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Hot-electron magnetophonon resonance of quantum wells in tilted magnetic fields
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The nonlinear dc magnetoconductivity of a parabolic quantum well under high tilted magnetic fields is
evaluated analytically for the optical-phonon scattering, by using the formalism of the nonlinear-
response theory developed previously. The results show two characteristic oscillating behaviors, as a
function of the magnetic field, with electric-field-induced resonances occurring in the hot-electron re-
gime when P~+ =coL and Pco =coL, where co~ and coL are two hybrid eigenfrequencies of the system
under the tilted magnetic field and the effective phonon frequencies, respectively, and P is an integer.
The resonance peaks appear as either maxima or minima depending on the confinement frequency, the
magnetic-field angle, and the electric field.

I. INTRODUCTION

In recent years, there has been considerable interest in
understanding the hot-electron magnetophonon reso-
nance (MPR) effects in two-dimensional (2D) or quasi-
two-dimensional (Q2D) systems, since it provides useful
information on the relaxative transport properties of
semiconductors, such as the carrier relaxation mecha-
nism, damping of the oscillations due to the electron-
phonon interaction, the intracollisional field effect'
(ICFE), the phonon frequencies, and the band structure
(e.g. , the effective mass m*). Thus many studies have
been made of the nonlinear transport properties of these
systems, associated with the hot-electron (nonlinear)
MPR effects. Warmenbol, Peeters, and Devreese studied
ordinary and hot-electron MPR in the 2D system
(formed in a single heterojunction) theoretically in the
framework of the momentum-balance equation. Mori
et al. also studied the same system using the Kubo for-
mula and the Fang-Howard trial function. For the hot-
electron MPR behavior in Q2D quantum-well (superlat-
tice) structures with an infinite square-well potential,
Vasilopoulos, Charbonneau, and Van Vliet analyzed
hot-electron MPR effects for impurity, and longitudinal
optical-phonon scatterings on the basis of the theory
developed by Barker, ' Budd, and Calecki, Palmer, and
Chomette. Recently, Suzuki presented a theory of hot-
electron MPR for the same model as treated by Vasilo-
poulos, Charbonneau, and Van Vliet, by utilizing the
electric-field-dependent conductivity formula defined in
the Ohmic form of nonlinear electric current and the
resolvent superoperator method. However, their
analysis has mainly focused on the case where the mag-
netic field is applied in the direction normal to the inter-
face layer of the systems. We see that, in this case, one
kind of Landau-level index is formed and the MPR effect

arises from the resonant scattering of electrons in Landau
levels by phonons. If the magnetic field is tilted with
respect to the normal, it serves to add an extra confining
potential to the initial confinement, gives rise to two
different kinds of Landau-level indices, and causes a
dramatic change in the energy spectrum, leading to so-
called hybrid magnetoelectric quantization. ' '" As a re-
sult, one may expect different behaviors of the nonlinear
dc magnetoconductivity of electrons in such systems.
Thus we are motivated to analyze hot-electron MPR
effects of a Q2D quantum well in tilted magnetic fields.

In this paper, we present a theory of hot-electron MPR
of a Q2D quantum well with parabolic potential well in
tilted magnetic fields, by using the field-dependent con-
ductivity formula' defined in the Ohmic form of the non-
linear current density. Here we consider a simple model
for a Q2D electron gas confined in the quantum-well
structures subject to the electric field E( ~~x ) and the mag-
netic field B=(8„,0,8, ). For the sake of simplicity, we
assume that interaction with optical phonons is the dom-
inant scattering mechanism, in which only bulk modes
are treated. Based on this model, we will evaluate the
nonlinear dc magnetoconductivity and the field-
dependent relaxation rate which are closely related to the
hot-electron MPR effects.

The present paper is organized as follows: In Sec. II,
we will describe a simple model for the system. In Sec.
III, we present the nonlinear dc magnetoconductivity
o (E) formula related to the field-dependent relaxation
rate due to the collision process. In Sec. IV, the relaxa-
tion rate for bulk optical-phonon scattering in the Q2D
quantum-well structure is calculated on the basis of the
nonlinear response theory' obtained previously. The
hot-electron MPR effect is also discussed for such a sys-
tem, where special attention is given to the unusual
behavior of the hot-electron MPR line shape, such as
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conversion of hot-electron MPR maxima into minima or
splitting of the MPR peaks, and shift of the MPR peaks.
Concluding remarks are given in Sec. V.

