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The conventional giant oscillator strength model of the two-photon (p) generation of an excitonic
molecule (m) attributes this process to the z-p optical conversion (where x is the exciton), i.e. , to
the scheme p + p —+ x + p —+ m. Recently [A.i . Ivanov and H. Haug, Phys. Rev. 8 48, 1490
(1993)], it was argued that a more adequate description can be done within the bipolariton model
which follows the other scenario: p + p —+ x + x ~ m, where the Coulombic resonant coupling of
the x components of the two interacting polaritons gives rise to the m formation. In the present
work, we develop and analyze for the deuteron potential of an x-x interaction an exactly solvable
bipolariton model of the two-p m generation. This model treats an m optical creation in terms of
the polariton-polariton resonant scattering and includes both the x-p polariton coupling and the x-x
attraction beyond a low-order perturbation theory. The bipolariton model and the giant oscillator
strength model give difFerent descriptions of the third-order m nonlinear optical susceptibility y
and of the two-p m absorption. With the high-precisi. on measurements in CuCl of the m radiative
width I™,y, and the two-p m absorption coeKcient K, we make a systematic comparison
between the experiments and the two models, which allows us to unambiguously discriminate both
models in favor of the bipolariton one.

I. INTRODUCTION

~(p) + ~(k) : *(p) + ~(k) m(K = p+k) .

Here, p, k, and K are the crystal momenta (5 = 1) of
two incoming p s and an m, respectively. Within the
sequence of Eq. (1), one can either treat the m(K
p + k) as a final product of two-p absorption (regime of

At low temperatures, excitonic molecules can be ob-
served in luminescence of some direct band gap com-
pound semiconductors of the groups I-VII and II-IV,
e.g. , CuCl, CuBr, CdS, etc. The I,'s can also be res-
onantly involved in various nonlinear optical processes
such as two-photon absorption, hyper-Raman scattering,
and four-wave mixing (for a review of biexciton optics
see, e.g. , Refs. 1 and 2). The high efliciency of these
nonlinear processes has been attributed to (i) the virtual
excitation of a transverse x with the energy wq, which
is nearly resonant with half of the m total energy 0 /2
and (ii) a giant oscillator strength of the x -+ I, optical
transition. The latter transition is described in terms of
an optical conversion of the x into m, i.e. , x+ p ~ m,
where p refers to a photon. Thus, the m optical creation,
real or virtual, follows in this "giant oscillator strength
model" the two-step elementary scheme:

the real excitation) or continue further in a third step
m(K = p+ k) -+ z(pi) + p(ki), which corresponds to
hyper-Raman scattering, if the process is phase coherent,
or to m luminescence, if the phase is lost.

An optical conversion x+ p ~ m is described in terms
of the interaction ~Mi(p, k)A +&ni, B&, where A, B,
and o. are the m, x, and p operators, respectively, and V
is the volume of a crystal. The matrix element Mi(P,lk)
is given by

(2)

where 4 (E) is a Fourier transform of the internal m
wave function, describing the relative motion of the two
x's, 0 is the polariton parameter determined through
a transverse-longitudinal splitting ~tq by 0, = /2~ttwt.
The underlying physical picture of the x —+ m optical
conversion is that in order to create an m one needs only
to excite optically another x within spatial volume a
around an already existing erst x. Formally, a giant os-
cillator strength f~ ~

Mi
~

of this process is due to

Mx(p, k) ~x
~

rp (e ) ~x rx )) e, where rx

and a are the m and x radii, respectively. The giant
oscillator strength model and the concept of an optical
conversion x + p -+ m of Eqs. (1) and (2) are well ac-
cepted in biexciton physics both in theory ' and for
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~(p) + ~(k) —' *(p) + *(k) : m(K = p+k) .

In further analysis we will refer to Eq. (3) as a "bipolari-
ton model. " The second step of Eq. (3) is determined by
the Coulombic interaction ~M2(p, k)A +kBpBg and
corresponds to the polariton-polariton scattering due to
interaction of their x components. Within this picture,
the matrix element M2(p, k) has been derived:2~

M, (p, k) = — ~ + 0
~ ~, (4)

(p —k)' (p —k)
4M q 2

where e is the m binding energy, M is the x transla-
tional mass.

