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The size dependence of various aspects of quantum-confinement effects in Ing 53Gag 47As/InP quantum
wires was quantitatively examined through photoluminescence experiments with and without magnetic
field, along with theoretical calculation. The wires were fabricated by combining electron-beam lithog-
raphy and reverse-mesa wet etching, thus enabling us to easily control the lateral size independently of
the vertical size. Photoluminescence experiments showed distinct peak shifts with changes in the lateral
size and showed a shoulder structure that is attributed to laterally quantized second subbands. The ener-
gy shift of both levels is explained by a detailed theoretical calculation that incorporates conduction-
band nonparabolicity, valence-band coupling, and excitonic correction. The lateral quantum
confinement is also demonstrated by the magnetic-field effect on the luminescence spectrum, in which we
can distinguish the lateral quantum effects from other factors. As magnetic-field strength increases, a
transition from quantum-confined subbands to Landau subbands was clearly observed for first and
second subbands. At high excitation levels, the quenching of higher Landau levels was observed. In-
plane and perpendicular-to-plane anisotropy of polarization in luminescence was also investigated and
the size dependence of this anisotropy in both directions is largely explained by the calculated lateral
confinement effect of the optical-transition matrix elements. The phenomenon observed for narrower
wires, however, cannot be explained by our theory and is thought to be due to wave-function localiza-
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tion.

I. INTRODUCTION

Two-dimensional quantum-confined structures, called
quantum-well wires (QWW?’s), are innovative materials
potentially applicable in optical devices such as laser
diodes. > Although lateral patterning in the required
sizes (typically 10—15 nm) has been difficult by using
electron-beam (EB) lithography or thin-film growth tech-
niques, progress in lithographic technology and the com-
bination of several other techniques are making it possi-
ble to fabricate QWW’s that exhibit some quantum-
confinement effects in various ways: etching and re-
growth,?>™° selective growth,®’ growth on tilted sub-
strates,®° and growth on V-grooved substrates. 1

Various quantum-confinement effects, such as the pho-
toluminescence (PL) wavelength blueshift and the appear-
ance of quantized levels, have been extensively studied in
quantum-well films (QWF’s). These studies considered
the quantum-confinement size (i.e., well width) to be an
important parameter in investigating quantum effects.
On the other hand, although several studies have ad-
dressed quantum-confinement effects, such as the PL-
wavelength blueshift and polarization anisotropy in
QWW’s, there have been few studies of investigations
into the quantum-confinement effect in QWW’s while
varying the lateral size.

This is because in QWW?’s it is difficult to control the
lateral size systematically within the range from the
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weak-confinement regime (around 100 nm) to the strong-
confinement regime (less than 20 nm). Moreover,
changes in lateral size are often accompanied by changes
in vertical size, making any observed change a mixture of
the effects of changes in the lateral and vertical sizes, and
making it difficult to investigate the quantum-
confinement effect quantitatively. For most methods not
using lithographic techniques, the final size is small
enough, but it is difficult to vary the lateral size indepen-
dently of the vertical size. EB lithography, on the other
hand, provides better control of wire size, but the final
size is larger than required. Furthermore, wires fabricat-
ed by a combination of EB lithography and dry etching
are likely to be damaged during the fabrication process.
We therefore used a combination of EB lithography
and reverse-mesa selective wet etching to fabricate
QWW:’s for the purpose of quantitatively investigating
the effects of lateral quantum confinement on their opti-
cal properties. EB lithography allowed us to control the
lateral size easily, and using sequential selective etching
for the In; 53Ga; 47As/InP material system enabled us to
overcome the side-etching problem inherent in wet etch-
ing. Reverse-mesa wet etching is a key process because it
forms wires smaller than can be formed by EB lithogra-
phy without fatal damage,!'”!3 and simultaneously
smooths variations in wire width.!* Even with minor
damage from wet etching and overgrowth, the fabricated
wires retain sufficient optical quality for luminescence ex-
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periments. By this method, we successfully fabricated
optically active QWW’s small enough for the quantum
confinement by systematically controlling the lateral size.

In this paper, we investigate the transition energy of
QWW’s in a PL experiment. We quantitatively clarify
changes in the transition energy and the appearance of la-
terally quantized levels, which are well-known quantum-
confinement effects in QWF’s but which have not yet
been investigated in detail in QWW’s. We also carefully
calculate the lateral confinement effect and compare the
calculated results with experimental results.

We then investigate the lateral confinement effects in a
magneto-PL experiment. The magnetic field can be used
as a probe for the quantum-confinement effects because it
causes magnetic confinement which competes with the
quantum confinement.'*~!3  Application of a magnetic
field 1is especially effective for multidimensional
quantum-confined structures, since it lets us investigate
effects from only lateral confinement in the Faraday
configuration. We examine the magnetic-field effect on
PL spectra to determine how the magnetic field affects
the lateral confinement effects.

We also investigate the polarization characteristics.
The polarization property of QWW’s, in contrast to that
of QWF’s, has been predicted to depend on the wire’s
cross-sectional shape.!® In other words, polarization
properties are expected to vary when the cross-sectional
shape is changed. Although several papers have reported
in-plane anisotropy for quantum wires,?® to our
knowledge the polarization of quantum wires has not
been studied while varying the cross-sectional size. We
inspect this dependence for various wire sizes and in two
orientations (perpendicular-to-plane and in-plane). To
clarify the quantum-confinement effect, we compare the
experimental results with theoretical calculations. Part
of this study has already been published in brief
letters, 121321

II. SAMPLES

This section briefly summarizes the sample fabrication
procedure; a detailed description can be found else-
where. >3 The fabrication flow is illustrated in Fig. 1.
A line-and-space resist pattern (typical pitch 150 nm) was
written in the [110] direction by high-resolution
electron-beam lithography on a lattice matched
Ing 53Gaj 4;As/InP single-quantum-well wafer grown by
gas-source molecular-beam epitaxy then several se-
quences of selective wet etching were used to form an
Ing 53Gag 47As quantum wire structure at the bottom of
the reverse mesa of InP [shown in Fig. 1(e)]. Due to the
selective anisotropic (reverse-mesa-shaped) etching tech-
niques used, we obtained a very uniform 10-nm-scale
quantum wire structure, a size beyond the limit of present
lithography. The wires were then buried within InP by
metal-organic vapor-phase epitaxy in order to improve
their optical characteristics [Fig. 1(f)]. Typical high-
resolution scanning-electron-microscope (SEM) photo-
graphs are shown in Fig. 2 for wires before (a) and after
[(®) and (c)] overgrowth are shown in Figs. 2.