E„i(k )=(n +1/2)A'~++(1+1/2)iris')

eExg +—m Ud (2.6)

II. MGDKL FGR A QUANTUM WELL
UNDER HIGH KI.KCTRIC FIKI.D

h,E=[p+e A] /2m'+m'Q z /2+eEx, (2.1)

where p and m, respectively, are the momentum opera-
tor and the effective mass of a conduction electron. By
taking into account the Landau gauge
A=(0,xB,—z8„,0) and a trial shift of the origin of
coordinates, the Hamiltonian can be written as

2 2
Pz

m m

—eEx&+ —,'m *Vd, , (2.2)

where co =eB /m'=co, cos8, co, =eB, /m *=co,sin8,
co, =co„+Q, and ud, =co,E(B,Q) '. The eigenstates
are of the form exp(ik y )X(x —x&,z —z& ),
where x&= —erik (m*co, )

' coieE(m*co,—Q ) ', zk=
co eE(m *co,—Q ) ', X(x,z) is the wave function for the

x —and z —directions, and k is the wave vector in the y
direction. We can see that Eq. (2.2) represents two cou-
pled harmonic oscillators; hence Eq. (2.2) can easily be di-
agonalized by an appropriate rotation of coordinates x
and z as by Ihm et al. ' and Ryu, Hu, and O' Connell:"

1
Q)+ ) CO

Ct)+z
(2.3)

Here cog ~ =mg —co~, cog) =cog —coI, and cog, =cog —e)„2 = 2 2 2 = 2 2 2 = 2 2

where 2co+=co, +Q +[(co,—Q ) +4Q co,cos 8]'~ . The
angle of rotation a is related to the above in that
sin2a =2' co, co +. Then the resulting Hamiltonian and
the corresponding normalized eigenfunctions and eigen-
values, respectively, are given as

We consider a simple model for the quantum well, in
which a one-dimensional electron gas is confined in a het-
erostructure by a narrow or split gate, and electron
motions are free along two directions. We assume that a
heterointerface is normal to the z axis, and that the
confinement in the z direction is characterized by a para-
bolic potential of frequency 0 as by Balev and Vasilo-
poulos. ' A static magnetic field B[=(8„0,8, )], and a
dc electric field E(~~x), respectively, are applied in the
transverse tilt direction to the barriers of the potential
well (such as realized in the heterointerface) and along
the lateral direction of their walls. Then the one-particle
Hamiltonian (h,z ) is given as

with X& =(co, /co+ co+, )xk+ (co+, /co+ )zk and

Zk = —(co+, /co+ co, )xk —(co, /o)+ )zk, where

n ( =0, 1,2, . . . ) and 1( =0, 1,2, . . . ), respectively, are the
Landau-level indices due to the tilted magnetic field, and
@„(X) and N&(Z) represent harmonic-oscillator wave
functions. The first and second terms in Eq. (2.6) are the
quantized kinetic energy in the presence of a tilted mag-
netic field, whereas the third and fourth terms in Eq.
(2.6), respectively, are the potential and kinetic energy
occurring from the electronic motion in the presence
of an electric field. In the absence of the field, these
terms become zero. Therefore, the effect of including
the electric field in the electron Hamiltonian (2.1) is
to remove the k degeneracy of the energy spectrum and
to shift the center positions by co,eE(m'co, Q )

' and
co eE(m *co,Q )

' in the x and z directions, respectively.
As shown in Eqs. (2.5) and (2.6), the electron energy spec-
trum in the Q2D quantum well is hybrid quantized by the
confinements in the z directions and the tilted magnetic
field, and the set of quantum numbers is designated by
(n, 1,k ). The dimensions of the sample are assumed to be
V=L L L, . In the following, we will utilize Eqs. (2.5)
and (2.6) to obtain the transverse magnetoconductivity
analtyically. It is interesting to note that the dependence
of the single-electron energy spectrum in Eq. (2.6) on the
confinement frequency, the electric field, and the
magnetic-field angle has an important effect on the non-
linear dc magnetoconductivity and the field-dependent
relaxation rates, as well as on the hot-electron MPR
effects for a Q2D quantum well. A detailed discussion of
these effects will be given explicitly in Secs. III and IV.