The polariton dispersion allows one to satisfy the
energy-momentum conservation in the scattering x+x M
rn (see Fig. 1). In other words, the virtually ex-
cited x's with the polariton energies w„= wi' (p) and
cuA, = w (k) couple resonantly to the m. state. This vir-

C
0m

p

FIG. 1. Schematic picture of the resonant polari-
ton-polariton scattering dne to an rn. The first (1), the fol-
lowing (2 and 3), and the last (4) elementary Coulombic scat-
tering acts are indicated.

the interpretation of experiments.
However, more than 25 years ago Hopfield recognized

in the analysis of the giant oscillator strength of the lin-
ear absorption due to shallow x-impurity bound states
that a self-consistent microscopic approach has to be for-
mulated in terms of resonant polariton scattering at an
x-impurity energy level. The cross section of the reso-
nant Rayleigh polariton scattering has a spectral width
I", where 1/I" is attributed to the radiative lifetime of
the x-impurity state. This conclusion is also a basic result
of the general theory of resonant scattering at a quasidis-
crete (metastable) level.

The optical conversion to an m state resembles the
linear absorption of the x-impurity bound state: in the
transition x + p —+ m the x plays role of an impu-
rity, while the m, corresponds to an x-impurity bound
state. This analogy shows that one has to examine ex-
plicitly the polariton-polariton resonant scattering due
to a metastable m state in a first-principles treatinent of
the two-p m generation. This fact has been recognized
in our previous work where we proposed the following
scenario of the m two-p creation:

tual optical excitation process is very eKcient because
the polariton parameter 0 && e . For CuCl, e.g. , one
has 0 191 meV and e 34 meV. Without the po-
lariton effect, a resonant m generation by two x's is not
possible. On the contrary, for the inverse process of the
radiative decay, an m state has to be treated within the
polariton picture as a quasibound "bipolariton. " Thus,
our approach replaces the concept of a biexciton by that
of a bipolariton.

The giant oscillator strength scheme of Eq. (1) masks
completely 2:-x (polariton-polariton) scattering, which
causes a change of the initial p momenta p and k and
gives rise to m creation. The second step of this model,
i.e., the optical conversion x + p —+ m, implies that the
second x that is optically created. within an m volume a
around the first x always undergoes scattering. In the
general case this statement is not true because both pro-
cesses, the x ~ p polariton coupling and the x + x ~ m
Coulombic scattering, are resonant. For a correct de-
scription of the m optical properties one has to examine
the scheme of Eq. (3) beyond a perturbational treatment
of the polariton and Coulombic interactions. In the sec-
ond step of this bipolariton model one recovers an impor-
tant feature of the giant oscillator strength model. Due

to the spatially extended m wave function 4
in the matrix element M2(p, k) of Eq. (4), the x with
momentum k acts again like an "antenna" that collects
the second x with momentum p from the whole coher-
ent m volume, because the cross section of resonant x-x
scattering is proportional to

~
M2(p, k)

~

a
In the polariton representation, both schemes reduce to

a single one: p+ p ~ polariton+ polariton ~ m, how-
ever, with difFerent basic interactions. As a result, the
two models lead to measurable difFerences in the descrip-
tion of the x-m optical Stark effect, hyper-Raman scat-
tering, m luminescence, and even two-p (two-polariton)
m absorption.

In spite of the considerable success of the giant oscilla-
tor strength model for m's in bulk semiconductors, novel
high precision techniques with a spectral resolution
& 10 peV at the lowest pump intensities 1 kW/cm2
allow one to investigate experimentally detailed features
of the m nonlinear optical properties and discriminate
between both models. CuCl is the best candidate for
such experiments due to anomalously weak x-LA-phonon
interaction. ' At low temperatures T & 10 K, an m
with the given momentum K mainly decays radiatively
in CuCl before it is scattered by LA phonons. Thus,
one can treat an x —p —m system as a conservative,
closed dynamical system and without introducing any
phenomenological damping constant for the m state.

In Ref. 21 we proposed and analyzed the bipolariton
scheme of Eq. (3). However, although the x-x scattering
has been included as the mechanism responsible for the
I, optical generation, the complete scattering model with
a nonperturbative treatment of both x-p and x-x inter-
actions has not been developed. In our approach, the
wave fuction @ ~& ——4'0 2 in the matrix ele-

ments Mr(p, k) and M2(p, k) has been treated within a
standard biexciton Schrodinger equation, which yields a
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stable m ground state without the influence of the polari-
ton e8'ects. However, the true concept of a bipolariton
includes both x-p and x-x couplings &om the very be-
ginning and results in a metastable m state. Instead
of a wave function 40, which is unperturbed by the po-
lariton e8'ects, one has to deal with the exact one, 4',
which describes two outgoing polariton waves as a result
of the optical decay and corresponds to the true bipolari-
ton state.

In this paper, we (i) develop an exactly solvable micro-
scopic bipolariton model within the scenario of Eq. (3)
and (ii) report experimental evidence in support of this
scheme.

