z). A matrix element of the Hamiltonian
h =

—,'gyp + Vis written as'

&f; lh If, &
= ,' [&f; ly I

{d'f—, /d—z') &

with

ei= —
—,', E2= —

—,
' in the (001) plane,

E 1
= 1, e2 = ——,'in the ( 111) plane,

Ei= —'„E2=——"in the (110) and (112) planes .

(5.7b)

(5.7c)

(5.7d)

If we put E.2=0, i.e., we neglect the second-order
(y3 —y2) term, and we develop Eq. (5.7a) to first order in

y3
—y2, we find exactly Eq. (5.6a) —{5.6d). This nmans

that Eqs. (5.6) and Eq. (5.7) are identical to first order.
To go beyond the first order, we focus on the (111)

plane, rather than looking at the general case, which is
very tedious. If we take the whole Hamiltonian (with
ys%0) it is straightforward to see that there is no warp-
ing, as pointed out in Ref. 41. This gives an exact mass

I/mill~~ =y i+I {y2) +3{y3) ] (5.8)

which is nothing but the cyclotron mass given in Ref. 39
(where the mass is equal to that of Ref. 40 to first order)
and is not equivalent to the axial mass (the difference is of
the order of percent in the case of CdTe but is more im-
portant, about 10%, in the case of silicon where
y3) 3y2). This shows that we must be careful when deal-
ing with an average mass. In the {111)plane and for
k, =0 we deal with a very special case where there is no
warping so that, strictly speaking, the axial mass is not an
average mass contrary to, for example, the case of the
(100) plane. However, one should not thereby deduce
that the axial approximation is not suitable for the prob-
lem of an average energy in a 2D semiconductor (111)

+&f; I(dy/dz)I(df, /dz) &]

+ &f, I v(.)lf, & . (6.1)

It was shown' that this method takes into account the
usual boundary conditions and furthermore can be used
for the valence band. The matrix elements are analytic.

We use a variant of this method. (i) Using the Hermiti-
city ofp we write the above matrix element as

&sf; Iylpf, &+&f;IV{z)lf,&

This emphasizes the symmetry of h ( h,».
= [h»; ] )

which is not evident in Eq. (6.1) and especially simplifies
the matrix element calculation, in particular when y is
not a constant. (ii) the Fourier basis

I f» & is well suited to
a superlattice. In principle for a single quantum well of
width L it is enough to increase the period of the super-
lattice up to a period much larger than L to get back
the energies of the quantum well. However, in practice
the larger the period, the larger the dimension of the
needed basis to describe the potential V, and thus the
slower the convergence of the energy calculation. Thus
we take a description suited to a single quantum well
where an infinite quantum well of width L is used to de-
scribe the single quantum well. Finally we take
lq&» &

= [v 1/I. ] sin( jmz/L) as the basis. There is a final
problem: which width L is the most suited to a given
quantum well or more precisely which width L gives the
lowest energy? Furthermore, is there a unique width L
that gives the lowest energy whatever the level of in-
terest? To illustrate this we take the "worst" case, name-
ly, the [111]case where the potential is the most asym-
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metric: as stated above, the piezoelectric field results in a
potential that varies from 120 meV, higher than the well
depth due to the valence band o6'set. In Fig. 5 the ener-
gies are calculated at the center of the Brillouin zone for
L varying from L (here 100 A) to 6L„. Figure 5 shows
that each energy E„decreases quickly down to a
minimum Emjn yg

for L =Lmj~ pf
and increases very slowly

after.
We take a basis whose dimension is %=30. With this

basis we obtain E;„~&=33.66 meV for L;„~&=165 A,

L ' H3 225 A. Eventually we take a single value for
L=300 A; with this last value we get, respectively, 33.75,
64.04, 87.59, and 88.55 meV, which are to be compared
to the exact values 33.64, 63.92, 87.41, and 88.43 meV.
Keeping L=300 A we have checked that the accuracy is
the same for k~~~%0 (had we taken %= 100 and L= 500 A
the accuracy would have been better than 0.02 meV for
the four levels whatever k~~). This result, namely, one
width L for all levels regardless of kII, is the crucial point
of the method. This allows the study of any structure.