III. FIKI.D-DEPENDENT MAGNETQCONDUCTIVITY

We want to evaluate the nonlinear dc magnetoconduc-
tivity o„„(E)for the quasi-two-dimensional electron-gas
(Q2DEG) system, subject to the electric field E(~~x ) and
magnetic field B[ =(8,0,8, ) ], by taking into account
the general expression for the nonlinear dc conductivity
cr, 1(E)(i,j=x,y, z) given in Eq. (4.38) of Ref. 12 and con-
sidering the following matrix elements in representation
(2.5):

2 2 2e 6)+lg+
[n5. .—i+(n+1I. .+i]5a 5k, k,

2 2 2 j2e co Q)+
2 [15!'l—i+(1+1)5I'/+1]5nn 5k, k, ~'

26)
2 2

+ Jm4~2 ~2+ + $m4 2 Z2Px Pz
E

2 2 +

eExg+ 2m Ugz

X@&(Z—Zk)exp(ik y),

(2.4)

(2.5)

(3.1)

where j„= (e/ m)p
—= —(e/m*)[(co+, /co+ )Px

+(o~, /co+ )I'z] is the x component of a single-electron
current operator, l~+ =(co+, /co+ )le+, l~+ = (A'/
m'co+)', l~ =(co, /o~+ )l~, lii =(iii/m*co )'~,
and the Kronecker symbols (5„„~„5,,~„5„„,5....5„,„)
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denote the selection rules which arise during the integra-
tion of the matrix elements for each direction. It should
be noted that the matrix element of the current operator
in Eq. (3.1) is directly proportional to the nonlinear dc
magnetoconductivity, which contains two types of contri-
bution as follows: one corresponding to the first term of
the right-hand side in Eq. (3.1) is related to the current
carried by the electron hopping motion between the lo-
calized cyclotron orbits, i.e, n and n+1; and the other
corresponding to the second term is caused by the
current carried by electron hopping motion between the

localized cyclotron orbitals, i.e., l and l 6 l.
For the calculation of the nonlinear dc magnetocon-

ductivity c» „(E) for the Q2D quantum well, we apply
the general expression for the electric-field-dependent dc
conductivity c»;J(E)(i,j = xy, z) given in Eq. (4.38) of
Ref. 12 to the quantum well modeled in Sec. II, by using
the selection rules of Eq. (3.1) and replacing the A, , and A,i
states with the representation (2.5). Then cr „(E)can be
obtained easily by the sum of the two hopping parts:
c»„""(E),due to the Landau-level index n; and c»'" (E), due
to the Landau-level index /. These are

e2~
o„"„"(E)= g (n+1)[f(E„~(k )) f(E„+,—i(k ))]I (n+ 1,l, k;n, l, k )

Vfi co+ „(k
(3.2)

m e co lg+ exp(P, EF ) 1'(n+ 1,l, k;n, l, k ),
2rcfi'co+L, sinh(p, iiico+/2)sinh(p, fico /2)

(3.3)

8 Q)

cr„„(E)= g ((+1)[f(E„&(k )) f(E„~+,(—k ))]I (n, i+1,k;n, l, k )
v

(3.4)

iri e cozco i' exp(P, E~ )
I'(n, l+ l, k;n, l, k ),

sinh(P, fico+ /2 )sinh(P, fico /2)
(3.5)

where f(E„i(k )) is the Fermi-Dirac distribution func-
tion with E„&(k» ) =(n+ 1/2)fico++(l +1/2)fico, and
the quantities I, which appear in terms of the collision
broadening due to the electron-phonon interaction, play
the role of the width in the spectral line shape. %'e as-
sumed that I'(&ficop[=E„+(iki) E„i(k»),
E„i+i(k» ) E„i(k» )], and tha—t the shift becomes zero, to
observe the oscillatory behavior of the hot-electron MPR
as some other authors did. ' To obtain the nonlinear dc
magnetoconductivity of Eqs. (3.3) and (3.5), we assumed
that the f's in Eqs. (3.2) and (3.4) are replaced by the
Boltzmann distribution function for nondegenerate semi-
conductors, i.e, f(Et ( k ) )=exp [P,(E+—E„&( k ) ) ],
where P, ='1/kii'r„with kii being Boltzmann's constant,
T, the hot-electron temperature, and EF the Fermi ener-

gy. We further performed the sum over n (if n is large)
by writing gn exp( an)= (—d/da)g—exp( an), sum--

ming the geometric series, and carrying out the one sum-
mation with respect to k in g„ i k in terms of the fol-

lowing relation:

