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A generalization of the Keating model is given which treats anharmonic efFects in a much im-
proved manner. The dependence of the bond-stretching and bond-bending force constants on the
crystal volume was determined by means of ab initio density-functional calculations, revealing sim-
ple universal scaling laws. The resulting anharmonic model was used to investigate optical phonons
in disordered alloys of Si, Ge, and C. The calculated Raman spectra agree well with experimental
results and are analyzed in terms of microscopic and macroscopic strain as well as con6nement
eBects due to mass disorder.

I. INTRODUCTION

In this paper, our aim is to derive a variant of the well-
known Keating model which is especially well suited to
describe IV-IV substitutional semiconductor alloys, i.e. ,
materials made &om C, Si, Ge, and Sn. There is growing
interest in such alloys, for example as a means to tailor
the band gaps, band offsets, and the strain in pseudo-
morphic layer structures. Interesting questions arise
as to whether these alloys show ordering, what concen-
trations are attainable, and what the elastic properties
and lattice dynamical properties of' the alloy are.

To study these topics, one would like an accurate but
reasonably efficient method to obtain the total energy of
the crystal as a function of the atomic positions. In prin-
ciple, a full ab initio treatment within density-functional
theory (DFT) would be desirable because it includes all
relevant efFects without the need for adjustable parame-
ters. However, the computational effort is large, leading
to severe restrictions in the systems which can be handled
in practice. For example, direct ab initio calculations are
diKcult for diluted alloys represented by large unit cells.
Special approaches within the OFT framework are possi-
ble; for example, using perturbation theory with respect
to the virtual crystal approximation, de Gironcoli et al.
were able to study the thermodynamics of Si~ Ge al-
loys. Unfortunately, a perturbative treatment seems to
be much more complicated for C or Sn in Si and Ge be-
cause these elements cause strong perturbations of the
lattice and of the electronic spectrum.

Alternatively, a much simpler and more eKcient de-
scription based on the Keating model~ (or similar
approaches ' ) can be used. The energy of mixing rel-
ative to the pure materials is first separated into two
parts:

Emix —Echem + Estrain y

where the chemical term E,h, arises because the
strength of an AB bond might be difFerent &om the av-
erage of the AA and BB bond strengths and the strain

term E,t, i„derives from bond stretching and bending
deforrnations. Both terms are essentially short ranged in
covalent systems with small ionic character of the bonds.
The strain contribution to the total energy is described
by the Keating (or valence-force) model. This is a low-
order expansion of the strain energy respective to atomic
shifts relative to the perfect crystal lattice sites. The
resulting energy expression is similar to that for point
atoms connected by classical springs. The expansion co-
efficients (the force constants) are generally fitted to some
external data such as the elastic constants or phonon fre-
quencies. It is the strain contribution to the total energy
which determines the local geometry, elastic properties,
and lattice dynamics for an alloy with a given occupation
of the lattice sites.

For the IV-IV alloys considered here, the standard
Keating model is inadequate because of the strong lo-
cal distortions which accompany alloying of Si and Ge
with C or Sn. This can be seen &om the drastically
difFerent equilibrium bond lengths, which are 1.55 A for
diamond-structure carbon, 2.35 A. for Si, 2.45 A. for Ge,
and 2.81 A for n-Sn. The size difFerences are even more
apparent when looking at the equilibrium volumes per
atom, which are 5.7, 20.0, 22.5, and 34.0 A. for C, Si,
Ge, and Sn, respectively. This local volume is conserved
to some extent in the alloy, making necessary pertur-
bations of the bond lengths and angles which are much
larger than those which are considered in the context of
phonon &equencies and elastic properties.

Our purpose is to modify the Keating model to de-
scribe such strongly distorted systems properly. Clearly,
the formalism must be extended to include higher-order
anharmonic terms in some manner, but this can be done
in many difFerent ways. To avoid turning this topic into
a simple matter of fitting more parameters to more data,
we attempt a systematic approach as follows. First, we
perform ab initio density-functional calculations to ob-
tain reliable values of the elastic constants and selected
phonon frequencies in the pure materials and the zinc-
blende AB compounds. Hereby each lattice constant is
varied over a range &om compression to expansion which
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is far beyond that which is accessible to experiment. The
Keating force constants are fitted at each lattice constant
a; separately in the usual way. Next, we inspect the re-
sulting functions n(a) and P(o) and find that the depen-
dence on a is given by simple scaling laws. To construct
a model suitable for disordered systems, we postulate a
suitable averaging procedure to define a bond-bending
force constant for A-A-B type chains. The final model is
tested against additional ab initio calculations.

The rest of this paper is organized as follows. The
next section discusses the valence-force-Beld model and
presents the anharmonic generalization as sketched
above. The model has been applied previously to
study the local atomic structure of Siq Ge and
Sii „GeC„alloys. In Sec. III of the present paper we
use it to investigate the vibrational spectra of Si~ Ge
Sii „C»and Siq ~ „Ge~C„alloysin comparison to ex-
perimental Raman results. A summary of the main re-
sults is given in Sec. IV.

TABLE I. Calculated total energies per pair of atoms for
possible zinc-blende structures of group-IV elements relative
to the total energies of the diamond structures of the con-
stituents [according to Eq. {3)].All values are in eV.

C
Si
Ge
Sn

C
0.0

-0.62
0.74
1.10

Si

0.0
0.044
0.28

0.0
0.030

Sn

0.0

(4)

approximation that there is a chemical contribution to
the A-A, B-B, or A-B bond strength which is invariant
and transferable. Then the chemical contribution for the
crystal can be assembled by counting the total number
N~~ of A-B bonds of the system:

II. MODEL

This section has three parts. First, we brieBy discuss
the chemical contribution to the mixing energy; second,
we collect the equations of the standard (harmonic) Keat-
ing model which are needed further on; third, we develop
and test the anharmonic Keating model.

A. Chemical centributien

This is a relatively crude treatment; in truth, the chem-
ical strength of a bond depends to some extent on the
environment. For example, the Si-C bond at a carbon
impurity in Si will not be exactly the same as in ordered
silicon carbide because the participating silicon atoms are
in diferent chemical environments. Possibly, a more ac-
curate treatment of the chemical contribution is called for
in some contexts, but we have not pursued this because
the main interest here is on the strain energy.