Finally we consider the limits of this variational calcu-
lation. It is beyond the scope of this paper to discuss in
detail the limits of this method; we give here some brief
indication. If the Luttinger parameters are not the same
inside the well and in the barrier it is enough to increase
the dimension X of the basis Iyj. &. Typically for
GRQ 65A1Q 3/AS GRAS GRQ 65A1Q 35 an accuracy of 0.1 meV
is obtained with %=50. If there is a negative mass, typi-
cally a HgTe well inside CdTe barriers, the basis lyj. &

gives negative eigenvalues (i.e., energies below the bottom
of the quantum well) if L ~L and these eigenvalues in-

crease in magnitude as j becomes larger; this results from
the fact that for L ~ L the boundary conditions are not

B. Broido-Sham transformation

The Broido-Sham transformation (BST), although not
absolutely necessary, is a very convenient means of saving
time in computer calculation (typically a coetlicient of the
order of 4 ). Here the purpose is, first, to show the prac-
tical limits of the BST independently of any considera-
tions about the mathematical validity already discussed
in Re, . 8, 16, and 18 and, second, to extend the applica-
tion of BST to directions other than [001].

In the BST the following unitary matrix is used:

a* 0 0 —a

0 Q Q 0

0 b* b 0
a* 0 0

so that the matrix UHL U+ is

Ia —
& IL. —

& II + & III+ &

(6.3)

0
0

0

0

0
0

0
0 (6.4)

taken into account in Eq. (6.2) and in such a case the
variational principle is not applicable with trigonometric
functions; the results have no meaning. On the contrary,
in direct-gap semiconductors such as CdTe or GaAs the
results do not contain any spurious solutions and are reli-
able.

IH+ & =a —,
' &+a *

I

——,'&,

IL+ & =bi —
—,
' &+b*l-,' &,

where Im & =
I
3m

& and

(6.5a)

(6.5b)

E 4O/
0-
(3

R+-=IRI+il~l, R+-= R I+il& I
. (6.6)

Equation (6.4) is obtained for values of a and b we shall
determine. We write

-80—

.-~H3~
a =(I/&2)expia, b =(I/&2)expiP,

where a and p are to be defined. If we write

(6.7)

-100
100 200 300 400 500

INFINITE QUANTUM WELL WIDTH (A)
600

FKJ. 5. This figure shows the energies at klI =0 of the bound-
ed levels in a Cdo 8Mno 2Te-CdTe-Cdo 8Mno 2Te quantum well
where the growth axis is [111] vs the width L of an infinite
quantum well whose eigenfunctions are the basis for the Hamil-
tonian. The width of the CdTe quantum well is L =100 A.
For L larger than 200 A the energies vary very slowly. This
figure is obtained with a basis of dimension 1V'=30 and taking
L= 300 A: the energies have an accuracy of 0.1 meV, the accu-
racy of all the figures of this paper. Had we taken %=100, the
accuracy would have been 0.01 meV.

R = IRlexpip, S = S expio, (6.8)

a straightforward calculation shows that a and p are
equal to

a=~/4+(o +p)/2, P=rr/4+(cr —p)/2 . (6.9)

k=(k sin8cosp, k sinosiny, k coso), (6.10)

This shows that the BST always works for any direction
[hkl] in a bulk semiconductor, where a and p have a sin-
gle definition. We can take an example with [001] and
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with

tang= —[(y+ys)sin2gr]/[(y —ys)cos2g], (6.12)

which allows one to find

a =3'/4+(f y)/2—,

p= n. /4 (—g+ y)—/2,
(6.13a)

(6.13b)

and completely solves the problem in the [001]case.
Equation (6.9) in the general case and Eqs.