g( ) -~(L» /2ir)
m m L„/2R —eEcol/Rco 0
—m co L /2' —eEco&/fico Q

since the upper and the lower limits are obtained from
the fact that the electrons should be within the crystal di-
rnensions in the x direction, i.e., L„/2 &&xL„/2. —It
should be noted that I (n + 1,l, k»;n, l, k» ) [or
I (n, l+ 1,k;n, l, k„)] is referred to as the field-dependent

relaxation rate associated with the states n + 1 (or l + 1)
and n (or l) since the field-dependent relaxation (or col-
lision) time r(E) can be estimated from r(E) =fi/1, and
also that it depends on the confinement frequency, the
electric field, and the magnetic-field angle since these pa-
rameters are included in the eigenstate energy E„i(k»).
In particular, the dependence of I on the applied electric
field leads to the field-induced electronic relaxation pro-
cess known as ICFE, i.e., the accelerating e8'ect of the
electric field. ' ' As seen from Eqs. (3.3) and (3.5), the
nonlinear dc magnetoconductivity cr „(E)is closely relat-
ed to the field-dependent relaxation rate I. Thus the
electronic transport properties (e.g., electronic relaxation
processes, ICFE, ordinary and hot-electron magnetopho-
non resonances, etc.) in the Q2D quantum-well structures
can be studied by examining the behavior of I as a func-
tion of relevant physical parameters introduced in the
theory. The general form of the field-dependent relaxa-
tion rate I is given in Ref. 12, which was obtained for
both the weak- and strong-coupling cases with respect to
the electron-background (phonon and/or impurity) in-
teraction. In this paper, we will use the general form of
the weak-coupling case since that for the strong-coupling
case is so complicated that we cannot evaluate the field-
dependent relaxation rate analytically. However, the 5-
function singularities in I, appearing when the general
relaxation rate I for the weak-coupling case is taken into
account, can be removed by introducing an appropriate
parameter, as will be clarified later. The detailed descrip-
tion wi11 be given in Sec. IV.
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IV. ELECTRIC-FIELD-INDUCED
MAGNETOPHONON RESONANCES

IN TILTED MAGNETIC FIELDS

I(k», l, nIexp( iq r)In', l', k')I
=

I J„„,(u, ) I'I~„,(u, ) I'S„.,. . (4.1)/l 2 k, k +q

For the calculation of the field-dependent relaxation
rates I in Eqs. (3.3) and (3.5), we choose the interaction
potential C(q) introduced by Frohlich: ' IC(q)I
=Df (q)/V, with f (q) =1/q for polar-LO-phonon
scattering and f (q) =1 for nonpolar-LO-phonon scatter-
ing, where D and a are the constant of the polar interac-
tion and the dimensionless polaron coupling constant, re-
spectively, where we assume that the phonons are disper-
sionless (i.e,. fico&=fico& =const, where co& is the optical-
phonon frequency) and bulk (i.e., three-dimensional). In
other words, we have neglected any changes in the
electron-phonon interaction brought about by the Q2D
confinement of the electrons and the surface roughness
efFect. Furthermore, we need the following matrix ele-
ments in the representation (2.5):

IJ„„.(u, )I = e 'u, "[L„"(u,)]
Pl '

(4.2)

where n„=min [n, n'j, n =max[n, n'], u, =Q+ (q,
+biq»)/2, bi=co+co, /co+ice» u2=l~ (q, +bzq»)/2,
and bi=co co+, /ei, co„, and where L„(u ) is the associat-
ed Laguerre polynomial. ' The detailed derivation of the
relaxation rate and its general expression in the lowest-
order approximation for the weak-coupling case of an
electron-phonon system can be seen in Eq. (4.39) of Ref.
12. Transforming the sum over q in Eq. (4.39) of Ref. 12
into an integral form in the usual way, and considering
Eq. (3.6) and the interaction potential for optical-phonon
scattering, the Q2D version of this quantity associated
with the electronic transition between the states In, l, k» )
and In „l„k, ) can be evaluated as

I'(n i, l i, k, ;n, l, k )

m*co, AD f" f" f" dq„dq dq, f(q)

( ', &')&( $, &$ )

)I'I&, ( )I'

X(XO+ ,'+ ,' )5—[(n—n')fico++(l——l')A'co T S(q )+Mi ]

+ X
(n', h )W(n, t)

X(XO+ —,'+ —,
' )5[(n' n, )fico++—(I' —l, )fg~ +S(q )+g~ ]