The mixing energy (or enthalpy of formation) for a
system containing m atoms of type A and n atoms of
type B is

B. Harmonic Keating madel

Tmo-paranaetev model

E;„=E[A B„]—vnE[A] —nE[B]

The "reservoir" energies E[A] and E[B]are the total en-
ergies per atom for the pure A and B crystals. The to-
tal energy of the mixed crystal E[A B„]depends on the
specific configuration in which the A and B atoms are ar-
ranged on the lattice. It is apparent that a chemical term
is needed in the formalism because E;„is nonzero for
the ordered zinc-blende AB compounds, for which there
can be no strain contribution. For these specific systems
the chemical contribution equals the binding energy

E,h, [AB] = E;„=E[AB] —E[A] —E[B] . (3)

This energy specifies whether the A-B bond is stronger
or weaker than the average of the A-A and B-B' bond
strengths. Table I presents these energies for all binary
combinations of C, Si, Ge, and Sn in the cubic zinc-
blende structure as calculated using the full-potential
linear muilin-tin orbital (FP-LMTO) method (see be-
low). Whereas the zinc-blende phase of SiC is stable
{E.h. & 0) with respect to separation into pure Si and
diamond phases, all other possible zincblende phases are
unstable (E,g,~ ) 0).

For the general case of an A B system, we make the

It is well known that the elastic constants of diamond-
structure crystals in equilibrium at the lattice constant
a are well described by Keating's two-parameter model.
The strain energy E, , ,t„(d etneod by W in the following
for simplicity) is taken to depend on the vectors r;~ which
connect nearest-neighbor lattice sites i and j as follows:

Here index i runs over all atoms and j and k run over
the four nearest neighbors of atom i. In this expression,
4 denotes the change relative to the perfect lattice due
to a distortion, i.e., A(r;~ . r;g) = r;~ . r;y —r, r,.I, is
the change in the scalar product between the two vectors
connecting atom i with its neighbors j and k. Both o.
and P have the dimension of a force constant (energy
divided by length squared) because of the factors 1/ao in
the definition. The atomic indices of the force constants
a and P were suppressed in Eq. (5).

The constants a and P essentially describe the bond-
stretching and bond-bending restoring forces (although
bond-length distortions also enter via the second term
since they change the scalar product even at a fixed
bond angle). Parameters n and P are usually fitted
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to reproduce the elastic constants and phonon frequen-
cies to those obtained experimentally or &om ab initio
calculations. Equation (5) leads to simple expressions
for the bulk modulus, the two independent elastic shear
constants, and the zone-center optical phonon frequency
wo ——wTo(I') of a diamond-structure crystal:

1 1 ( 1
& = —(+»+2&») =

l
o'+ P l—

3 ap ( 3 )

4 p,
Gp

(7)

~p
&44 =—

ap&+p

mero = 8(n+ p),
where m is the reduced atomic mass. The two-parameter
Keating model also implies that the three elastic con-
stants are related by

description of the flattening of the transversal acoustic
phonon branch near the zone boundary for Si, Ge, and
o.-Sn.

It has been shown that inclusion of further interaction
terms can improve the calculated dispersion. The phonon
frequencies of all four diamondlike crystals could be satis-
factorily described by a six-parameter model. For Si and
Ge the number of independent parameters could be re-
duced to four with almost the same accuracy. We point
out here that this model, although optimal for studying
Si and Ge systems, cannot repair the discrepancy in up in
carbon. Instead, one of the discarded interactions must
be reincluded.

The Keating model includes two of the leading terms
in a systematic expansion of the strain energy in terms
of valence forces, namely the nearest-neighbor (NN) two-
body force n and one three-body force P. The general
valence-force-field model has one NN two-body force (a)
and three distinct NN three-body forces (P, p, K), shown
schematically in Fig. 1(b). Of these oiily the angular
force term P is included in the Keating strain energy
[Eq. (5)j. The two neglected three-body terms describe
the correlation of the angle distortion with the length
change of one leg,

2+44(+11 + +12) = l.
(~» —~») (~»+ 3~») (10)

w~ = ) 2A(r, )A(r;~r, g),

This condition is well satis6ed for the diamond-structure
semiconductors. Using the measured elastic constants,
the left hand side of Eq. (10) gives 1.00, 1.01, and 1.07,
for diamond, Si, and Ge, respectively. This confirms that
all three elastic constants can be well described although
only two fitting parameters are available.

Note that the bonds between two group-IV elements
can have a significant polarity. The effective force con-
stants a and P account only for the short-range part of
the electrostatic forces whereas the long-range electro-
static forces which arise for polarized bonds are neglected
in the Keating model. In general the eKect of long-range
interactions on the strain energy of group-IV compounds
is expected to be small, but these forces can become im.—

portant for an exact description of the phonon dispersion.
For instance, they cause the splitting of the longitudinal
and transversal optical phonon frequencies at I' in P-SiC.

and the correlation between the length changes of two
neighboring bonds,

In an investigation of the role of the difFerent three-
body forces in Si and Ge, Sui and Herman found that
the length-length correlation 7 is important for an ac-

2. Improvement of the two parameter -model
for diamond

For the rest of this subsection, we digress to the topic of
improving the two-parameter Keating model by adding
additional force constants. The main features of the ex-
perimental phonon spectrum are reproduced within the
simple Keating model Btted to the elastic constants, but
there are considerable deviations in certain regions of the
Brillouin zone. The major deviations are (i) the zone-
center optical phonon &equency ~p is overestimated by
17%, 6%, and 1% for C, Si, and Ge, respectively (this
means the phonon force constant is too large by 37%
in diamond); and (ii) the Keating model gives a poor

FIG. 1. Schematic representation of nearest-neighbor
forces: (a) the two-body force, (b) the three-body forces, (c)
a speci6c four-body force.
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curate overall representation of the the phonon disper-
sion curves. Furthermore, it has been determined that
a four-body force K [Fig. 1(c)] is needed to describe
the zone-boundary softening of the transverse acoustical
branch, ' whereas the length-angle correlation p can
be neglected. Trying to fit diamond using these param-
eters, we have found that the discrepancy in up cannot
be removed. On the other hand, we have seen that all
four quantities Cqq, Cq2, C44, and ~p can be described
simultaneously to good precision using the three force
constants a, P, and p. Since the zone-boundary soften-
ing is small for diamond, this gives a model with good
overall agreement.

To see this, consider the expressions for the elastic con-
stants and the zone-center optical phonon within this "o,,
P, p" model:

Gp
(14)

4np —p
ap(n + P + p)

' (15)

m,~,' = 8(n + P + p) .

In analogy to Keating's relation (10) for the three elastic
constants, one obtains a relation between C~~, Cq2, C44,
and (dp.

4gC44 = 1, (17)2(&ii —&i2) (|-"i2 + rI) —
[rL

——,'(&ii + &i2)]'

where rL = m, wo/8ao. For diamond, Si, and Ge the left-
hand side evaluates to 0.97, 0.97, and 1.06, respectively,
using the experimental data. This shows that all four
quantities can be reproduced simultaneously even though
only three parameters are available.