For the PL experiments, several sets of wire patterns
exposed at different EB doses were prepared on each sam-
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FIG. 1. of the

Schematic
Ing 53Gag 47As/InP quantum wires.

fabrication process for

ple. The typical pattern was 300X 300 um?. An unetched
region outside the wire pattern was etched off by additive
lithography in order to discriminate the signal from that
of the unprocessed QWF region. Each pattern was mesa
shaped a few micronmeters deep, and a sufficient number
of reference patterns were left unetched near the wire
patterns.

For the electroluminescence experiments, the wires
were located within a pn junction and sandwiched be-
tween Ing 33Gag 7As) 6P ¢4 Waveguide layers as shown
in Fig. 1(g). Figure 2(d) shows a typical SEM photo-
graph of these samples. We used a conventional device fa-
brication process to form mesa-stripe structures having
electrodes. The typical stripe length was 700 um, and the
wire was parallel to the stripe for all samples.

III. SIZE DEPENDENCE
OF TRANSITION ENERGY

A. Experimental setup and luminescence efficiency

The excitation light source we used was an argon-ion
laser operating at 514.5 nm, and focused onto a spot ap-
proximately 300 um in diameter. The excitation power
ranged from 10 uW to 5 mW, and was typically 300 uW.
The samples were placed in a liquid-helium cryostat, and
PL signals were detected by conventional lock-in tech-
nique using a cooled Ge photodetector.

To evaluate the overall quality of QWW’s produced by
our method, we studied the PL intensity from the
QWW’s. We detected sufficient intensity even from the
narrowest wires, only 10 nm wide. The fact that 10-nm-
wide wires can still emit intense luminescence shows that
our fabrication process does not cause fatal damage in
the etched and regrown heterointerfaces.

The integrated PL intensity relative to wire widths is
shown in Fig. 3 with the intensity normalized by the area
of the wires. The normalized intensity is nearly constant
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(a)

30-nm wide wire

(b)
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10-nm wide wire

FIG. 2. SEM cross-sectional views of Ing 53Gag 47As/InP quantum wires. As-etched 10-nm-wide quantum wires (a). Buried 10-
nm-wide (b) and 30-nm-wide (c) quantum wires. Quantum wires within the waveguide layer (d).

for wires between 35 and 60 nm wide, and decreases for
those less than 30 nm wide. This decrease in lumines-
cence intensity might be due to the nonradiative recom-
bination centers. In the case of 30-nm-wide wires, the
overgrowth process increased PL intensity threefold to
fivefold. The results in Fig. 3 contrast greatly with those
for dry-etched wires,?? whose PL intensity decreases rap-
idly at widths less than 100 nm. This suggests that the
process damage is quite low with our etching-and-
regrowth procedure. We also think that this low process
damage can be attributed in part to the characteristics of
InP-based materials.?> They should have a lower surface
recombination velocity and be more suitable for regrowth
than other materials, such as GaAs/Al Ga,_, As.

The integrated PL intensity is shown in Fig. 4 as a
function of excitation power for various wire widths.
Over four orders-of-magnitude variation in excitation
power, the PL intensity is directly proportional to the ex-
citation power. This indicates that there is no involve-
ment of extrinsic factors (such as impurity levels) and
suggests an intrinsic-nature recombination.
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FIG. 3. Normalized PL intensity vs wire width for 5-nm-
thick wires. The normalized intensity is nearly constant for
wire widths down to 35 nm.
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FIG. 4. Excitation-power dependence of normalized PL in-
tensity for 5-nm-thick wires of various widths. In all cases, all
the data points are either on or near the same linear curve
representing the excitation levels over four orders of magnitude.

B. Photoluminescence energy shift

We next investigated relationships between the wire
width and the shape and peak wavelength of the PL spec-
trum. Figure 5 shows the typical PL spectra at 2 K for
5-nm-thick Ing 53Gag 47As/InP QWW?’s of three lateral
widths. The PL peak energy of the 50-nm-wide wires is
close to that of the reference QWF’s, and the PL peak
clearly shifts to shorter wavelengths (i.e., a blueshift) for
narrower wires. This shift reaches a value of 40 meV for
10-nm-wide wires. A similar blueshift of the PL peak was
observed in all the QWE’s fabricated in our laboratory,
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FIG. 5. PL spectra of S-nm-thick quantum wires of various
widths.
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FIG. 6. Energy shift of the PL peak from that of a QWF
(solid circles) vs wire width for 5-nm-thick wires. The error
bars in the size determination is approximately the diameter of
the circles.

irrespective of the thickness of the Inj 5;Gag 4;As well
and the InP cap.

Several factors in addition to quantum-confinement
effects may be responsible for this shift of the PL peak:
band-gap distribution in the original QWF, strain caused
by overgrowth of the mesa structure, and impurities in-
troduced in the fabrication process. To find out whether
this blueshift is evidence of the quantum confinement, it
is therefore important to determine the magnitude of the
shift precisely, and to compare it with the calculated la-
teral quantum-confinement effect.

We measured the distribution of the PL wavelength in
the as-grown QWF wafer in order to avoid the influence
of the in-plane distribution in the original QWF. Wire
widths for the same samples that were used for the PL
measurements were directly evaluated by a high-
resolution SEM. We determined the wire-width value for
each pattern by averaging the measured values from a
sufficient number of wires so as to avoid any effects of size
fluctuation.

The energy-shift data thus obtained are plotted in Fig.
6 against widths. The energy shift increases as wire size
decreases, as expected from the quantum-confinement
effect. To evaluate this quantitatively, we next calculate
the wire-size dependence of the transition energy of quan-
tum wires.

C. Calculation of transition energy

1. Numerical method

It is not difficult to estimate the transition energy of
QWPF’s by a simple calculation, especially for thicknesses
over 10 nm. We have only to solve a one-dimensional
(1D) Schrodinger equation assuming a parabolic-band ap-
proximation. Although this simplification is frequently
also used for quantum wires, this treatment can result in
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significant errors. Our aim in this section is to investigate
the wire-size dependence of the transition energy accu-
rately, and to compare the calculated dependence with
the experimental data. In what follows, we assume x, y,
and z axes along the [110], [110], and [001] orientations.
The x’, y’, and z’ axes used for a Hamiltonian matrix are
oriented in [100], [010], and [001].