In Sec. II the bipolariton model is developed on the
basis of the microscopic x-p Hamiltonian. In order to
describe the two-p m generation in terms of polariton-
polariton resonant scattering we use Belyaev's diagram
technique. Then, the problem reduces to the analysis of
a homogeneous Bethe-Salpeter equation for the m vertex
function which includes both the x-x and x-p interac-
tions. The exactly solvable bipolariton model is devel-
oped for a deuteron model potential of the x-x attrac-
tion. The total resonant nonlinear susceptibility associ-
ated with an m is found. In the low-excitation limit, the
m radiative width I', the third-order m nonlinear sus-
ceptibility y~ ~, and the two-p m absorption coeKcient
K~ ~ are calculated within the bipolariton model.

In Sec. III we summarize the m optical properties of
the giant oscillator strength model which deals with the
semiphenomenological x-p-m, Hamiltonian.

In Sec. IV the descriptions and results of the high-
precision measurements of I', y~ ~, and K~ ~ in CuCl
are given. From the comparison between the experiments
and the two models we conclude the advantages of the
bipolariton model over the giant oscillator strength one.

II = ) ~*(p)Bt B ~ ~ (u~(p)nt n ~
~iP

) W (q)Bt Bt)B g+qB p q
cr', l, q

g(0)

(b)

(0)

I

'0/)2

+ (0)

I

, W)2
I

(0)

g(0) )(0) g)(0 )

(0)
2

where w (p) = uq + p /2M and ~~(p) = cp/~eo are
the x and p dispersions, respectively, eo is the background
optical dielectric constant. The symbol 0 = 1, 2 refers to
the two possible circular polarizations (clockwise 0+ or
counterclockwise o ) of light which resonate with the z
level. The corresponding dipole-active x's with 0 = 1 and

(0)
2

(0)

II. EXACTLY SOLVABLE BIPOLARITON
MODEE FOR BIEXCITON OPTICAL

GENERATION

In this section we develop the bipolariton model for
the self-consistent description of the optical nonlinearities
due to the excitonic molecules.

A. Model

In this subsection we discuss the adiabatic approxi-
mation that allows us to reduce the initial electron-hole-
photon (e-h-p) picture to the x-p one. Then, we adopt
Belyaev's diagram technique to calculate the total reso-
nant m nonlinear susceptibility y within the bipolariton
model and show how one can extract from the total y
the third-order optical nonlinear susceptibility y~ ~.

For a description of the optical properties of a semi-
conductor (e.g. , CuC1) near an x ground-state resonance,
the initial e-6-p Hamiltonian can be reduced to the x-p
representationz ' (h = 1):

)(0)
2

(0)

2

I

II%I')2I

FIG. 2. Diagram equations for the polariton-polariton
resonant scattering. D and D ~ are the complete and
free-particle retarded p Green functions, respectively; II is
the polarization operator; Gq and G~ are the two-x Green
functions, renormalized and unperturbed by the pump wave,
respectively; Bz and R2 are the integral convolutions given

by Eq. (12) of the potential Wiz with Gz and Gz, respec-
tively; P& is the amplitude of coherent x polarization of the
pump. A bold dot symbolizes the x-p polariton coupling, a
dashed line corresponds to the x-x Coulombic attraction po-
tential Wzz. (a) Dyson equation for the p field of the probe.
(b) Equation for the polarization operator II of the probe
light and the polariton equation for the x Green function G.
(c) Equation for the two-x function R2 renormalized by the
pump. (d) Bethe-Salpeter equation for G2I I. This equation
includes both the x-p polariton coupling and the x-x interac-
tion.
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2 have different spin structures: e g, h $ for o = 1, and
e $, h g for o = 2. The potentials W ~ of the x-x inter-
actions can be given explicitly as integral convolutions
of the various pair e(h)-e(h) Coulomb potentials with the
x wave functions. Due to exchange interaction, Wll(q),
W22(q) ) 0, i.e. , x's with the same spin structure always
repel each other, while Wl2(q) = W2l(q) & 0. This at-
tractive potential is responsible for an m formation with
the spin structure e g, e $, h g, h $.

The x-p picture of Eq. (5) is correct in the low-density
limit Na (( 1. ' Here, N is the concentration of x's
excited really or virtually by light. This limit holds in
usual m optics, where one needs considerably weaker ex-
citations It/a & 1. Furthermore, Eqs. (2), (4), and (5)
are appropriate for an m description in the adiabatic ap-
proximation, when the x binding energy e )) c . This
approximation is valid for CuCl: e 190 meV and

34 meV. In the adiabatic approximation an m is
treated as a bound state of the two x's with diferent spin
structures; the corresponding I, operator AK is given by

1 ) @ (~)Bl,l+K/2B2, —1+K/2

The x-p Hamiltonian of Eq. (5) treats the x's as struc-
tureless quasiparticles and includes both basic interac-
tions: the x-p polariton coupling and the x-x Coulom-
bic interactions. Then, an m introduced by Eq. (6)
can be analyzed within Eq. (5). Recently, this model
with the two spin states for x's and the corresponding
two polarizations for p's has been adopted for interme-
diate excitations, Na & 1 & Na, with simplified con-
tact potentials Wll(q) = W22(q) = U = const ) 0 and
W12(q) = W21(q) = W = const & 0.