Based. on these results, a relatively clear picture
of the difFerent three-body force terms results. The
length-length correlation w accounts for the tendency
to strengthen neighboring bonds when one bond is
stretched. The length-angle correlation p describes the
tendency to reduce the bond length when the bond angles
are increased from perfect tetrahedral bonding (sp ) to-
wards planar bonding (sp ). Whereas the force constant
~ was shown to be important for an overall improvement
of the fit to the Si and Ge phonon dispersion curves,
the force constant p is needed for a simultaneous fit of the
elastic constants and the zone center optical phonon in
diamond. The four-body force r can account for the re-
duced stability of the tetrahedral network with increasing
metalicity of the atoms, an efFect which can alternatively
be described by the adiabatic motion of bond charges.

Thus, by including additional force constants we can
overcome most of the shortcomings of the two-parameter
Keating model. However, in the present study the in-

tent is to use the model as an extrapolation scheme &om
simple structures, i.e. , the strained pure materials, to
complicated structures such as alloys with large internal
strain. Such an extrapolation becomes more uncertain
when more parameters are introduced. Therefore, the
following discussion is restricted to the two-parameter
Keating model, keeping in mind the limited accuracy for
the description of the full phonon dispersion.

C. Anharmonic Keating model

Abini. tio catcuLation of input data

The distortion of the local bonding geometry can be
very large in alloys such as Siq C and Ge~ Sn in
which the constituents have strongly difFerent sizes. Such
large distortions cannot be realized experimentally by ap-
plying external strain to the pure components and zinc-
blende compounds. The advantage of 06 initio calcu-
lations is that reliable results can be obtained for any
possible strain including large negative pressures.

The full-potential linear muKn-tin orbital method
(FP-LMTO) was used for all ab initio calculations. Tech-
nical details are similar to those in previous calculations
for diamond and Si, P-SiC, and n-Sn. The equal-
sized almost touching muffin-tin spheres (including two
empty spheres per unit cell) were scaled with the lattice
constant. The LMTO basis consisted of tripled 8, p, and
doubled d functions on the atoms with none placed on
the empty spheres. The charge density was expanded in
spherical Hankel functions up to 8 „=6. The Ceperly-
Alder form for the I DA exchange-correlation potential
was used. All calculations were nonrelativistic except
for those cases which involved Sn, which were treated
in the scalar-relativistic approximation. As discussed in
Ref. 16, the results for o.-Sn depend to some extent on
the way in which the corelike Sn 4d states are treated.
Here, these were treated as semicore states in a second
energy panel. The same was done for the Ge 3d states.

Calculations were done to obtain the the lattice pa-
rameters, the elastic constants, and the zone-center opti-
cal phonon frequencies for the diamond phases of C, Si,
Ge, and Sn and for the zinc-blende compounds of these
elements. The results for the diamond phases and for
P-SiC are summarized in Table II together with experi-
mental values. There is a very good agreement between
experiment and theory for all the considered quantities.
Calculated elastic constants B and Cqq —Cq2 and phonon
frequencies ~p for other hypothetical zinc-blende struc-
tures of group-IV elements are given in Table III.

The calculated properties were used to fit the in-
teratomic force constants within the standard two-
parameter Keating model. Hereby n and P were deter-
mined from a least-squares fl.t to the elastic constants B
and C~~ —C~2 and the squared phonon frequencies up.
For the difficult case of diamond (see the preceding sec-
tion) this gives B = 376 GPa, Cii —Ci2 ——891 GPa, and
too ——43.4 THz. These values deviate up to 15'Fo from the
experimental values (442 GPa, 951 GPa, and 39.9 THz,
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TABLE II. Calculated lattice constant, elastic constants, and zone-center optical phonon fre-
quencies for C, Si, Ge, n-Sn, and P-SiC. Experimental values are given in parentheses.

a (Bohr)

B (GPa)

Cl1 C12 (GPa)

C44 (GPa)

(u~o(I') (THz)

C
6.68

(6.75)
467

(442)
955

(951)
581

(577)
39.8

(39.9)

Si
10.21

(10.26)
96

(98)
101

(102)
81

(80)
15.6

(15.5)

Ge
10.66

(10.68)
74

(76)
83

(82)
70

(68)
9.1

(9.1)

Sn
12.27

(12.26)
43

(48)'
38

(40)'
37

(36)'
5.9

(6.0)

SiC
8.17

(8.24)
229

(225)'
267

(248)
256

(256)'
24.3

(23.9)'

Landolt-Bornstein (Ref. 17).
For a discussion of experimental values, see Ref. 15.
Reference 18.

respectively). The obtained force constants and the cal-
culated equilibrium bond length are given in Table IV.
This two-parameter model is the starting point for the
anharmonic generalization described next.

g. Scaling laws for the force constants

The Keating potential as introduced in Eq. (5) was
designed to describe correctly the lowest-order contribu-
tion to the strain energy, i.e., terms which are quadratic
in the distortion of the equilibrium geometry. Since the
bonding curve of a crystal deviates considerably from the
quadratic form for large distortions of the crystal volume,
it is obvious that higher-order terms in the strain energy
must be included for a reasonable description of large de-
formations of the atomic structure. One way to include
higher-order terms is to use force constants which depend
explicitly on the local geometry. Within the local picture
of a valence-force model the two-body force constant

on the enclosed angle 0.
In order to study the bond length dependence of the

force constants we have calculated the elastic constants
for a large range of lattice constants, i.e. , for extremely
large positive and negative hydrostatic strain. In the
following we discuss the results for Si. The same cal-
culations carried out for diamond, Ge, and P-SiC then
confirmed the conclusions concerning the scaling behav-
ior of the force constants.

We start with the discussion of the bond-bending pa-
rameter P. Equation (7) shows that P is closely related to
the elastic constant Cqq —Cq2 which is associated with the
strain e = (ez, e2, es, e4, es, es) = ((/2, (/2, —(, 0, 0, 0).
At the equilibrium volume, various other distortions can
be used to obtain the same energy change to second or-
der, for example one which strictly conserves the vol-
ume to all orders. Away from the equilibrium volume
these distortions lead to different results (see the next
subsection). To isolate the dependence of P it is more
convenient to use a distortion which strictly maintains
the bond lengths, given by eq —— e2 —— gl + ( —I,

should depend on the interatomic distance r;~ only
whereas the three-body force constant

depends in general on the two involved bond lengths and

TABLE IV. Keating parameters a. and p as determined
from a least square fit to the calculated elastic constants
and zone center optical phonons and equilibrium lattice con-
stants of the corresponding diamond and zinc-blende struc-
tures. Force constants and lattice constants are given in
atomic units.