A frequently used approximation is obtained by decou-
pling the y and z quantization,?* leading to two sets of 1D
Schrodinger equations with a 1D potential ¥ (z). Because
the above approximation is valid only for wide wires,
where the aspect ratio of the cross section is large
enough, we instead directly solve 2D Schrddinger equa-
tions using the 2D potential ¥V (y,z). A calculation pro-
cedure is done by expanding the wave function using a
series of plane waves. >

In our previous paper and in other papers, a
parabolic-band approximation is used to account for the
energy level of quantum wires. Although this approxi-
mation can give a proper estimation for a QWF energy
level for conduction and valence bands when the film
thickness is more than 10 nm, it has not proved true for
quantum wires even if sizes are larger than 10 nm.
Therefore, we next consider nonparabolic effects for the
conduction and valence bands.

2. Nonparabolicity in the conduction band

In the present work, the vertical (L, ) confinement is al-
ways strong, which leads to a quantization energy of ap-
proximately 100 meV. This confinement energy causes a
large enhancement of the effective mass for the conduc-
tion band, the so-called nonparabolicity effect.?®”!® For
QWPF’s, this effect is only significant in explaining the en-
ergy level of very thin films. For quantum wires, however,
this mass enhancement caused by z confinement can
affect the y confinement even if the wire width is large.
Conduction-mass enhancement for quantum wires was
recently indicated by tight-binding calculation?® and by
the nonparabolicity consideration.’® Here we assume the
nonparabolicity effect is a function only of the z-
confinement energy, because z confinement is always
larger than y confinement in our samples. We used a non-
parabolic term for the Ings3GagysAs/InP  system
developed by Wetzel et al. in Ref. 27.

We assume a square potential for the conduction band,
and that the mass discontinuity is adequately taken into
account. The material parameters used’! are listed in
Table I. We used 15X 15 plane waves to expand wave
functions, which were confirmed enough for convergence.
Figure 7(a) shows the energy shift of the conduction band

TABLE I. Material parameters used in the energy-level cal-
culation for Ings3Gag47As/InP quantum wires. s.0. denotes
spin-orbit splitting.

mc* m}Th Y1 Y2 Y3 8.0. (meV)

Ing 53Gag;As 0.0416 0.3807 13.6 542 6.29 361
InP 0.0077 0.65 495 1.65 2.35 130
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with changing L, for parabolic and nonparabolic cases.
The nonparabolicity effect for the conduction band
causes a slight decrease in blueshift due to the quantiza-
tion energy of the z confinement. Note that since we ig-
nored nonparabolicity from the y confinement, this de-
crease is underestimated especially for narrow wires, but
that the discrepancy must be small because z-confinement
energy is always larger than y-confinement energy for all
wire sizes of our samples.
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FIG. 7. Calculated energy level of conduction band (a), and
valence band (b) for 5-nm-thick quantum wires. Solid lines are
obtained with nonparabolicity (a) and the k-p method (b). Bro-
ken lines are obtained with the isotropic parabolic band model.
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3. k-p treatment of valence subbands

For (001) QWEF’s, valence bands at the zone center can
be precisely described by two decoupled parabolas:
heavy hole and light hole. If we want to evaluate an en-
ergy level of the topmost valence band, we can use a
parabolic-band model with a heavy-hole mass. If the an-
isotropy of the valence bands is taken into account, we
can construct the heavy-hole and light-hole masses for
any index of substrates for Luttinger parameters. Espe-
cially for (001) QWF’s, the heavy-hole mass for the (001)
direction, which gives a confinement mass, is close to the
bulk heavy-hole mass. Therefore, the parabolic-band
treatment with a bulk mass is a good approximation for
QWPF’s. For quantum wires, however, the situation is
very different. Consider L, <L,. The z confinement in-
duces a large splitting between two valence bands and
makes the J,=32 band (heavy-hole -like band) topmost,
where J, is an angular momentum projected along the z
axis. This results in the so-called mass reversal effect for
the in-plane mass. Thus the effective mass for the y direc-
tion of the J,=3 band is close to bulk light-hole mass.
This means that light-hole mass is more adequate in ac-
counting for the energy shift of holes induced by the la-
teral confinement. However, a simple anisotropic
J

Lk} +M (k) +k2) Nk, k,
2
H},= :i— Nk k, Lk} +M(kX+kL)
0
Nk, k, Nk, k,
where
Ky 0 0 —1)(—id/dx
ky|=|—1/v2 1/v2 0 ||=id/dy|, @
k.. 1/vV2 1/vV2 o0 k,

and L =y ,+4y,, M =y ,—2y,,and N =6y,.

This Hamiltonian was expanded by 15X 15 plane
waves as was done for the conduction-band calculation,
and diagonalized to obtain eigenvalues. The calculation
procedure was, except for the Hamiltonian matrix, the
same as that used for the conduction band.

Figure 7(b) shows the energy shift of the topmost
valence band with the parabolic approximation using the
bulk heavy-hole mass, and with the multiband Hamiltoni-
an matrix. There curves differ significantly. The energy
shift of the valence band is greatly enhanced, especially
for wide wires, due to a mass reduction in the y direction.
It is apparent that the parabolic-band model is not ade-
quate for all wire sizes. Therefore, the treatment in Ref.
12 is not adequate, especially for wide wires.

4. Excitonic correction

In the above calculation, we neglected the excitonic
effect; that is, the effect of the electron-hole Coulomb in-
teraction. This effect should be size dependent and more
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effective-mass model—bulk heavy-hole mass for the
strong confinement direction and bulk light-hole mass for
the weak confinement direction—is also incorrect be-
cause the effect of valence-band coupling is significant for
quasi-1D systems even at the zone center. The quasi-1D
valence subbands are mixture states of J,=1 and J,=3,
where mixing is dominated by the quantum confinement.
When L,<<L,—that is, when the mixing is not
strong—the quantization energy shift by L, is dominated
by the in-plane heavy-hole mass of (001) QWF’s. As L,
decreases, the splitting between the heavy-hole-like state
(J;=3) and the light-hole-like state (J,~1) decreases,
because the energy shift of the former is larger than that
of the latter. As a result, coupling between these two
states is enhanced. Therefore, we have to solve a multi-
band Hamiltonian matrix in which the mixing effect is
correctly taken into account. Recently, tight-binding
analysis also showed that the valence-band mass is re-
duced for quantum wires. 32

We solved a 6X6 Hamiltonian matrix constructed
from a 3X3 k-p Hamiltonian and a 6 X6 spin orbit in-
teraction Hamiltonian in which the coupling of the three
valence bands is taken into account.®®> A Hamiltonian
matrix of (110)-oriented quantum wires is given by
(neglecting a spin-orbit part)

Nk, k..
Nk, k,

X
ly'), (1)

LK2+M (K2 +k2) |12

y

pronounced for narrow wires, as it is for QWF’s. We cal-
culated the binding energy of the exciton in QWW’s by
using the variational method. We ignored the valence-
band coupling effect and used the same parameters we
used in the energy-level calculation.