.
(4.3)

where 3 =L L, S(q ) =fiEq»/B„n' and l' indicate the
intermediate localized Landau level indices, and Xo is
the optical-phonon distribution function given by
N =[exp(Pfico ) —1] ' with co =co&. Here P=1/k&T,
T being the (lattice) temperature. It should be noted that
the Landau-level indices n i and li given in Eq. (4.3), re-
spectively, are replaced by n+1, l and n, 1+1 in Eqs.
(3.3) and (3.5). The energy-conserving 5 functions in Eq.
(4.3) imply that when the electron undergoes a collision
by absorbing energy from the field, its energy can only
change by an amount equal to the energy of a phonon in-
volved in the transitions. This in fact leads to electric-
field-induced magnetophonon resonance (EFIMPR)
efFects due to the Landau levels. The remarkable thing
is that two kinds of EFIMPR efFect arise from two
different Landau-level indices n and /. We can see these
efFects from the conditions (n', I')A(n, l) and
(n', l')%(ni, l, ) in the summations of Eq. (4.3), which
give rise to two cases: (1) g„.&„gi.and g„,&„g&, lead-

1

ing to the EFIMPR effect due to the Landau level n,
whereby fico+» I is satisfied; and (2) g„.gi.&i and

1

g„.gi +i, leading to the EFIMPR eS'ect due to the Lan-
dau level l, whereby ~ &&I is satisfied since the
EFIMPR in the Q2D quantum-well structure is due
essentially to the electric-field-induced inter-Landau-level
(inelastic resonant phonon) scattering.

First let us now calculate the field-dependent relaxation
rate I associated with the EFIMPR effect due to the
Landau-level index n. As shown in Eq. (4.3), the field-
dependent relaxation rate I involves integrations with
respect to q, q, and q, in Cartesian coordinates. The in-
tegral over q, q, and q, is very difticult to evaluate
analytically since it must be done separately for each n
and n' So, to simp. lify the calculations, we replace S(q» )

in the argument of the 5 function by the potential-energy
difference eEAX across the spatial extent hx of a Landau
state as some authors did. ' To obtain the field-
dependent relaxation rate given in a simple form, we fur-
ther assume ' that n and n' are very large. We can then
make an approximation that n '+1 = n '. Setting
n' —n= —P in the emission term and n' —n=P in the
absorption term, and noting that
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f" f" f" dq. dq, dq. f(q}IJ.&p„(ai)l'l~ii(a2)l':F—».(P) (P=1,2, 3, . . . ),
we obtain, for the electron hopping motion due to the
Landau-level index n,

I (n +1 I ky'n I ky)
T

=A,g, (2N, + 1 )F»(P)5[P col—/ co, ]+ g g (N. +-,' ,')F—»(P}5[ (c—ol. + — —+]
P I'=1 I'%1

(4.4)

=Ai(2NO+ 1 }Re F»
E f +'ACOI

%CO+

y Col

%CO+
+Ai g (No+ —,'+ —,')Re F»

I'A I

i y +Pi(col +&leo )

%CO+

x%
i6CO+

co~+AI co
(4.5)

where A, =m'co, AD/((2~)3A co+), bi=i' —l, col =col +eEhx =coL +eEQA/m'coI, and Re[ ] means "the real
part of." To obtain Eq. (4.5), we have replaced the 5 functions in Eq. (4.4) by Lorentzians with a width parameter y, '

applied Poisson's summation formula' for gz in Eq. (4.4), and taken into account the property '

4'(a, b)=1+2 g e "cos(2msb)= sinh(2ma ) (a &0) .
cosh(2n. a )

—cos(2m.b)
(4.6)

We see from Eq. (4.4} that the nonlinear dc magnetoconductivity (3.3) associated with the field-dependent relaxation
rates shows the resonant behaviors EFIMPR at Pco+ =col, and col +hlco (P is an integer) for I'(n + l, l, k;n, l, k ). It
is very interesting to point out that additional EFIMPR peaks (subsidiary peaks) appear whenever the nonresonant
Landau-level transition (l —+l') can take place for the relevant separation between the Landau levels. Similarly, the
field-dependent relaxation rate associated with the EFIMPR effect due to the electron-hopping motion for the Landau-
level index l is given by

I (n+1, l, k;n, l, k )