GeC
GeSi
SnC
SnSi
SnGe

B (GPa)
188
85
133
63
56

C» —C» (GPa)
222
95
122
61
53

~vo(I') (THz)
21.2
12.6
19.9
10.9
7.5

TABLE III. Results of ab initia calculations for the elastic
constants B and Czz —Czz and phonon frequency ufo(I') of
hypothetical zinc-blende structures. The data were used to
fit the force constants given in Table IV.

C
Si
Ge
Sn
SiC
GeC
GeSi
SnC
SnSi
SnGe

ao
6.68
10.21
10.66
12.27
8.17
8.54
10.43
9.14
11.25
11.44

0.137
0.058
0.049
0.034
0.088
0.081
0.053
0.074
0.045
0.041

0.101
0.017
0.015
0.008
0.036
0.031
0.017
0.019
0.012
0.010
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es ——gl —2( —1, e4 ——es ——es ——0. Substituting this
distortion into the Keating energy [Eq. (5)) and differen-
tiating gives

d2W .&(~) =: t-"(n)
0

(20)

Thus the scaling of the force constant P can be obtained
directly &om the scaling of G. From ab initio calcula-
tions for difFerent crystal volumes V we have found that
G(V) is proportional to the inverse of the square of the
crystal volume. Consequently G depends on the lattice
parameter a via the power law

G(a) =
(
—

) G(ao) (21)

and P(a) scales as o. . According to Eq. (19), the bond-
bending force constant P;~y is assumed to be a function
of the lengths r;~ and r,k of the two involved bonds. For
inhomogeneous distortions the two bonds will generally
be stretched difFerently. Generalizing the scaling to this
case we assume

/ o) ) 7/2

(22)

where pzj and pzj are the strained and unstrained bond
lengths, respectively. Although other ways to average
could also be used, this choice seems most natural be-
cause it is compatible with the derived scaling law. Note
also that for a heteropolar crystal such as SiC, the calcu-
lation of G can only give the average of the bond-bending
force constants Ps; ~ s; and Pc s; C. Due to lack of ad-
ditional information we have taken the two constants to
be equal.

Next, we use the bonding curves as obtained from the
ab initio calculations to determine the bond-length de-
pendence of the bond-stretching force constant o.. Cal-
culated total energies for a wide range of crystal volumes
are shown in Fig. 2 relative to the total energy Et~t(Vp)
at the equilibrium volume V0. In the Keating model
the bonding curve is mainly determined by the bond-
stretching force constant o. and to a smaller extent by

the bond-bending force constant P. Assuming a power
law

(23)

and using the previously determined scaling for P, we
And very good agreement with the DFT results for n = 4.
Results of the Keating model with force constants scaled
according to Eqs. (22) and (23) are shown as a solid line
in Fig. 2. The model reproduces DFT results far beyond
the harmonic range. It should be mentioned that the
exponent n = 4 in Eq. (23) guarantees that the energy
goes to a constant value for large lattice constants, i.e. ,
in the limit of free atoms. However, this limit is not
expected to reproduce the correct binding energy of the
crystal since the spin-polarization of the free atoms and
the dehybridization of the Sp orbitals are not included
in Keating's model.

As a first test of the obtained scaling laws for the
force constants, we have calculated the zone-center op-
tical phonon frequencies cu0 for difFerent crystal volumes
V using ab initio DFT and the Keating model with the
scaled force constants. We find comparably good agree-
ment as for the bonding curve (Fig. 3). Also, the mode
Griineisen parameter p = —dingo/din V is well repro-
duced as can be seen from the values given in Table
V, showing that u0 scales as the reciprocal volume.
Note that the standard Keating model obtains the mode
Gruneisen parameter with the wrong sign.

Up to now we have not specified any dependence of
the force constant P on the bond angle tI). For the consid-
ered cases including lattice deformations with large-angle
distortions the ab initio results could be well reproduced
when the force constants depend on the bond length only.
However, the model in this form does not give correct val-
ues for the uniaxial deformation potential of zone-center
optical phonons under a (001) distortion. In order to fit
this quantity [denoted by (p —q)/2uio2] we must include
the angular dependence of P. Assuming a power law

we have fitted the exponent v for Si and Ge to repro-

.7-
G) 6

3
.2

. 1

LLI 0
1.0

V/V,
1.5 2.0

700

E 600

o 500

400

1.0
V/V,

1.2

FIG. 2. Energy-volume curve for Si determined from ab
initio DFT calculations (circles) and from the anharmonic
Keating model using the universal scaling parameters (line).

FIG. 3. Volume dependence of the zone-center optical
phonon frequency in Si as determined from ab initio DFT
calculations (circles) and from the anharmonic Keating model
(line) .
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duce the measured uniaxial phonon deformation poten-
tials given in Table V. The results of ab initio DFT
calculations for the uniaxial phonon deformation poten-
tials are close to the experimental values. However, the
obtained exponent v depends strongly on the values of
the force constants n and P. These can be different de-
pending on whether more emphasis is put on the elastic
constants or the phonon frequencies in the 6t. No uni-
versal scaling law was found for the angular dependence
of the bond-bending force constant P.

The Anal anharmonic Keating model is given by the
usual expression [Eq. (5)], but with the constants cr and
P substituted by the simple functions of the bond lengths
(and possibly the bond angle) which were derived in this
section. For a given set of Keating parameters the har-
monic and anharmonic models agree to second order in
the atomic displacements, as can be seen from Eq. (5).
Thus both models give the same results for the equilib-
rium geometry, the phonon dispersion, and the elastic
constants. Any inadequacies in the harmonic model for
these quantities (say, a wrong description of the soft zone-
boundary TA phonon modes) are not fixed by putting in
the scaling of the force constants. Instead, the gain is a
more correct description of quantities which are sensitive
to anharmonic terms. The simplest example is the sub-
stantial improvement in the mode Gruneisen parameters
mentioned above. Another such property is the change
in an elastic constant with the volume, considered next.

expansion of the energy per volume m = W/V to second
order in the strain e = (eq, . . . , es) has a linear as well as
a quadratric term:

to = 3e Ce —p(V)(ez+ e2+ e3) (25)

where C is the usual 6 x 6 matrix of elastic stiÃness con-
stants (with independent components Cjq, Cqz, and C44
for a cubic system). The coeKcient of the linear term
—p(V) = VOto/BV is the negative of the external pres-
sure needed to keep the crystal at the volume V, as fol-
lows from cubic symmetry and by considering a homo-
geneous volume change. A "special-purpose" distortion
(for example, one which strictly maintains the volume
or the bond lengths) is described by strains which are
functions of some parameter (,

e = f„(()= a ( + 6 (
The quadratic terms b„(2modify the quadratic term in
the energy, as follows by substituting e in Eq. (25):

(1 T OtU
to =

~

—a Ca+ V (&g + &2 + 4) ~

('
)(2 BV

—p(V) (aq + a2 + a3) (, (26)

where a = (aq, . . . , as). For the bond-length conserving
tetragonal distortion used above this evaluates to

~ = 4(C» —C») + 4p(V) &' (27)

8. Teat of the model

TABLE V. Mode Gruneisen parameters and uniaxial
phonon deformation potentials (p —q)/2uo for (001) distor-
tions for Si and Ge. Results of LDA calculations are compared
with experimental values and with results from the scaled
Keating model. The exponents v were fitted to reproduce the
experimental uniaxial deformation potentials.

p (LDA)
p (exp)
p (Keating)
(p —q)/2(uo (exp)

Si
0.98
0.98
1.03

0.23
0.93

Ge
0.99
0.96
1.02
0.23'
1.0

Reference 20.
Reference 21.
Reference 19.