Although a trial function for excitons is usually as-
sumed to be a hydrogen-atom-like wave function, such a
function has singularity at the origin in the one-
dimensional case. Thus we have to use modified trial
functions. We solved the problem by a variational
method using the trial function

d(z)=¢pexp[ —V(z/A)+0?], 3)

where A and o are variational parameters. This function
is a smooth function at the origin, and asymptotically ap-
proaches the Whittaker function (the ideally one-
dimensional case) for large z. The form of Eq. (3) has been
shown3* to be more accurate over a wide range of QWW
sizes than previously reported functions.3>3¢ Concerning
the Coulomb potential, we used an effective 1D Coulomb
potential’” which was obtained by integration in x and y
coordinates using eigenfunctions of quantum wire.

Figure 8 shows the calculated binding energy of a one-
dimensional exciton in 5-nm-thick Ing s;Gag 4,As/InP
QWW?’s as a function of wire width. The binding energy
for all wire sizes is found to be enhanced over that of
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FIG. 8. Calculated exciton binding energy of 5-nm-thick
Ing 53Gaj 47As/InP quantum wires vs the wire width.

QWF’s, and a maximum enhancement of 10 meV is ob-
tained at a width of about 5 nm. The decrease in binding
energy in narrower wires is attributed to the overflow of
wave functions from the well.

D. Comparison with experimental results

The sum of the subband energy levels of the conduc-
tion and valence bands, and of an excitonic correction,
gives the transition energy of QWW?’s. The calculated
transition energy with and without the excitonic effect is
shown by the broken and solid lines in Fig. 9 versus the
wire width. It is clear that the overall profile of the ex-
perimental data is close to both of the calculated
curves—we will consider the difference between the two
theoretical curves later. This indicates that the observed
shift is induced mainly by the lateral quantum-
confinement effect—not by such factors as strain and im-
purity levels. If these factors did make a major contribu-
tion to the observed shift, the curves would not coincide
with the data because the wire-size dependence of these
factors would be different from that in the above calcula-
tion.

When focusing on the difference between the two
curves, the broken line appears to be closer to the experi-
mental results than the solid line. This implies that the
observed shift originates from a combination of the la-
teral confinement and the excitonic effect. In this experi-
ment, the largest contribution to the error bar comes
from the wire-size determination (a few nanometers).
This uncertainty might produce an error bar on an ener-
gy scale larger than 10 meV when L, =10 nm. The error
bar in the energy scale for wider wires, however, should
be small (less than 1 meV). The discrepancy for wide
wires without excitonic correction therefore cannot be
explained by size uncertainty. Better fitting with the exci-
tonic effect for the present analysis means that we ob-
serve a wire-size-dependent excitonic effect in the PL en-
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FIG. 9. Energy levels for 5-nm-thick Ings;Gag4;As/InP
quantum wires calculated with (solid line) and without (broken

line) excitonic effects. Circles are the same experimental results
plotted in Fig. 6.

ergy shift. In our previous report (Ref. 12), we obtained a
good fitting without excitonic correction. This is because
we used a parabolic-band approximation which causes
the error in estimation mentioned in Sec. IIIC. The
present analysis shows that the excitonic correction is
necessary to explain the transition-energy shift in
QWW’s,

Consequently, we think that the overall nature of the
measured blueshift is, with the excitonic effect calculated
here, quantitatively explained by the lateral quantum
confinement, including the band nonparabolicity.

E. Higher subband structures

We observed distinctive shoulder structures in PL
spectra like those shown in Fig. 5 on the high-energy side
of the peak for 15-50-nm-wide wires. We regard these as
due to laterally quantized subbands. In QWF’s, one clear
demonstration of the quantum-confinement effect was the
appearance of laterally quantized subband levels.3%%
Here we investigate these structures by theoretical calcu-
lation. Figure 10 shows the wire-width dependence of the
shoulder structures. To distinguish variations in the
shoulder from the PL peak shift, the peaks for QWW’s
with different widths are superimposed. This figure
demonstrates that the shoulder separates from the main
peak as the wire becomes narrower. A shoulder structure
commonly appears for wires 15—-50 nm wide.

The measured energy levels of the shoulders are plot-
ted in Fig. 11 as solid circles against the wire widths.
The energy of a shoulder structure, determined from
deconvolution, clearly shifts higher, in a manner similar
to the PL peak. This wire-size dependence of the shoul-
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FIG. 10. Shoulder structures observed in the PL spectra of
5-nm-thick quantum wires of various widths. The peaks of the
PL spectra are superimposed in order to clarify the variance in
the shoulder structures. The shoulder shifts to a shorter wave-
length as the wire width decreases.

der structures reminds us of the transition associated
with the higher subbands of QWW’s.

To investigate this, we calculated the subband energy
levels of QWW’s using the method described in Sec.
III C. The results show that the energy position of the
shoulders is very close to the first subband level of the
QWW?’s, denoted 12H. 12H represents the transition as-
sociated with the topmost hole subband where the quan-
tized number on the z axis is 1 and that on the y axis is 2.
The calculated energy level for 12H is shown in Fig. 11
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FIG. 11. PL energy shift of the shoulder structures (solid cir-
cles) vs wire width. The dashed line represents the first excited
level (12H) calculated theoretically.
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by the dashed curve, and fairly good agreement between
the experimental and calculated data is observed: the
variation according to wire size is well explained by the
calculation. This suggests that the shoulder is related to
the first lateral-quantized subband, and that the energy
shift of the shoulder is caused by the change in the lateral
confinement. This agreement is additional evidence that
the lateral confinement is achieved in the fabricated
QWW’s. No shoulder structures appeared in the PL
spectrum of the 10-nm wires. We assume this is because,
in the 10-nm wires, the energy level of the first subband is
too high to be populated by carriers, or because the life-
time of the excited carriers was too short to accumulate
carriers at the excited levels. This assignment of these
shoulder structures will be further supported by a
magneto-optical study developed in Sec. IV.