=Azg (2ND+1)F„„(P)5[P coc /co ]+—g (No+ —,'+ —,')F„„.(P)5[P (coL+—unco+)/co ] . ,
n'Wn

(4.7)

=A2(2NO+ 1)Re F„„
I,X'+&~I

%CO

COL

CO

where

+Az g (No+ —,'+—,')Re ~F„„.
n'Wn

i y'+R(col +hn co+ )

Ao)

coL +An co+

%CO CO

(4.8)

f" f" f" dq. dq, dq. f(q)l J..(ai)l'l~i+pi(ic2)l'=F. .(P}

with P=l' —l, A2=m'co, AD/((2m) i' co ), and hn
=n' n. We assume—d that y;=y (i =1, 2, and 3) for
the collision-damping terms in Eq. (4.5) and y; =y' (i =4,
5, and 6} for that in Eq. (4.8}. In this case, the nonlinear
dc magnetoconductivity, Eq. (3.3), associated with the
field-dependent relaxation rates shows the resonant
behaviors EFIMPR at Pco =col, col +unco+ (P is an in-
teger) for I (n+l, l, k~;n, l, k~). If the weak-field limit
(E~O) is taken in Eqs. (4.4), (4.5), (4.7), and (4.8) (i.e.,
coL, =coI ), these equations give the resonant magnetic
fields for the ordinary MPR effect. Equations (4.5) and
(4.8) give the general description of the EFIMPR oscilla-
tions due to the Landau-level indices n and l in the Q2D
quantum-well structure. For the EFIMPR effect due to
the Landau-level index n, the first and second terms of
Eq. (4.5), respectively, show that the period of the oscilla-

tion is given under the condition of P =col /co+ and ex-
hibits additional complexity of oscillations with the subsi-
diary (EFIMPR) peaks appearing in terms of
Pco+ =coz+hlco . The field-dependent relaxation rates
of Eq. (4.8) associated with the EFIMPR effect due to the
Landau-level index I have another oscillatory period
P =col /co and the subsidiary (EFIMPR) peaks appear
at Pco =coI*+hnco+. The peak positions of these oscilla-
tions also depend on the confinement frequency, the
magnetic-field angle, and the electric field, as well as the
relevant energy separation between the Landau-level in-
dices. It should be noted that the field-dependent relaxa-
tion rate Nn, i+1,k„;n, l, k ) gives the same results [Eqs.
(4.5) and (4.8)] if the intermediate Landau-level indices n'
and I' are large enough.

To visualize the series of resonance positions, in Figs.
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FIG. 1. Energy diagram for Q, =O. 1', . The magnetic-field
angle is indicated for the long-dashed and solid lines, which are
for Ace and Ace+, respectively. The dash-double-dotted, dash-
dotted, dotted, and medium dashed lines are for ficuL depending
on the strength of the electric field.

FIG. 3. Energy diagram for Q =m, . The magnetic-field angle
is indicated for the long-dashed and solid lines, which are for
Ace and Ace+, respectively. The dash-double-dotted, dash-
dotted, dotted, and medium dashed lines are for %co& depending
on the strength of the electric field.

1, 2, 3, and 4 we plotted the energies of the initial and
final states given by PAm+=fim&, where, for simplicity,
we will consider the case of I' =1. It is shown that the
crossing points give the resonance fields, which depend
on the confinement frequency, the magnetic-field angle,
and the electric 6eld. For the numerical results presented
in this paper, material constants are taken for GaAs, i.e.,

m */m, =0.067 and A'co~ =36.6 nieV. As shown in Figs.
1 and 4, the resonance peak positions at A~+ =ficoL for
weak (0=0. leo, and below) and strong (Q=5co, and
above) confinement frequencies are nearly unafFected by
the magnetic-Geld angle, whereas those at A~ =AcuL de-
pend on the magnetic-field angle. These peak positions
are shifted to the higher-magnetic-Geld side from the or-
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FIG. 2. Energy diagram for 0=0.Su, . The magnetic-field
angle is indicated for the long-dashed and solid lines, which are
for %co and A~+, respectively. The dash-double-dotted, dash-
dotted, dotted, and medium dashed lines are for ficoI depending
on the strength of the electric field.