The anharmonic Keating model introduced above was
based on ab initio calculations for selected long-wave dis-
tortions in bulk crystal under extreme conditions. In the
following we (i) check the results obtained for the full set
of elastic constants and (ii) test the model against addi-
tional ab initio calculations for inhomogeneous systems
with large local strain fields.

To check the elastic constants, it is useful to have an
expression for the strain energy for a given distortion
when the crystal is not at its equilibrium volume. The

The first term in the brackets is the result when the strain
is simply e = (—(/2, —(/2, (, 0, 0, 0). Alternatively, for
the strictly volume-conserving tetragonal distortion ei ——

e2 ——(/2, e3 ——(1 + (/2) —1 we obtain the same
expression but with a negative sign of the pressure term.
Similarily, the volume-conserving trigonal distortion is
eq ——e2 ——e3 ——(1+3(/2) / +(/2 —1, e4 ——es ——es ——(
and the energy change is

3 C 3p(V) (2 (28)

Figure 4 compares for the case of silicon elastic con-
stants and the pressure obtained with the anharmonic
Keating model with the ab initio results as a function of
the volume. There is very good agreement over the whole
range of considered volumes, showing the validity of the
scaling laws for n and P. For comparison, in a harmonic
model the pressure goes linear with the crystal volume
and the elastic constants are almost independent on vol-
ume. Note that whereas a scaling of V was found for
the energy change for a tetragonal distortion at constant
bond length [the quantity |(V) introduced above], the
related elastic constant Cii —Ci2 behaves quite diKer-
ently. To a reasonable degree, we And that Cii —Cq2
and C44 scale as approximately V and V, respec-
tively. These scaling laws are difFerent &om an estimate
using Harrison's tight-binding model which gave an a
scaling for C~ i —C~2 based on a comparison of diferent
materials at their equilibrium lattice constants.

As a test case for inhomogeneous systems, we consider
three arrangements of substitutional carbon atoms in a
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FIG. 4. Comparison of the elastic constants and the pres-
sure as a function of the volume as determined using the ab
initio calculation (circles) and the anharmonic Keating model
(line). These were obtained by calculating the quantities
shown as dashed lines and as open circles and applying the
transformations given in the text. The quantity calculated
directly was the stiffness for a distortion which conserves the
bond lengths (for Cqq —Cq2) and the volume (for C44).
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FIG. 5. Energy of formation for different arrangements of
substitutional C atoms in a Si lattice: (a) single substitu-
tional C impurity in a 32-atom supercell, (b) (001) monolayer
of C atoms in a Si lattice, (c) half monolayer of a C atom
arranged on a (001) plain in a (v 2 x ~2) unit cell. The re-
laxation of the local geometry is always expressed by a single
parameter ( as specified in the main text. Insets indicate the
nearest-neighbor environments of the C atoms (black) for the
three cases. Results of ab initio calculations (full symbols) are
differences between the total energy of the supercell and the
total energies of the constituent atoms in the Si and P-SiC
phases. All supercells contain one carbon atom. Open sym-
bols are results of the anharmonic Keating model. Lines are
indicated to guide the eye.

Si lattice. Local deformations are very large in this case
because of the short Si-C bond. Details of the ab initio
FP-LMTO calculations were as described in Ref. 24.

First, a single C atom in a Si lattice is considered, rep-
resented here by a supercell of 32 atoms. The energy per
C atom is shown in Fig. 5(a) when the nearest-neighbor Si
atoms are displaced towards the C atom. All other atoms
stay at the ideal lattice positions. The geometry param-
eter ( describes the relaxation of the Si—C bond length
ds;c = ds;(I —(), where ds; is the band length in a, Si
crystal. Second, we consider a hypothetical (001) mono-
layer af C atams in a Si lattice [Fig. 5(b)]. The spacing
h = as, (4 —() between the C layer and the neighboring Si
layers is varied as described by the parameter (. Third,
half a monolayer of a C atom is arranged on a (001) plane
in a (v 2 x ~2) unit cell. Energies for different spacings
between the C-containing layer and the neighboring Si
layers are given in Fig. 5(c). The energy was minimized
respective to the x and y coordinates of the Si atoms in
the adjacent layers. All energies of formation given in
Figs. 5(a)—5(c) are differences between the total energy
af the supercell (containing one carbon atom) relative to
the pure Si and P-SiC crystals.

For comparison, the figure also shows the energies ob-
tained using the standard Keating model for the same

force constants. The anharmonic terms lead to large
improvement in the calculated energy surface. The po-
sitions of the minima and the curvatures are well re-
produced, showing that relaxed geometries and phonon
&equencies are reliable. However, the absolute values
of the energies obtained &om the anharmonic Keating
model are systematically about 50 mRy too low. This
discrepancy is mainly due to the limitations of the tmo-
parameter Keating model. Similar to the case of diamond
discussed in Sec. IIB2, the elastic constants and zone-
center optical phanon of P-SiC cannot be reproduced si-
multaneously using only a. and P as fit parameters. Con-
sequently the force constants determined &om a fit to the
elastic constants and the zone-center optical phonon (see
Table IV) lead to a bulk modulus which is about 20% too
small. This Keating model underestimates the energy
cost for stretching the Si-C bonds when the C atom is
incorporated into the Si lattice. The di8'erence between
the energies obtained &om DFT and &om the Keating
model are not due to chemical contributions. Chemical
contributions to the formation energy could arise &om
difII'erences between the bonding of substitutional C in
Si and the bonding in P-SiC. However, these terms are
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small as is evident from the fact that the energy for the
ideal unrelaxed positions can be well estimated from the
work needed to strain SiC to the Si lattice constant.