IV. MAGNETO-OPTICAL STUDY

In Sec. III, we investigated the wire-size-dependent en-
ergy shift in photoluminescence spectra, and found that
comparison between measured and calculated values indi-
cates that the whole shift is caused by the lateral
confinement effect in QWW’s. In this section, we exam-
ine the origin of this shift by using a magnetic field as a
probe of the quantum-confinement effect, and obtain fur-
ther evidence of lateral quantization in the wires.

In this experiment, a continuous magnetic field was ap-
plied in the Faraday configuration, where the magnetic
field is parallel to the growth axis (z axis). The tempera-
ture was kept at 1.8 K. The samples were excited by an
Ar-ion laser with the light coupled to an optical fiber, and
the same fiber was used for detecting the luminescence.
Other experimental details were the same as outlined in
previous sections of this paper.

Figure 12 shows the PL spectra of four 5-nm-thick
wires (Ly =20, 25, 35, and 45 nm) at 14 and O T. The shift
in peak energy with changing wire width is apparently
less pronounced than when no magnetic field is applied.
To see this more clearly, we plotted the energy shift with
and without a magnetic field against the wire width in
Fig. 13. This figure shows that the blueshift is suppressed
by the magnetic field.

The magnetic field induces a two-dimensional
confinement of harmonic-oscillator potential perpendicu-
lar to the magnetic field. If the potential confinement ex-
ists, both types of confinement will couple. In the present
configuration, the magnetic-field quantization couples
only with the lateral potential quantization, and the mag-
netic field can therefore be used as a probe of the lateral
confinement. This situation is analogous to cases involv-

ing a QWF with a magnetic field parallel to the well. *°

If the lateral potential can be approximated as a
harmonic-oscillator potential (#w,), the energy level is
obtained analytically*! as

E,=(n+5)V (g P+ (fiwy)? @)

where wpz=eB/m*. According to this relation, if
wp >>wg, then E, becomes almost independent of wg. The
cyclotron diameter of the ground Landau level at 14 T is
approximately 13 nm, which is less than the present wire
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width. This means that the magnetic quantization should,
at this magnetic-field strength, dominate the quantum-
wire quantization. Thus, if the blueshift of the ground-
level peak is caused by the lateral confinement, the
present magnetic field should make it disappear.

The suppression of the blueshift observed in Fig. 13
can hence be explained as the transition from the lateral
quantum-confined regime to the magnetically confined re-
gime. Here the lateral potential confinement is most
strongly coupled with the magnetic field. if the blueshift
has other origins—vertical confinement effect, strain, or
other extrinsic factors—it would be unchanged after ap-
plying a magnetic field. Consequently, we can exclude
such factors for the observed energy shift.

Equation (4) is not a good approximation in this case,
however, because the lateral potential is not a harmonic
type. To evaluate the magnetic effect quantitatively, we
assumed a realistic square potential and numerically cal-
culated the energy levels of QWW’s with presence of the
magnetic field. The magnetic field was incorporated as a
vector potential using a conventional Landau gauge, and
the eigenvalues were obtained through the plane-wave
expansion method in the same way as in the energy-level
calculation. The calculated curve is shown in Fig. 13.
The suppression of the blueshift is well explained by this
calculation, indicating that it results from competition
between the lateral confinement and the magnetic
confinement. This confirms that the observed shift is
caused by the lateral quantum-confinement effect.

So far we discussed only the single-particle quantiza-
tion affected by a magnetic field, but it is well known that
a diamagnetic shift is markedly influenced by a change of
Coulomb interaction between electrons and holes in the
presence of a magnetic field. In our results, this diamag-
netic shift of excitons (i.e., Coulombic correction) should
be involved in the difference between cases with and
without magnetic field. The discussion in Sec. III, how-
ever, concluded that the wire-width dependence of the
transition energy is determined mainly by the wire-width
dependence of the single-particle quantization energy —
at least at widths greater than 20 nm. In other words,
the wire-width dependence of the exciton binding energy
does not play a major role if we see the change of transi-
tion energy. Since the wire-width dependence of the
Coulombic correction must be scaled with that of the ex-
citon binding energy, the wire-width dependence ob-
served in Fig. 13 can be basically explained, as a first ap-
proximation, in terms of the single-particle quantiza-
tion.*?> Although low-dimensional excitons under a mag-
netic field are also a theoretically interesting problem, we
ignore this aspect here. A detailed discussion of the
magnetic-field-induced energy shift is left for a future
work.

Another clear demonstration of the lateral confinement
effect was given through a magneto-PL experiment. Fig-
ure 14 shows PL spectra at 14 T at high excitation levels
(10 W/cm?% more than two orders of magnitude higher
than in the previous experiment). A dense carrier filling
can easily be achieved without using extremely intense
pulsed excitation because the carrier diffusion is
suppressed by the deep mesa structure and also by the la-
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width at 14 and O T. The calculated energy shifts incorporating
the magnetic field are shown as the broken curve (14 T) and the
solid curve (0 T).
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teral potential itself. The figure shows that approximately
100 meV of the quasi-Fermi level is realized for all wires.
Five Landau levels can be seen in the 45-nm-wide wires,
and the highest Landau level is close to the Fermi edge,
which is quite reasonable. Although the quasi-Fermi lev-
el determined from the width of the PL spectra is almost
the same for all the wires, the number of Landau levels
decreases as the wire width decreases. For 20-nm-wide
wires, there are only two Landau levels. This is not due
to changes in level occupation, because it is obvious that
carriers populate beyond the second Landau level. This
means higher Landau levels might be affected by the la-
teral confinement.

We regard this phenomenon as a quenching of Landau
levels. The diameter of the nth Landau orbit of a free
electron within a magnetic field is given by
2R, =2V'#(2n +1)/eB. If the nth Landau orbit is larger
than the wire width, the electron cannot form the closed
orbit, and the Landau level is thus unobservable. Al-
though the basic mechanism is similar to the magnetic
depopulation in a 1D system observed by Shubnikov-de
Haas oscillation measurement,*® to our knowledge there
have been no previous reports on the quenching of the
Landau level in photoluminescence experiments.