We consider a coherent polariton pump wave k, ~g
(0 = 2) and a polariton probe wave p, w (cr = 1) with
the intensities I~ )) Io. The two polariton waves are
nearly resonant with the rn: u+uk 0 +k (see Fig. 1),

I

where A~ is the m energy. We use the Hamiltonian of
Eq. (5) given in the x-p representation rather than its
polariton representation. This allows one to see explicitly
the inhuence of the both basic interactions, x-p and x-x,
on the m optical properties. For the coherent pump we
use Belyaev's diagram technique (see, e.g. , Ref. 26).

The probe wave is described by the coxnplete single-
particle p Green function D, which is determined by the
following equation [see Fig. 2(a)]:

D = D~'~ + D»1ID,

where D~ l(p, (u) = 1/[~ —~&(p) ] is the free-particle
p propagator and II is the polarization operator. The
optical susceptibility y of the probe field is given in terms
of the polarization operator by

X = X(P~~;k~~k~Ik) = — 2cuqII(p, ur;k, wk, Ik). (8)

In accordance with the diagrams of Fig. 2(b), a reso-
nant part of the polarization operator Il is determined
by an x and an m component:

II(p, Ld; k, ldk, Ik) = II (p, id) + II (p, cd; k, cdk, Ik)

where

II (p, (u) = -' 0, G~ l(p, ~), (1o)

II ( pcs; k~ kIk) =
4 B,Gl ~(p, (u)

~

'Pk
~

x R2(p, ur; k, ~k, Ik) G (p, ~) .

(»)
Here, Gl l(p, w) = 1/[w —u (p) + ib] is the free-particle
x Green function,

~
Pk

~

= & (Bk) (Bk) Ik is the
transient concentration of coherent x's virtually excited
by a pump (x component of the polariton pump), and
the function B2 is given by

R2(p, u; k, uk, Ik) = ) d~ldu)2 Wl2(ql)Wl2(q2)

XG2(k + ql)&k + Ml', p ql) M Ml)k+ q2&&k + &2ik q2, Cd —(d2, Ik) (12)

where G2 is the two-x Green function renormalized by the pump-probe resonant Coulombic interaction. The corre-
sponding diagram equation for the function R2 shown in Fig. 2(c) reduces to

R2(P ~ k ~k Ik) = R2 (P ~ k ~k)+R2 (P ~ k ~k) ~+k
~

G (P ~)R2(p ~ k ~k Ik) (13)

where R2 is given by Eq. (12) with G2 replaced on

G2 —the two-x propagator unperturbed by the coherent(o)

pump. In accordance with Fig. 2(c), the diagrams of Eq.
(13) do not contain explicitly any wavy lines [p Green
functions D~ol(p, ur)] between different G2, because the
polarization operator Q is irreducible with respect to
the x-p coupling of the probe.

A nonresonant part II"' of the polarization operator
II is given by the graph of Fig. 3(a) for a normal con-
tribution (one absorbed and one emitted pump p) and
by the graphs of Fig. 3(b) for an anomalous contribu-

I

tion (two absorbed pump p's, etc.). All these graphs do
not contain the m pole. For the anomalous graphs (in
Belyaev's technique notations) of Fig. 3(b) this conclu-
sion is due to the optical selection rules: the two pump
p's of the given circular polarization do not excite an m.
As a result, a contribution of Il"' to the m optical re-
sponse is rather small in comparison with II of Eq. (9).
Formally, II as /(0 +k —ur —wk), while the large m
volume factor a and the m resonant denominator are
absent in EI"' .

The total optical susceptibility y of Eq. (8) can be
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presented in the following form:

y(p, ur; k, u)i, Ii,) = yp(p, (u) + y„i (p, (u; k, uzi, Ii,),
(14)

where yo is the standard linear x susceptibility and y„&
is the total nonlinear susceptibility induced by the co-
herent pump. Together with the eigenmode relationship
p2c2 = s(p, u)~, the linear part yo, which is given by
the first component II (~, p) of the polarization opera-
tor II, yields the probe polariton spectrum unperturbed
by a pump. The nonlinear part y„j due to the second
component II (p, u; k, wi„ Ik) of II includes a whole set
of the odd-order susceptibilites:

(0) (0)

(0)
G

(0) +

x„, (p, ~; k, ~i„Ii,) (0) (0) (0) (0)
G

X (~ = ~k —~i + ~; ~i, -~i, ~)

+) y( "+')(p, (u;k, (ui, )I„" ' . (15)

FIG. 3. Diagrams of the normal (a) and anomalous (b) con-
tributions to the nonresonant part EI"' of the m polarization
operator Il.