III. OPTICAL PHONONS IN STRAINED
Si~ „CeC„LAVEKS

tained from the diagonalization of the dynamical matrix.
Raman selection rules are incorporated as in Ref. 30.
Assuming the same polarizability for all atoms, the ofI'-

resonance Raman intensity is given, up to a multiplica-
tive constant, by

The preceding section has presented the anharmonic
Keating model and has shown that the energy of ab-initio
calculations can be modeled accurately even for the ex-
treme case of mixtures of Si and C. This gives us the con-
fidence to use the model to study the phonon frequencies
in disordered alloys containing Si, Ge, and C. When Ge
atoms are added to a Si crystal, the Si-Si phonon modes
shift to lower frequencies. A starting point is to attribute
this to a softening of the Si-Si bond. s as they adapt to the
larger average lattice constant in the alloy. Interestingly,
however, a similar softening is seen for the Ge-Ge modes
when Si atoms are added to a Ge crystal, even though
the Ge bonds become shorter in the alloy. Menendez et
al. could explain the measured shifts qualitatively as a
competition between confinement and strain eKects. The
aim of our calculations is to confirm this explanation and
to quantify the diferent contributions.

A. Calculation af R,axeman spectra

The optical phonon spectra of alloys of group-IV ele-
ments are characterized by individual branches in the vi-
bration spectrum which correspond to the diferent types
of nearest-neighbor bonds in the alloy. Thus the Raman
spectrum of a Si» Ge alloy reveals three main branches
corresponding to Si-Si, Si-Ge, and Ge-Ge modes. In a di-
lute Si» „C„alloy,Si-Si, and Si-C phonons can be identi-
fied; while C-C modes are in principle possible, they are
not observed due to the low probability of C-C nearest-
neighbor pairs. The phonon spectrum of an AB alloy
with large differences in the atomic masses cannot be de-
scribed by any model which does not explicitly consider
AA, AB, and AB nearest-neighbor pairs. For Si» Ge
alloys it was demonstrated by de Gironcoli and Baroni
that the coherent potential approximation (CPA) can-
not account for the three-mode behavior of the optical
phonons. Consequently, a more appropriate theoretical
description of the phonon spectra is based on the actual
microscopic arrangement in a supercell with several hun-
dred randomly distributed atoms.

To simulate the random alloy, we use 512-atom su-
percells with the atoms distributed at random over the
lattice sites according to the stoichiometry. For a given
configuration the atomic positions are relaxed using the
anharmonic Keating model until the forces vanish. The
resulting microscopic geometry, especially the distribu-
tion of nearest-neighbor bond lengths as a function of
the stoichiometry, has been discussed previously. For
the relaxed atomic positions we directly calculate the full
dynamical matrix as the second derivative of the Keat-
ing energy. Phonon frequencies and eigenvectors are ob-

H. Si-Si and Ge-Ce xnedes in Sip Ce

Phonons of Si» Ge alloys have been widely studied
exper imentally2 and theoretically. ' '3 Here we fo-
cus on the d.ependence of the Si-Si and Ge-Ge Raman
peaks on alloy composition and strain. The shift of the
Raman peak positions in Si» Ge alloys could be ex-
plained qualitatively as due to two efI'ects.

The first efI'ect is that alloy disorder efFectively confines
the Raman-active phonon modes. Since the Ge atoms
cannot follow the Si-Si vibrations and vice versa due to
ofI resonance, the Si-Si modes are confined to the sub-
space of Si-Si bonds. In this picture, some Si atoms now
have stationary (Ge) neighbors instead of Si atoms which

TABLE VI. Keating parameters a. and P in atomic units as
fitted to the optical phonons of Si, Ge, and zinc-blende SiGe.
The exponent v was fitted to the uniaxial phonon deformation
potentials of Si and Ge.

Si 0.058
0.052
0.055

0.014
0.012
0.013

0.5
0.4

where v runs over all phonon modes, u, is the z compo-
nent of the displacement of the atom at lattice site i, and
8, is +1 and —1 for the two fcc sublattices of the diamond
structure. The final Raman spectra are obtained by av-
eraging over typically 10 to 15 configurations of the 512-
atom cluster with a I orentzian broadening of 2 cm
For alloys containing carbon, the supercell contains only
a few C atoms and averages over 20—30 configurations
were needed to obtain smooth spectra.

In order to obtain the optimal accuracy for phonons we
have reca1 ulated the Keating parameters to reproduce
the optical phonon frequencies at the I and X points of
the Brillouin zone. Also, we have included the scaling
of P with the bond angle 0 to get the correct uniaxial
deformation potentials. These parameters for Si, Ge, and
SiGe are given in Table VI. Anharmonic scaling of the
force constants was used as described above.

A typical calculated Raman spectrum is shown in
Fig. 6 for a Sip srsGep ]yCp py2 layer on Si(001). The cal-
culation reproduces the characteristic peaks of the mea-
sured Raman spectrum. By analyzing the atomic dis-
placements for individual phonons the peaks can be as-
signed to Si-C, Si-Si, Si-Ge, and Ge-Ge modes as indi-
cated in the figure.
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FIG. 6. Calculated 6rst-order Raman spectrum of a ran-
dom substitutional Sip. s7sGep. iiCp, pi2 alloy layer on Si(001).

oscillate with opposite phase as would be the case in pure
Si, leading to a reduction of the restoring force and the
phonon &equency. As a complementary interpretation,
the site disorder in the alloy mixes optical phonons with a
nonzero momentum (and consequently lower energy) into
the Raman-active mode at I', again reducing the phonon
frequency.

The second efFect is that local strain shifts the phonon
frequencies. The characteristic bond lengths in a semi-
conductor alloy, i.e. , the Si-Si, Si-Ge, and Ge-Ge bonds in
Siq Ge, partially relax &om their characteristic value
in the ordered stoichiometric semiconductors towards an
average bond length in the alloy. ' ' This changes the
bond stiffness as is described by Gruneisen's parameter.
The shift of the Si-Si and Ge-Ge Raman peak positions
in a free-standing layer relative to the positions in pure
Si and Ge is thus the sum of two contributions which are
due to mass disorder and microscopic strain:

(&) = +~mass + +idrnicro

An additional shift occurs when the alloy is macroscopi-
cally strained by external stress, for example if the layer
is pseudomorphic to a substrate with a difFerent lattice
constant. The total Raman shift in this case is

(Z) A(4P (2 ) + Alurnscro )

i.e., the sum of the shift for the corresponding free-
standing alloy and a shift due to the macroscopic de-
formation.