Strictly speaking, true Landau levels exist only at the
high-field limit. As the field strength decreases, the Lan-
dau levels continuously join with the laterally quantized
subbands. This is straightforwardly understood if we

B=14T P=10W/cm2

PL intensity (arb. linear scale)

1 | Il 1

0.90 0.95 1.00 1.05 1.10 1.15
Photon energy (eV)

FIG. 14. High-excitation magneto-PL spectra of four
different widths of 5-nm-thick quantum wires at 14 T. Arrows
point at assigned Landau levels.
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consider a harmonic potential like that given in Eq. (4).
Therefore, if the magnetic energy becomes less than the
confinement energy, we expect to observe the laterally
quantized subbands instead of Landau levels. In our case,
however, the higher subbands (13H, 14H, and so on) are
difficult to observe because they suffer from lateral size
inhomogeneity, whereas the Landau levels are not
affected by it. This is why we see quenching of Landau
levels. If we had perfect wires, we would see a crossover
from the field-dependent Landau levels to the field-
independent subbands. The calculated cyclotron diame-
ters for free electrons are 13, 22, and 29 nm for the three
lowest Landau levels. While it seems impossible to form
the second Landau level in the 20-nm-wide wires, the
crossover is not as abrupt as expected from Eq. (4).

For the case of n =1 Landau levels, however, we clear-
ly observe the crossover from Landau levels (n =1) to la-
terally quantized subbands (12H), instead of a quenching
of Landau levels. As discussed in Sec. III, we observe la-
teral quantized subbands for 15-50-nm wide wires. If we
decrease the magnetic-field strength, second Landau lev-
els are continuously joined with shoulder structures
present at 0 T.

These results demonstrate that application of magnetic
field causes a transition from a quantum-confined region
to a magnetically confined region. Next, we investigate
the magnetic-field dependence of subbands and Landau
levels to see this crossover more clearly. Figure 15 shows
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FIG. 15. Transition energy of a ground state (n =0, filled
symbols) and a first excited state (n =1, open symbols) vs mag-
netic fields for 5-nm-thick quantum wires of three different
widths. Arrows mark the magnetic fields at which the cyclotron
diameter coincides with the lateral dimension of wires.
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the energy position of resolved peaks for three different
wires versus magnetic field. Lowest (n =0) and second
lower (n =1) peaks are plotted. Peaks were deconvolut-
ed through the Gaussian fitting.

First, look at curves of the lowest transition for each
wire (filled symbols). Although curves for wide wires are
nearly linear similar to QWF’s, as expected for typical
Landau fans, curves for narrower wires become flattened
at low field. Apparently, a crossover from a linear curve
to a flattened curve occurs at a higher field for narrower
wires. Excitonic correction is also known to cause devia-
tion from linear dependence at low fields for QWFs,‘“"45
but the crossover due to the excitonic effect should occur
at a smaller field corresponding to exciton binding energy
(typically 10 meV). In this case, crossover occurs at very
high field, which cannot be explained by the excitonic
correction discussed in Sec. III C4. Arrows point at the
magnetic field at which the cyclotron diameter coincides
with the lateral confinement size. The arrows are fairly
close to the crossover points, indicating that this cross-
over occurs as a result of the lateral confinement effect.
Therefore, this flattened region is the quantum-
confinement-dominated region, as mentioned above.

Next, look at the second subbands, which show a simi-
lar trend of crossover from linear to flattened. At zero
field, this second peak is assigned to the second laterally
quantized subband (12H) from the energy-level calcula-
tion in Sec. III, and at high field the peak shape becomes
that of a typical Landau subband (n =1) in magneto-PL
spectra. This means that the crossover occurs between la-
terally quantized subbands and Landau levels in this case.
As mentioned above, laterally quantized subbands should
be continuously connected to Landau subbands as the
field increases. This is an unambiguous demonstration
that shoulders observed at zero-field PL spectra are due
to lateral quantum confinement. Note that the crossover
energy is higher for higher subbands. At near critical
field, electrons of the first subband have a quasi-one-
dimensional character, whereas electrons of the second
subband have a quasi-two-dimensional one. Concerning
higher subbands (n >2), we can only observe Landau
subbands at sufficiently high fields. At fields lower than a
critical value, we observe the disappearance of Landau
levels, as discussed above. Consequently, the crossover
(or disappearance) of each subband is determined by the
lateral size of wires and the size of the Landau orbit.

To calculate theoretically the magnetic-field depen-
dence of higher subbands with the square-well potential,
we have to incorporate an accurate treatment of the
magnetic-field dependence of the valence bands and the
nonparabolicity effect in the conduction band. Note that
a harmonic-type approximation like Eq. (4) is not ade-
quate to analyze the subband structures quantitatively
under a magnetic field. The detailed analysis will be done
in a future study.

In this section, we confirmed through magneto-PL ex-
periment that the energy shift observed in Sec. III is
caused by lateral quantum confinement. Furthermore, we
found that shoulders in PL spectra which were assigned
as laterally quantized subbands (12H) in Sec. III are con-
tinuously connected to second Landau subbands (n =1)
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at higher fields, and that higher Landau levels (n > 1) are
quenched in narrow QWW’s. All these crossovers are
determined by the relation between the lateral dimension
of wires and the size of the Landau orbit.

V. SIZE DEPENDENCE OF POLARIZATION

A. Experimental setup

As mentioned above, the polarization of QWW’s
should strongly depend on the cross-sectional shape. We
should therefore be able to control the polarization an-
isotropy by changing the ratio of the lateral width to the
vertical width. Here we investigate the polarization an-
isotropy in luminescence while varying the lateral wire
width. When characterizing polarization, we have to be
careful of a few things. If the vertical dimension of wires
is much smaller than the lateral dimension, the QWW
polarization might be very close to that of QWF’s. This
is important because the smallest lateral width is much
larger than the vertical width in our fabrication method.
In addition, when we examine the polarization property,
it is advantageous to use the well region within the
waveguide layer. A thin well layer without a waveguide
layer might exhibit a complicated mixture of signals with
different orientations. We therefore used relatively thick
(15 nm) wire samples each having a waveguide layer.

We performed two kinds of luminescence anisotropy
experiments. The first was an edge-emitted electro-
luminescence (EL) experiment, in which we examined the
perpendicular-to-plane anisotropy. (We also measured
the edge-emitted PL for several samples, but this was
more difficult than for the surface-emitted configuration
because the patterned area is so small.) The other was a
surface-emitted PL experiment, in which we examined
the in-plane anisotropy. We used samples with the same
structure for both experiments.