From Eqs. (9)—(13) one gets

II (p& ld; k, Cdg, Ig)

n.'G(') (p, ~)
, (16)

1 —G( ) (p, (u)
~

Pk ~2 B2 (p, ~; k, (uk)

In order to calculate II one needs the m function
B2( ) (p, ~; k, ~i,). The equation for the m propagator
G2( ) is given by the Bethe-Salpeter equation of Fig. 2(d).
This two-x Green function Gz can be expanded into the
eigenfunctions 4( ) of the relative motion of the two x's
(n = 0, ..., oo, i.e. , disctrete and continuous spectrum):

d~idu)2G2 (k + qi, wi, + u)i, p —qi, (u —u)i, k + q2, wk + (u2, k —q2, ~ —(ug)
(o)

@(n) (~—k )y(~)e(~ —k
)

M+Mg —0 +~ +16
. (17)

Equation (17) is a general property of the two-particle Green functions. In the spectral vicinity of the lowest m
resonance (n = 0) R2 reduces with Eqs. (12) and (17) to(ob

R2 (p, uJ; kl (di, )) = ) w]2(qi)w]2(q2)(o) +('," —q )+*('," —q. )

(d + ca)g —0 +~ + z8
(18)

where AK +& ——OK
"

+k. The final solution of Eqs. (8) and (16) with Eq. (18) depends on the m ground-state

wave function 4' with the energy 0 . These functions have to be determined &om the corresponding m Schrodinger
equation.

In the giant oscillator strength model, one separates the x-p polariton coupling &om the x-x Coulombic interaction.
In this approach, at first the m ground state and energy are calculated variationally within the underlying e-h,

picture. In the x representation the corresponding m Schrodinger equation is

~

&+ —
~

+~
~

—&+ — @o(&K) + ) ~&2(& —
& )@o(&,K) = ~)l~ @o(&K) .

K) (' Kl m(o)

2)

Due to the quadratic x dispersion the center-of-mass mo-
tion splits off in Eq. (19), i.e. , 'kp(l, K') = b(K-
K')4p(/). The wave function 4'p(E) of the relative mo-
tion and the corresponding m binding energy —eo

O~ —K /2M —2wt ( 0 are real and independentm(O)

of K. Here, M = 2M is the m translational mass. As

a second step of this scheme, the m optical properties
are attributed to the m ++ x+ p optical conversion with
the matrix element of Eq. (2) which follows the m wave

function 4 = 4o and 0 = 0
In the analysis of the scenario of Eq. (3) with the

matrix element M2(p, k) given by Eq. (4) we have also
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assumed 4 = 40 and e = eo . Such an introduc-
tion of both matrix elements Mq (p, k) and M2 (p, k) with

= 40 considerably simpli6es the theoretical models
of Eqs. (1) and (3), respectively. Moreover, this assump-
tion, which treats an m within Eq. (19) as a stable quasi-
particle, cannot allow us to construct a correct theory of
x-x (polariton-polariton) resonant scattering. In order to
develop this theory one has to treat an m as a metastable
"ground state" of the two quasibound polaritons. Thus,
the self-consistent m Schrodinger equation has to include
both basic x-p and x-x interactions.

In conclusion, we found in this subsection the gen-
eral expression for the total y associated with an m
ground state. This expression includes the m wave func-
tion @, which is still unknown and should be found self-
consistently within the bipolariton model.

B. Bipelariton vrave equation

In this subsection, a Schrodinger equation for an ex-
citonic molecule is derived within the bipolariton model.
This bipolariton wave equation contains both the x-x
Coulombic attraction and the x-p polariton coupling. It
is solved for the deuteron model potential of the x-x at-
traction. The solution describes an m as a quasibound
two-polariton complex. The real and imaginary parts
of the m energy give the radiative renormalization 4
of the m, energy {the m. Lamb shift) and the inverse m.
radiative lifetime I', respectively. Then, the exact bipo-
lariton wave function 4 allows us to find self-consistently
within the bipolariton model the total m nonlinear sus-
ceptibility y.

The wave equation (19) can be obtained from the cor-
responding homogeneous Bethe-Salpeter equation for
the x-x vertex function I"p(l, l'; K) unperturbed by the
polariton effects. Here, l = (l, ur) and l' = (l', w') are
the reduced relative momenta and &equencies of two x's
before and after the interaction act; K = (K, 0) is the
conserved. total momentum and energy. In the diagram
representation of Fig. 2(d), this equation ascribes the
internal solid lines to the free x Green function G~ ~.