(6.11)—(6.13) in the [001] case show that g depends on the
parameters y2 and y3.. in the usual case where the Lut-
tinger parameters are not the same in the quantum well
and in the barrier, so that a and P depend on the posi-
tion, the functions (6.5) are not defined and the transfor-
mation is not possible. However, in the axial approxima-
tion, where y&=0, P is merely equal to —2y in the [001]
case so that

u =3m/4 —3q&/2, (6.14a)

(6.14b)

The same result holds for other growth directions.
This shows that the BST is always possible in the axial
approximation used throughout this paper as far as the
Luttinger Hamiltonian is concerned. In the general
case (without axial approximation) we have to resort to
Eq. (6.13) and the BST is not usable. However, if we do
not insist on mathematical rigor we can use the BST as in
Ref. 18.

If now we add the Bir-Pikus Hamiltonian to the Lut-
tinger Hamiltonian the problem becomes more complex.
This problem was addressed in Ref. 16 from which it is
easy to deduce that, in addition to the above results, the
BST is feasible if the E; are zero (iWj). As quoted in
Ref. 16 this condition is fulfilled in [001] and [111]direc-
tions. We have seen that this condition holds for the
[110] direction but not for the [112] direction. We can
note that the BST is all the more useful in that it trans-
forms a 4X4 complex matrix into two 2 X2 real matrices.
If the quantum well is symmetric these two matrices have
identical eigenvalues and, as quoted above, the gain in
computer time is of the order of 4 . Even if the quantum
well is not symmetric the gain is of the order of about
thirty. Finally we can note that if we try to use the BST
without taking into account the validity conditions two
cases are possible; in the first we obtain a real 2X2 ma-
trix; in the second (at least one of E,z does not equal zero
for i Wj ) the 2 X 2 matrix has matrix elements that are
(via k, ~—i d/dz) pseudodiff'erential operators and the
problem to solve is much more complicated than the one
we had at the beginning. We can make two remarks:
first, in a bulk unstrained semiconductor one can always

where 0 and y are the usual angles in spherical coordi-
nates when Ox, Oy, Oz are, respectively, parallel to [100],
[010], [001]. It is now straightforward to get

(6.11a)

(6.11b)

use the BST (this is rigorous from a mathematical
viewpoint) and one could think of using it to solve the
problem of acceptors: however, in this case the 2 X 2 ma-
trix also contains pseudodifI'erential operators and the
new problem is again more complicated than the initial
problem; second in a one-dimensional semiconductor
where k, ~ i—d/dx, k ~ i—d/dy (z parallel to the
wire) the 2 X 2 matrix contains once again
pseudodifI'erential operators. Finally we note that the
efficiency of the BST is mainly due to the fact that only
one component of the wave vector k (namely, k, ) is
changed into an operator; if two components are to be
changed the BST is not efficient.

We give now the matrix elements of HL +HBP after
the BST, i.e., in the shape of Eq. (6.4), in the axial ap-
proximation used in this paper but it is straightforward
to get them in the general case. The diagonal elements
being identical to the ones given above, we give only the
ofF'-diagonal elements.

[001] direction:

RA (V3/2)y(kll) +V3y3kll(d/dz)

[111]direction:

& A~ =(&3/2)y21(kl ) +&3y12kll(~/dz)

[110]direction:

yg3(kll )'+(&3/2)psEllgl

+&3yk
ll
(d /dz) .

C. Parameters

As said above we take the following parameters: the
width L of the quantum well is 100 A and the percen-
tage of the manganese in the barrier is 20%.