Figure 16 shows the experimental configurations
adopted for the polarization-resolved measurement. As
shown in Fig. 16(a), we collected EL signals from the
cleaved facet, where the measured EL is always parallel
to the wires. From these, we evaluated the
perpendicular-to-plane polarization of EL. Figure 16(b)
shows the configuration for the surface-emitted PL exper-
iment in which we analyzed the polarization of the
luminescence by rotating a polarizer in front of the
monochromator. The polarization dependence of the
measurement equipment was carefully canceled out using
a depolarizer.

B. Anisotropy in edge-emitted EL

We measured the polarization-resolved EL spectra for
quantum films and quantum wires at 7 K. The lumines-
cence from the QWF is strongly polarized in TE, similar
to the reported polarization anisotropy of QWF’s,*® but
we found that TE polarization decreased for narrower
wires. The TM/TE ratio of the EL peak intensity (solid
circles) is plotted in Fig. 17 as a function of the wire
width (L,). The injection current was kept at 10 pA.
The TM/TE ratio increases as L, decreases, and ap-
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FIG. 16. Schematics of the polarization-resolved experimen-
tal configurations for (a) the edge-emitted EL and (b) the
surface-emitted PL experiments.
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proaches a value of 1.0. This tendency is consistent with
that expected for the quantum-confinement-induced po-
larization change, since QWW?’s having a symmetrical
cross section (L, =L, =15 nm) should emit unpolarized
luminescence in an edge-emitting geometry if we ignore
the intrinsic anisotropy of the crystal structure.

We also investigated the injection-current dependence
of EL polarization. Figure 18 shows three spectra taken
at different current injection levels. The spectra and po-
larization characteristics are similar at currents of 20 uA
and 1 mA, but the spectrum shape changes dramatically
and the polarization property becomes complicated at
currents over 2 mA. This indicates that the luminescence
signal reflects only the ground-state transition for
currents less than 1 mA. The complicated nature of
high-current-injection levels might result from their com-
plicated valence-subband structures. Therefore, the po-
larization anisotropy in Fig. 17 reflects the property of
the ground state of the valence band which possesses a
heavy-hole-like character. This is because the current
level (10 uA) and the sample temperature (7 K) are low
enough. In fact, the spectral shape itself is almost identi-
cal between those of TE and TM at this low current, also
indicating that they do not reflect higher bands.
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When we regard the EL signal as a transition of the
heavy-hole-like band, the observed polarization change
seems to be explained as a transition from a two-
dimensional to a one-dimensional electronic system. Be-
sides the quantum-confinement effect, the change in the
waveguide structures—that is, the change in the volume
ratio of the wire region to the InP current-block
region—could also affect the polarization of EL through
the change of refractive-index modulation. However, if
such an effect were dominant, one would expect that the
polarization of the QWF’s drastically differ from that of
the widest wires. (Note that even the 60-nm-wide wires
have 90-nm-wide spaces.) The results shown in Fig. 17,
however, indicate that such an effect is negligible in our
experiment (probably because the volume of the wire re-
gion is smaller than that of the waveguide layer). The
overall wire-width dependence of the polarization shown
in Fig. 17 is therefore intrinsic to the wire structures.

C. Comparison with theory

The polarization of QWW’s in contrast to that of
QWPF’s, is well known to be dominated by the valence-
band mixing.*’ Thus mixing has to be adequately taken
into account in this study. We calculated the polarization
dependence of the optical transition in
Ing 53Gag 47As/InP QWW’s incorporating the mixing
effect by using the k-p method developed in Sec. III. We
calculated the momentum matrix element of (110)-
oriented Iny 53Gag 47As/InP QWW’s for each polariza-
tion. Figure 19 shows the calculated squared-momentum
matrix element (|M|?) for the lowest valence band versus
the wave vector in the x direction, k,. In this graph, we
assume L, is 30 nm and L, is 15 nm.

The curve denoted by calc. 1 in Fig. 17 shows the
TM/TE ratio of the squared-momentum matrix element
at the zone center. As shown by this curve, the polariza-
tion ratio decreases as the wire width decreases. This ba-
sically explains the overall tendency seen in the experi-
mental results.

Matrix Element

kx (108 cm-1)

FIG. 19. Calculated wave-vector dependence of the transi-
tion matrix elements of 15X40 nm In, 53Gag 4;As/InP quantum
wires for different polarizations.
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When L, is greater, however, a large discrepancy
arises. Despite the fact that the theoretical TM/TE ratio
is zero for QWPF’s, the observed TM/TE ratio is 0.166.
There are apparently some effects which weaken the an-
isotropy when L, is large. We propose two factors to ac-
count for this phenomenon. The first is an intrinsic fac-
tor that arises from contributions outside the zone center
due to finite carrier filling. However, the experimental
TM/TE ratio cannot be explained this way even if we
consider the region in which k.70, since the calculated
TM/TE does not exhibit strong k,-dependence at a k,
less than 10° cm™! (which corresponds to a 3D carrier
concentration of 2—10X 10'® cm ~3). The second is the ex-
trinsic factor of TE and TM signal mixing outside the
wires; that is, depolarization during propagation in the
waveguide, uncertainty in analyzing the polarization of
diverging luminescence from the cleaved facet, or a slight
misalignment in the experimental setup. We thus assume
a constant extrinsic mixing factor of about 0.14 for all
wires, as estimated from the experimental results for
QWF’s. The calculated data are plotted in Fig. 17, with
the extrinsic factor of 0.14 (calc. 2) and with the intrinsic
factor from carrier filling up to k; (Fermi wave vector) of
8X10° cm™! (calc. 3). As seen in this figure, there is a
fairly good agreement between calc. 2 and the experi-
mental data. Note that, since we assume a wire-size-
independent extrinsic factor, the measured wire-size
dependence should result from the quantum confinement.
Consequently, the wire-width dependence of the
perpendicular-to-plane anisotropy in the EL experiment
can be understood as a lateral-confinement-induced po-
larization change.