However, the diagrams of Figs. 2(b) and 2(d) show that
the polariton efFect can be included self-consistently if
one attributes the internal solid lines to the x-polariton
Green function G = G~ ~ + —A, GlPlD~ lG (bold solid
line). Then, the homogeneous Bethe-Salpeter equation
of Fig. 2(d) reduces to the following bipolariton wave
equation:

~ '
~

l + —
~

+ ~"
~

—l + —
~

e(l, K)
K),( K)
2)

+) W»(l, l', K)4(l', K) = 0~4(l, K) (20)

with w~~'(p) = ~ (p). Here, sr+(p) are the dispersions of
the upper (+) and lower (—) polariton branches, respec-
tively, i.e. , the roots of the polariton dispersion equation:

~'(1 )' = C2p2
2 0 co

=CO +
sr~ + uqp /M~ —w2

The effective potential TVi2 is determined by the x corn-
ponents of the two interacting polaritons:

Wg2 (l, l') K) = f (l, K)Wg2 (l —l'), (22)

where

f(l, K) = rp (l+ K/2, (u (l+ K/2))
x(p ( —l+ K/2, ~ (—l + K/2))

~'(p)
I

— '(p) j

I: '(p) —~+(p)1
(24)

The x weight functions p+ (p, u) satisfy the conditions

(p+(p, ~+(p)) & 0, (p (p, (u (p)) & 0,
V+(p ~'(p)) + V (p ~ (p)) = 1. (25)

These functions describe the x components in the two
branches (+) of the polariton dispersion. The last re-
lation is a "sum rule" of the x-p polariton transition.
Although the m wave equation with the polariton e6'ects
can be derived in a general form which includes both the
upper and lower polariton branches, in Eq. (20) we re-
strict ourselves to the lower branch. This approximation
holds because the lower polariton branch changes con-
tinuously into the x dispersion for p & k»g = (dg~Ep/c,
and because the density of states of the lower polariton
branch exceeds considerably that of the upper one.

According to Eq. (20) the Coulombic longitudinal x-x
interaction cannot be separated from the x-p coupling.
Here, we have a unique example where both the Coulom-
bic x-x interaction and the polariton coupling can be
treated exactly within the adiabatic approximation. This
equation shows that the true components of an m are
the two polaritons quasibound through the Coulombic
interaction, rather than the two x's. Actually the word
"bipolariton" is more adequate than "biexciton. " The im-
portance of the bipolariton concept has been recognized
already in Refs. 13 and 29.

An exactly solvable bipolariton model for the I, op-
tical nonlinearities exists, provided one knows the ana-
lytical solution of the bipolariton Schrodinger equation
(20). The quasistationary solution @(p,K) with O~ of
Eq. (20) has to satisfy the appropriate boundary con-
dition: the wave function 4 in real space has to rep-
resent an outgoing spherical polariton wave at infinity.
The identical boundary condition takes place for the res-
onant polariton-polariton scattering. This allows us to
use the solution of the bipolariton wave equation (20)
(or the corresponding homogeneous Bethe-Salpeter equa-
tion) in the resonant polariton-polariton scattering. In
this approach, the equation for the two-x Green func-
tion G2 shown in Fig. 2(d) summarizes for the two
interacting polaritons a whole ladder set of the elemen-
tary Coulombic interactions. The erst act of resonant
scattering throws with a high probability the initial po-
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(26)

with Wi2(0) = —54vr, the solution of Eq. (20) is given
by

4(l, K) = — '
(l /M + )4 (l)+

sn(l K)
* ' '

(2 )'

n —n = A (K) —il' (K)/2

27
, , C(n ), (28)

where

with

(29)

laritons with p, A: k ~q to the x-like part of the lower
polariton branch. The corresponding momenta are p',

1/a . Then the two scattered z's evolve due to
the x-x Coulombic interaction acts inside the m basic
region 1/a in momentum space, an m exists as a
transient metastable state without strong coupling with
p's (see Fig. 1). Finally, at a last scattering act, at least
one of the two interacting x's reaches again the region
of small momenta &om the optical range and converts
into an outgoing polariton. Thus, an m optical decay or
complete polariton-polariton scattering occurs. Accord-
ing to a general theorem of the scattering theory, the m
vertex function I'(l, l', K) determines straightforwardly
an x-x (polariton-polariton:) scattering amplitude. In or-
der to adopt these variables to Eq. (18) one has to put
l = (p —k)/2 and K = p + k.

The complex boundary condition (outgoing wave at
infinity) gives for Eq. (20) a complex value of the bipo-

lariton energy nre. ——
Oe» + A (K) —il' (K)/2. Here,

n~~ l ——n~~ ol + K2/2M is the m energy of Eq. (19)
unperturbed by the polariton effects, I" is the inverse
m radiative lifetime, and 4 is the radiative renormal-
ization of the m energy (the m Lamb shift), respectively.