Now we state the CdTe parameters. The cell param-
eters are a(Cd& Mn Te)=6.487 —0. 148x (A) (after Ref.
46). The band-gap difference between Cd& Mn~ Te
and CdTe is 1592x (meV). The valence band offset
b,E, /KEG is 30%. The elastic stiffness constants are
C» =5.66, C,2 =3.96, C44=2.07 (in 10' Pa). In the Bir-
Pikus Hamiltonian, the hydrostatic deformation potential
is a=1.1 eV and the shear deformation potentials are
b = 1.1 eV and d =3.3 eV.

As for the Luttinger parameters there are strong
discrepancies in the literature. For example,
y2=1.7+0.3 in Ref. 41 and 1.08+0. 15 in Ref. 50. Here
we take the values given in Ref. 51 where a detailed dis-
cussion based on the comparison of results obtained by
cyclotron resonance and in wide quantum well is given; a
consistent set of parameters is p, =4 8 &2= 1 ~ 5 p3 = 1 9.

However, due to the uncertainty of the values of the
Luttinger parameters in CdTe and considering that the
Luttinger parameters of CdMn Te are still less well
known, it seems to us unreasonable to take different pa-
rameters inside and outside the quantum well and thus
we take the Luttinger parameters of CdTe for CdMnTe
also.

Finally we must take into account the piezoelectric
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fie.d 8. In principle it is possible to link 6 and the
piezoelectric coeKcient e&4 by a linear relation via the
C,.-. However, it was shown both experimentally and
theoretically that e &4 is not constant in CdTe even to a
6rst approximation and therefore we have preferred to
simply use the experimental value of 6'. Thus we take
8=0 for the growth axis in the [001] and [110] direc-
tions, 6'= l.2 meV/A in the [111]direction, and 6 =0.7
meV/A in the [112]direction. The accuracy of these pa-
rameters is discussed in Refs. 24 and 25.

VII. CQNCLUSI(ON

We have extended previous calculations of hole sub-
bands in quantum well semiconductors to cover explicitly
all the [hhk] growth directions in strained semiconduc-
tors. Furthermore, the numerical method used here al-
lows one to recover all of the cases of "positive" gap
known by the author. We have given examples in four
characteristic directions. %'e have shown the possibilities
and the limits of the Broido-Sham transformation. We
have discussed in detail the validity of the axial approxi-
mation and its connection to the cyclotron mass. Finally
we have given the tensors that allow one to get both the
Luttinger and Bir-Pikus Hamiltonians and to extract
their axial parts if needed.

Q=2y, R = —2&3k, S=&3k k, .

For to.

Q = —3y, R =
—,'&3k, S =4@'3k k, .

For t1,.

Q = —(6/&14)k k„R =(&3/14)k k, ,

S = —(&3/14)(y+k /2) .

For t2.

Q =[3/(2&7)](k —k ),
R = —[&3/(2&7)]y, S = —2[&3/7]k+ k, .

For t3.

Q =0, R = —(&3/2)k+k, ,

S =-,'(~3/2)k', .

For t4.

Q=O, R =(&3/2)k', , S=O.
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w~ tensors

To get ~~ it is enough to replace k;k in tM by c,;.. We
give the ~~ for convenience.

We recall that E~~~= c.
~~

—c~, c~ —e„.

For ~, :

Q=s~~i, R =0, S=&3E, .

For ~o:

Q ——6c,~(i, R —0, S —4&3E„, .

APPENDIX

This appendix gives the tensors tM and ~~ used to de-
scribe, respectively, the Luttinger Hamiltonian and the
Bir-Pikus Hamiltonian. All these tensors have the shape
given by Eq. (2.1). They have vanishing trace: P=O.
Thus it is sufficient to know three terms, Q, R, and S, in
order to know a tensor.

i~ tensors

We write y —
kll

—2

For t, :

Q = —3(&2/7)E„„R =(&3/14)E„, ,

S = —(+6/7)E

For ~2.

Q —0, R ——(&3/7) ~~i,
S = —2(&3/7)e„, .

For ~3:

Q =0, R = —(&3/2)E „S=0 .

For w4.

Q=R =S=O.
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