D. Anisotropy in surface-emitted PL

We also investigated the in-plane polarization depen-
dence of the surface-emitted PL. Figure 20 shows the
dependence of surface-emitted PL intensity on the polar-
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FIG. 20. Polarization dependence of surface-emitted PL sig-
nal vs the polarization angle. Zero degrees corresponds to the
case where the electric field is parallel to the wire.
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izer angle for a 30-nm-wide wire sample. The PL intensi-
ty was found to vary sinusoidally with the polarizer angle
0, and to have its largest value when the polarizer was
parallel to the wires. The reference QWF’s showed no
anisotropy in the same configuration.

Figure 21 shows the wire-width dependence of the po-
larization ratio (P,/P,) for surface-emitted PL. Al-
though no anisotropy is observed for the widest wires, PL
signals exhibit apparent anisotropy for narrower wires in
which the polarization parallel to the wires is strong.
The polarization ratio deviates from unity as the wire
width decreases to 30 nm. This tendency is consistent
with the expected polarization change due to the lateral
confinement. However, the results for wires narrower
than 25 nm wide cannot be explained simply in terms of
the lateral confinement. We will discuss this later in this
section.

We compared the above experimental results with the
calculations described in Sec. III C3. The curve denoted
calc. 1 in Fig. 21 represents the calculated P,/P,. The
overall width dependence of the experimental results is
similar to the calculated curve down to at least 30 nm.
This suggests that the in-plane anisotropy is caused by
the lateral confinement in these wire structures. The re-
sults of calc. 1 are more polarized than the experimental
results for all wire widths. In contrast to the
perpendicular-to-plane polarization, the calculated ratio
of P,/P, exhibits significant k, dependence even for
1-2-meV carrier filling. Therefore, we have to incorpo-
rate a nonzero k, contribution. The curve denoted calc. 2
represents the calculation with a carrier filling kz of up to
5.0X10° cm™!. Fairly good agreement is obtained be-
tween the experimental results and calc. 2 of wires wider
than 25 nm. Although we also consider the extrinsic
depolarizing factor, it has less of an effect here than in
the perpendicular-to-plane case. Calc. 3 represents the
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FIG. 21. Wire-width dependence of in-plane polarization ra-
tio in quantum wires. P, and P, are luminescence intensities
when the electric field is in the y direction (i.e., perpendicular to
the wires) and in the x direction (i.e., parallel to the wires), re-
spectively. Curves calculated are also plotted (calcs. 1-3) using
three models described in the text. The curve connecting the
experimental data is a guide to the eye.
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calculation incorporating an extrinsic factor of the same
value as in the EL experiment.

This theory does not explain the anomalous
phenomenon observed for L, less than 25 nm. This
phenomenon might be explained in terms of wave-
function localization in QWW’s, as recently dis-
cussed.®® %0 It has been pointed out that wave-function
localization, which can be caused by some imperfection
(size fluctuation and/or pinning centers at the regrowth
interfaces), can weaken the polarization anisotropy in
QWW’s. Assuming a constant size fluctuation for all
wires, we expect that, in narrow wires, when the localiza-
tion length is comparable to the lateral size, the in-plane
anisotropy will be weakened and eventually vanish. Since
the polarization property dealt with in this study reflects
the heavy-hole-related transitions, holes would be easily
localized. Recently, we measured the size fluctuation in
QWW?’s fabricated in the same way,”! and found that the
wire widths are distributed with a standard deviation of
10-20 A. This is close to the value used in Ref. 49; thus
the above explanation is applicable to the QWW’s mea-
sured here.

A precise calculation of the fluctuation-induced locali-
zation would be very complicated since it depends on the
detailed characteristics of size fluctuations. We therefore
do not proceed with more quantitative studies in this pa-
per. Note, however, that the polarization of edge-emitted
signals depends less on the in-line localization than that
of surface-emitted ones, because the former is mainly
determined by its cross-sectional shape.

VI. SUMMARY

We  investigated the optical properties of
Ing 53Gag 47As/InP QWW’s  while  varying  the
confinement size. The measured wires were fabricated by
EB lithography, reverse-mesa wet etching, and metal-
organic vapor-phase epitaxy (MOVPE) overgrowth,
which is advantageous when varying the lateral size.

We performed PL experiments on these QWW?’s to an-
alyze the lateral confinement effect. The PL intensity was
regained down to a wire width of 35 nm, which is quite
different from cases involving dry-etched wires. The
wires we fabricated are quite optically active, even at a
width of 10 nm. Detailed analysis of the PL results yield-
ed two apparent confirmations of the lateral quantum-
confinement effect: one is the PL peak-energy shift with
changing wire size down to a 10-nm width, and the other
is the appearance of lateral quantized states. The ob-
served PL shift was well explained by energy-level calcu-
lations incorporating the excitonic effect. The charac-
teristics of the lateral quantized subbands were also
clarified by these calculations.

Magneto-PL measurements in the Faraday config-
uration were done for the same samples. An intense mag-
netic field suppressed the blueshift induced by changing
the lateral size. In this configuration, magnetic-field-
induced confinement is found to compete with the lateral
confinement, and so can be used to clarify the origin of
the blueshift. The energy-level calculation incorporating
the magnetic field well explained the measured results,
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confirming that the blueshift is caused by the lateral
confinement. In addition, the shoulder structures on the
high-energy side of the PL peaks were found to be con-
tinuously joined with second Landau subbands as mag-
netic fields increased, clearly showing that these Landau
subbands originated from lateral quantized subbands.
We also observed quenching of higher Landau subbands
under high-excitation conditions, and this quenching is
attributed to an inhibition of the Landau orbit due to the
lateral confinement in the wires.

We also investigated the polarization anisotropic prop-
erty, which is another expected quantum-confinement
effect in QWW’s. We measured the perpendicular-to-
plane anisotropy in edge-emitted EL and the in-plane an-
isotropy in surface-emitted PL for various lateral wire
sizes. Results of both measurements show that polariza-
tion properties change according to changes in the cross-
sectional shape of the wires. The measured wire-size
dependence of the anisotropy was basically explained by
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the theoretical calculation. However, a discrepancy was
observed for the in-plane anisotropy of very narrow
wires, which is thought to be due to the wave function lo-
calization.

These confinement-size-dependent optical properties
clearly show that a transition from a two-dimensional to
a one-dimensional electron-hole system occurs in these
QWW’s.
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FIG. 2. SEM cross-sectional views of Ing s;Gag 47As/InP quantum wires. As-etched 10-nm-wide quantum wires (a). Buried 10-
nm-wide (b) and 30-nm-wide (c) quantum wires. Quantum wires within the waveguide layer (d).