In Ref. 22 we have found an analytical solution of the
bipolariton equation (20) for a model potential Wi2 of
the x-x attraction. Namely, for the deuteron potential

c = c(OFc) = A d l E(l, K)
(2 )'~n(l, K)

dsl f(l, K)
(2~)' an(l, K)

and

z(1, K) = hn(l, K) +
~

.-, +
~ f (l, K) . (31)

Here, eo ——1.0 and 40 are the m binding energy and
wave function of Eq. (19), respectively. For the chosen
value of Wi2(0) = —54vr, the Ritz approximation of 4o
gives

4'o(l) = Wi2(l) .8~~
l2+1 2

This property [@o(l) Wi2(l)] is crucial for the solu-
tion of Eq. (20) given by Eqs. (27) and (28). In Eqs.
(26)—(32) we use the usual dimensionless units, the 3D
m Rydberg and the 3D m radius, adopted to the m wave
equation (19).

The transcendent Eq. (28) with the complex function
C = C(n~) determines self-consistently both the radia-

tive width I' and the m Lamb shift L, i.e. , both the
real and imaginary polariton corrections to O~ of Eq.m(O)

(19). Because these radiative corrections are small com-
pared to the unperturbed binding energy ~0, one can

put C = C(n~ ). Due to the polariton dispersion,
the center-of-mass motion in bipolariton Eq. (20) can-
not be split off. As a result, the total m momentum K
influences on the relative motion of the two quasibound
polaritons, i.e. , 4(l, K), A (K), and I' (K) are K de-

pendent. The bipolariton wave function 4 of Eq. (20)
is connected to m 4 of Eq. (6) by the relationship

4'(l, K) = f (l, K)0 (l, K).
In our analysis of the bipolariton wave equation (20) we

simplify the x-x attraction potential R'z2, but treat the
polariton effects exactly. The deuteron model potential
of Eq. (26) is often used in biexciton physics. i s is

Expressing P Wi2(q)@(pz —q) from Eq. (20), one

receives from Eqs. (18), (16), and (8) the final formula:

where

v (p, k, cd+My)
X(p, ~;k, ~~, fi) = —~ee4~ v (p, k, cu)v™(p,k, (u+ ~i, )—(

M2~(p, k) (2( Pk [2
'' (33)

v (p~kK+ Ldll) = n +k+ 8 +i —(d —(dg ——I (p+ k) (34)

(35)

with
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p —k
~p —

I
&~

I ~»(0) ~~+~ —
I

&~
I ~»(o)+~»(o)+). I @(~) I

~»
I

—&+
l

(36)

The effective matrix element M2 (p, k) of 2:-x attraction
is given by

M;"(p, k) = — ~.~(p+k)+ (p —k) 2 ep '—k l
4M i 2

(37)
where

~,~(p+ k) = eo —A (p+ k) + —I' (p+ k) (38)

is the complex m effective binding energy renormalized
by the polariton effects, i.e., the bipolariton binding en-
ergy. In the Anal expressions for the frequency factors
of Eqs. (34) and (35) we include also the nonresonant
transient shifts b and b +& of the x and m levels due to
the x-x interaction given by the normal diagram of Fig.
3(a).

Equation (33) gives the total x susceptibility within the
exactly solvable bipolariton model with the x-x deuteron

so ~e~
Xo p~~ 4~ ~ (p) —~ (39)

from the total x susceptibility of Eq. (33) we find ac-
cording to Eq. (14) the total m nonlinear susceptibility:

attraction potential of Eq. (26). Within our model, the
m parameters of Eq. (33), 6 (p+k) and I' (p+k), are
determined explicitly by Eqs. (28) and (30). The only in-
put m parameter that we need to evaluate the nonlinear
susceptibility y is the unperturbed m binding energy eo
of Eq. (19). The most important consequence of the ex-
act result in comparison with our previous approach is
an appearance of the m radiative width I' in Eq. (33).
This radiative width is not a phenomenological parame-
ter but is determined self-consistently within the x-p-m
dynamical system. We receive also the renormalized ma-
trix element M2+(p, k) of Eq. (37), which corresponds
to M2(p, k) of Eq. (4) with e

Subtracting the linear contribution

I )
so

I
M2'(p k) I'I &~ I'

4~ v (p, k, id) v*(p, k, id)v (p, k, (u+(uk) —
I M2 (p, k) I2I 'Pi, I2

(40)

In Eqs. (33), (39), and (40) we use the resonant ap-
proximation of the x-p transition. In this approximation
yo(w, p) of Eq. (39) corresponds to the polariton disper-
sion of Eq. (21).