The calculated shifts of the Raman peaks are sum-
marized in Fig. 7 for the free-standing (fully relaxed)
Si~ Ge alloys and for the biaxially strained layers when
these are pseudomorphic to Si(001). Available experi-
mental data are also shown. Both the Si-Si and Ge-Ge
&equencies show an almost linear dependence on the al-
loy composition with a maximal value in the pure mate-
rials. A substantially stronger dependence on the com-
position is found for the Si-Si mode. The macroscopic bi-
axial strain for pseudomorphic growth on Si(001) is seen

-20—
.0 .4 .6

Ge content x
1.0

FIG. 7. Raman peak positions of Si-Si (upper part)
and Ge-Ge modes (lower part) for free-standing (relaxed)
Si& Ge alloys and pseudomorphically strained layers on
Si(001) in dependence on the Ge content x. All frequencies
are given relative to the Si-Si and Ge-Ge frequencies in pure Si
and Ge, respectively. Measured frequencies for a free-standing
alloy taken from Alonso and Winer (Ref. 27) are shown as
6lled diamonds. Filled circles are experimental results for
pseudomorphically strained layers due to Tsang et al. Ref.
(29). Lines were fitted through the peak positions as calcu-
lated from the anharmonic Keating inodel (open symbols).

to harden both the Si-Si and the Ge-Ge modes. The
experimental results are reproduced very well.

Using the Keating model, we can explicitly separate
the Si-Si and Ge-Ge frequency shifts in free-standing
alloys i.nto the contributions due to mass disorder and
to microscopic strain. In two auxiliary calculations, all
bonds are taken to equal those of Si (respectively Ge) but
the mass disorder is retained. The atoms then lie on the
ideal lattice and are connected by equivalent bonds. Fig-
ure 8 shows that the mass disorder contribution A~
softens the frequencies of the Si-Si as well as the Ge-Ge
modes when the other atomic species is added. In a fur-
ther numerical experiment, the mass of the Ge atoms was
increased to infinity. This changes the phonon shifts by
less than 5'Pp, showing that the Ge atoms are essentially
immobile in a Si-Si vibrational mode. Altogether, the
suggested confinement effects are con6rmed.

The efFect of microscopic strain on the Raman &e-
quencies is the diff'erence of the fuH calculation (with
microscopic and mass disorder) and the model calcula-
tion with mass disorder only. Both Aw~ „andAw
depend almost linearly on the alloy composition x with
the slopes given in Table VII. The strain contribution
softens the Si-Si mode but hardens the Ge-Ge mode. As
expected, the Si-Si bonds are slightly stretched in the al-
loy in proportion to the Ge content which reduces the
bond stiffness. The compression of the Ge-Ge bonds in
the alloy causes a hardening of Ge-Ge phonon mode with
increasing Si content. In fact, for these modes the shift
can be deduced to within 10% using the expression for
the individual A-B' bond length as a function of the Ge
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FIG. 8. Calculated relative shifts of Raman peak positions
for Sii Ge layers as in Fig. 7 (diamonds). Additional calcu-
lations were done for hypothetical systems in which all bonds
are described by Si (respectively Ge) force constants and equi-
librium bond length but with randomly distributed Si and Ge
masses (crosses). Lines were drawn to guide the eye.

with e = —0.041x. In biaxially strained diamond or zinc-
blende structure crystals the zone-center optical phonon
splits into a singlet and a doublet state with &equencies
given by

Pcd„=imp —p(2tza + ezz) +, (ex' —ezz)
64)0

P
cats = cdo —'y(2ezz + tzz) —

2 (&za &zz)
3&0

(34)

Only mode u, is observed in Raman backscattering
z(x, y)z geometry. Using the phonon deformation po-
tentials of pure Si and Ge for the alloy Si-Si and Ge-
Ge modes, we obtain Aw „=—790~ cm and
—460m cm, respectively. These estimates are in good
agreement with the results of the full microscopic calcu-
lations (Table VII), showing that the macroscopic strain
shift in the alloy can be obtained using the phonon de-
formation potentials of the pure materials.

Expressed in compact form, the calculated overall shift
of the Si-Si peak when Ge is added and under biaxial
strain is

b,cu(x) = —69x —780' (in cm ), (35)

2Ci2
&xx =&yy =&) &zz =

where e = (a,„b—ai z)/ai
„

is given by the lattice mis-
match between the substrate and the epilayer. Assuming
Vegard's rule for the alloy lattice constant, a pseudo-
morphic Si Gei layer on Si (001) is biaxially strained

TABLE VII. Calculated relative shifts of Si-Si and Ge-Ge
phonon modes in Siq Ge as a function of the Ge content
and substrate-imposed biaxial strain (see text).

+is mass (Cm
I
)

+is micro (Cm )
&&macro (Cm )

Si-Si
-44x
-25x
-780m

Ge-Ge
-2S(1 —~)
14(1 —x)

-450 e

concentration and the mode Gruneisen parameters of
pure Si, respectively Ge. Overall, for the Ge-Ge mode
the confinement and microscopic strain eKects shift the
frequency in opposite directions and partially compen-
sate. For the Si-Si mode, both eKects have the same
sign, resulting in the observed stronger dependence on
alloy composition.

Finally we discuss the additional shift due to the
macroscopic biaxial strain when the layer is pseudomor-
phic to a substrate with di8'erent lattice constant. For
a pure semiconductor, such eKects are captured in the
phonon deformation potentials. While we expect a lin-
ear relationship between the macroscopic strain and the
phonon shift in the alloy, it is not clear whether the coeHR-

cient can be taken Rom the pure materials. For the case
of (001) oriented interfaces considered here, the strain
tensor is diagonal with the components

where e = (a,„b—ai r)/ai z is the substrate-imposed
strain and x is the Ge content. This compares well with
the experimental result

Au(x) = —68x —830e (in cm ), (36)

as summarized in Ref. 35.

C. Si-Si mode in alloys containing carbon

Basically in the same picture as discussed above, the
change in the phonon spectrum when alloying with car-
bon can be analyzed in terms of strain shifts and confine-
ment eKects. The main di6'erence to the SiGe system is
in the magnitude of the two e8'ects. Whereas a single C
atom causes a large change in volume and consequently a
large strain shift, the confinement e8'ect per carbon and
germanium atom is approximately the same. This is be-
cause neither the C nor the Ge atoms can participate in
the Si-Si vibrations.

For a free-standing Si~ y Cy alloy, the scaled Keating
model predicts a shift of the Si—Si mode by A~r'(y) =
y x 210 cm, of which the confinement contribution is
about —y x 56 cm . For the case of Ge in Si, the cor-
responding coeKcients were —69 cm and —44 cm
respectively. Thus, for carbon alloying the microscopic
strain contribution is about ten times larger and essen-
tially swamps out the confinement eKect.