FIG. 4. Energy diagram for A=See, . The magnetic-field an-

gle is indicated for the long-dashed and solid lines, which are
for A~ and Ace+, respectively. The dash-double-dotted, dash-

dotted, dotted, and medium dashed lines are for %col* depending
on the strength of the electric field.
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dinary MPR peaks at co+=~L as the strength of electric
fields increases. For strong confinement frequency
Q ~co, the resonance peaks associated with %co can ap-
pear in the case of I' =1 or above, while for weak
confinement frequency these peaks can occur at higher
values than P =1. Unlike the case of Figs. 1 and 4, the
peak positions at %co+ =%col in Figs. 2 and 3 depend on
the magnetic-field angle. Unfortunately, we are not
aware of any relevant experimental and theoretical work
to compare our theory with. Therefore, to test the validi-
ty of this prediction, additional experiments and theories
are needed.

V. CONCLUDING REMARKS

So far, we have presented a theory of hot-electron
MPR and investigated the physical characteristics of the
EFIMPR effect in the Q2D quantum-well structure,
where a Q2DEG confined by the parabolic potential well
in the z direction is subjected to electric (E~~x ) and mag-
netic fields B=(8,0,8, ). The origin of this formalism'
dates back to the discovery of the theory of nonlinear
static conductivity. On the basis of this formalism, the
field-dependent relaxation rate for the weak-coupling case
has been utilized with respect to the electron —LO-
phonon interaction, and its behavior (relaxative transport
process) has been discussed in connection with the
EFIMPR efFect.

It is shown from Eqs. (3.4) and (3.5) that the nonlinear
dc magnetoconductivity o. appears in the form of two
types of contributions associated with the selection rulers
of the current-density operator. The nonlinear dc magne-
toconductivities o.„"" and o'"„, respectively, are directly
proportional to the field-dependent relaxation rates
I (n + 1,1 k;n, l k ) and I (n, l +1,k;n, l k ) for the
electron-hopping motion due to the Landau-level indices
n and I. It should be noted that the field-dependent relax-
ation rates for the electron-hopping motion are closely re-
lated to the directionality of the magnetic field, since one
of the two relaxation rates for the electron-hopping
motion disappears if the magnetic field is applied in a
specific (x or z) direction. For the EFIMPR effect due to
the Landau-level index n, the field-dependent relaxation
rates have oscillatory period P =col /co+, and subsidiary
EFIMPR peaks, which exhibit additional complexity of
oscillations, appearing at I'co+ =coL+Alm . On the oth-
er hand, the field-dependent relaxation rates associated

with the EFIMPR efFect due to the Landau-level index I
have another oscillatory period P =coL /co and subsidi-
ary EFIMPR peaks appearing at I'co =~1 +An ~+,
where I' is an integer. Note that if the magnetic field is
applied in a specific direction (8=0 or 90'), one of the
two difFerent EFIMPR peaks disappears, since, in this
case, the eigenvalues in Eq. (2.6) contain the Landau-level
index n or l alone. As seen from Figs. 1, 2, 3, and 4, the
EFIMPR peak positions are closely related to the
confinement frequency, the magnetic-field angle, and the
strength of the electric field. The resonance peak posi-
tions at fico+ =ficoL for weak (f1=0.leo, below) and
strong (0= 5co, above) confinement frequencies are near-
ly unafFected by the magnetic-field angle, whereas those
at A'cu =AcoL depend on the magnetic-field angle. These
peak positions are shifted to the higher-magnetic-
field side from the ordinary MPR peaks at ~+=coL as
the strength of electric fields increases. For strong
confinement frequency 0 ~co, the resonance peaks asso-
ciated with A'aa can appear in the case of I' = 1 or above,
while for weak confinement frequency these peaks can
occur at higher values than I' =1. It is also shown from
Figs. 2 and 3 that the peak positions at Aco+=Acol de-
pend on the magnetic-field angle. It is noted that our re-
sults for the field-dependent relaxation rate and the non-
linear dc magnetoconductivity are based on an approxi-
mation in which the S(q ) terms of Eq. (4.3) have been
replaced by the potential-energy difFerence eEhx
=eEQA/tn coL as in Ref. 5, and that we have not taken
into account any modification of the electron-phonon in-
teraction brought about by the confinement of phonons
(we used the interaction for bulk phonons). Furthermore,
any analytical expression for the integration over q of
Eqs. (4.5) and (4.8) has not been made for F&&.(P) and
F„„.(P) since we are interested in the resonant behaviors
alone. In conclusion, we can expect that our results can
help understand qualitatively the physical characteristics
on the EFIMPR effect of the Q2D quantum-well struc-
ture in tilted magnetic fields.
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