The e8'ect of substrate-imposed biaxial strain can again
be estimated using the phonon deformation potentials of
pure Si. Despite the large local distortions in a random
Sl] yCy alloy, the scaled Keating model shows that the
average lattice constant a[Sii „C„jis given to a good
accuracy by Vegard's law
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PIG. 9. Calculate(i relative shifts of the Si-Si Raman peak
for relaxed Sii „C„alloys(diamonds) and for pseudomorphic
Sii „C„(squares)and (Sip g23Gep. p77)i gC& (circles) layers
on Si(001) in dependence on the C concentration y. Experi-
mental results due to Menendez et al. (Ref. 35) for pseudo-
morphic (Sip.g23Gep 077)1 „C„layers on Si(001) are included
as filled. circles.

u[Sii yCy] = a[Si] —2y(o[Si] —a[SiC]) (37)

applied to a mixture of Si and P-SiC. From Eqs. (32) and
(34) the shift is estimated to be Aw „=—315y cm
for a carbon-containing layer pseudomorphic on Si (001).
This agrees well with the result of the microscopic calcu-
lation Aw „=—300y cm shown in Fig. 9.

To conclude this section, we consider the case of a
ternary Sij „GeC„alloy. One question of interest is
whether the efFects due to admixing of Ge and C atoms
are additive, i.e. , if there is a relation

+07sicec(&, 9) = +07siae(&) + +~sic('g) (38)

In this paper, the two-parameter Keating potential for
the strain energy of diamond-structure crystals was gen-
eralized to include anharmonic efFects. The aim was to

Calculated frequencies of Si-Si Raman peaks for
(Sio 023Geo 077)i „C„layers on Si(001) are in quantita-
tive agreement with measured peak positions of Menen-
dez et al. as shown in Fig. 9. Agreement is somewhat
worse to another measurement for the single stoichiom-
etI y Slo 878Geo ] ] Co 0'i2 which gave a shift of —6.5 cm
relative to pure Si, as compared to the calculated value of
—4.7 crn . As seen from Fig. 9, the addition of Ge to the
Sii „C„alloyevidently shifts the phonon peak by a value
which is almost independent of the carbon concentration,
namely by —2.7 cm . This agrees with the results of
Sec. IIIB which predict a shift of —2.8 cm when go-
ing &om pure Si to an alloy containing 7.7% germanium.
Since the case considered here involves all three efFects
(microscopic and macroscopic strain as well as confine-
ment), we conclude that all these terms are additive.

obtain a correct description of group-IV semiconductor
alloys made from constituents with large difFerences in
the atom sizes, primarily those containing carbon. Ab
initio density-functional calculations were used to gen-
erate input data, which are difBcult to obtain from ex-
periment. The elastic properties of Si, C, Ge, and SiC
were determined as a function of the crystal volume when
this varies over a very large range. This information
was used to obtain the Keating parameters n and P as
function of the volume. Interestingly, these were found
to have the same behavior for all four studied semicon-
ductors, namely to scale as the fourth and the seventh
power, respectively, of the inverse nearest-neighbor dis-
tance. By taking this scaling as universal and including it
in the (otherwise unchanged) Keating energy expression,
we obtain a model which duplicates the standard model
to second order in the atomic displacements but gives
considerably difFerent results when these displacements
are large. Tests showed that the new model is much
more successful in describing properties such as the elas-
tic constants, phonon frequencies, or relaxed geometries
when large distortions are involved.

The two-parameter Keating model, having only two
fit parameters, cannot describe all features of the energy
surface correctly at the same time. Thus, difFerent sets
of Keating parameters will generally be used, depending
on whether the model was tuned for optimal description
of the elastic constants or the phonon frequencies, or ac-
cording to some other criterion. In eKect, we have derived
a simple procedure by which anyone can modify their fa-
vorite Keating model to make it applicable over a wider
range of distortions.

This model was used to study the Raman-active opti-
cal phonon frequencies in disordered alloys containing Si,
Ge, and C. Among other arguments, the standard Keat-
ing model obtains the wrong sign for the Inode Gruneisen
parameter in the pure materials and therefore the anhar-
monic model (which reproduces the experimental values)
is appropriate here. The phonon frequencies for the alloy
were determined by direct diagonalization of the dynami-
cal matrix at the relaxed structure for supercells with 512
atoms, whereby the lattice sites were occupied randomly
according to the stoichiometry. The results compare very
well with available experimental data.

Based on previous discussions, the shifts of the phonon
frequencies in the alloy are separated into three contri-
butions: (i) confinement of the vibration to the sites of
the relevant type, (ii) microscopic strain, i.e., the harden-
ing or softening of the interatomic bonds as these change
their length towards a common value, and (iii) a shift
due to macroscopic biaxial strain if the layer is pseudo-
morphic to a substrate with a different lattice constant.
An advantage of the calculation over experimental tech-
niques is that these contributions can be quantified sep-
arately and then compared to predictions &om simpler
models. We And thar. the microscopic strain contribution
can be described using the measured mode Griineisen pa-
rameters for the pure materials together with the param-
eter which quanti6es the degree of relaxation towards a
common bond length in the alloy. Similarly, the efFect of
the macroscopic strain is well reproduced by using Veg-
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ard's rule to estimate the lattice mismatch to the sub-
strate and applying the measured deformation potentials
in the pure materials to the ensuing strain.

In the context of the two strain contributions, the re-
sult of our simulation is to demonstrate that simple de-
scriptions based on phonon deformation potentials for
the pure materials can be used to describe the alloy. For
the confinement e8'ect, the calculations yield information
which is not obviously available from experiment, namely
the coefFicients which quantify the shift of the diferent
modes due to mass disorder.

Note added in proof. A previous paper has followed
the alternative path of directly fitting the numerous an-
harmonic force constants to a large database of theoret-
ical and experimental values.

The contributions Ei and Fij are added to the total en-
ergy E and to the forces on the atoms F, as

Em E+E j,
Fi m Fi+ Fi-,
Fj —+ Fj —Fij .

Still for the same pair (i, j), let k also run over the neigh-
bors of i in such a way that each pair (j, k) appears only
once (that is, 1 & j ( k ( 4 if the neighbors are num-
bered from 1 to 4), let 0 be the bond angle, and evaluate
the quantities

APPENDIX Eijk

0 0rij rik —ri r;k ,
22Pijkto

For convenience, we include expressions to calculate
the forces within the anharmonic Keating model when
the scaling with parameters m, n, and v is used. Note
that parameter v depends on the site because no univer-
sal scaling was found for it. The equilibrium bond length
pzj is here denoted by d,j . Let i run over al 1 sites of the
lattice and let j run over the four neighbors of site i. For
each such pair do the following:

ijk
2

~i~ rij+
0 sin 0 r~ rik

V7lQJ

ik
rik cos 0

2 )
ik

E m E+ Eijk,
Fi m F, +F'.~ +Fk~

Fk mFk —Fk )

as well as Fk by exchanging j and k in the last equation.
These values are added to the energy and the forces as

rij
rij )

giving the total energy and forces when the loop over i
is completed.
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