To summarize, for the model deuteron potential W~2
of the x-x attraction we calculated the exact bipolariton
wave function 4, which one needs for the total m nonlin-
ear susceptibility y. Therefore, we completed the bipo-
lariton model for the description of the m-mediated opti-
cal nonlinear processes in terms of the resonant polariton-
polariton scattering.

C. Nonlinear susceptibilities and two-photon
absorption of the exactly-solvable

bipolariton model

In this subsection, we formulate the nonlinear m sus-
ceptibilities in such a way which allows a direct analy-
sis of the corresponding experiments. The final expres-
sions of the m y~ & and. two-p absorption K~ ~ are cal-
culated within the bipolariton model in the low-intensity
limit. For intermediate intensities we estimate the tran-
sient pump-induced broadening of the two-p m absorp-
tion line.

In order to adopt Eqs. (33) and (40) to a conven-
tional form, one has to express the concentration I'Pi,

I

of the transient x's induced virtually by the pump (x
component of the polariton pump) through the intensity
Ig of corresponding incident light transmitted into the
crystal. The frequency uj, is supposed to be in a trans-

= ~(&k)(&k)

(k, ~ (k))
Ik

(dk vg
02

0 + 4(ldg —ldg) (dkVi

= ~(~~)(~~}

1 —p (k (u (k))
I

~kvg

4(~e —~i )'
0 + 4(|dg —&g) (dgVi

(41)

where v& is the polariton group velocity at the frequency
uk. This group velocity can be found &om the dispersion
equation (21):

C 4(~, —~i,)'
~Gp O~ + 4((di —idg)

g((uk) (42)

From Eqs. (41) and (42) one receives the final expres-
sions:

I

parency spectral range below ~q. 0 ) ~z —ug )) (dg&.

Because Ig )) Io, the probe does not infIuence a free po-
lariton propagation of the pump. Then, the frequency
of the pump cubi, = w (k) and the total electromagnetic
intensity Ip is divided into the x and p components with
concentrations given by
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II, ~rp 1 0,
(de C 'g((r)g) 4((dg —4)k)

Ik ~GO 1

n(~I)

(43)

(44)

In Eqs. (42) and (44) the frequency-dependent factor g
is given by

II(~I ) = 1 +
- X/2

~et
(45)

Equations (43) and (44) show a cancellation of the po-
lariton eAects for the pump components. Apart from the
factor g(~I, ) 1, the z resonance does not influence the
p component of Eq. (44), while Eq. (43) for the z com-
ponent corresponds to second-order perturbation theory.

Equation {40) with
~

'PI,
~

given by Eq. (43) is the
final expression for the total m nonlinear susceptibility

(p, u; k, u)I„ II,) within the exactly solvable bipolari-
ton model. Our analysis implies a coherent pump. In a

general case, y„& is sensitive to photon statistics of the
pump. According to Eq. (15), only the lowest-order con-
tribution to y„I, i.e. , y ) (w; tuI„—uI„w), is independent
of statistics. A high-intensity limit of the pump, which
corresponds to the z-m optical Stark effect (in alternative
terms the x-m transient spectra renormalization ' or
the z-m Autler-Townes effect ), deals with the whole ex-
pression of Eq. (40) without its reduction with Eq. (15)
to a few of the low-odd-order nonlinear susceptibilities.
This is because the resonant denominator of Eq. (40) in-
cludes an intensity-dependent contribution (see also the
discussion in Ref. 30). For CuCl, a high-intensity limit
corresponds to II, ) Ih = 100 kW/cm . For these inten-
sities the transient renormalizations of x and m spectra
are not screened by the m damping I' . In the further
analysis, we will concentrate on a low-intensity limit.

In the low-intensity limit, one receives from Eqs. (40),
(43), and (15) the third-order nonlinear susceptibility
y~ ~ and the two-p absorption coefBcient K~ ~ due to an
m:

(46)

K~ ) (|d, (dg)
e p g(r)(dg ~e~

2

25c 'g(4J)'g{(dg) ((dg —Cd) (Cdg —idI )

(p —k)2 2 (p —k&
x e.„(p+ k) + III p

~4M ( 2

—,'r-(p+ k)

(n,-,'„- —,) + —,']r-(p+ k)1
(47)

16'K~ ) (ld, Cdg) =
2 g(a/(dg

c2 ~up

X IIII g (CO = Ld; Ldk, —(dg, Ld) (48)

The nonresonant shifts b and b +& do not contribute to
K~'~ and y~'~.

Equation (46) for y& ) is already adopted to the ezter
nal incident and scattered light fields. Corrections due
to reHection from the crystal surfaces are not included
in Eqs. (46) and (47). They depend on a concrete ex-
perimental geometry. These corrections can lead to the
additional factors )7(w) and I){wI,) in Eqs. (46) and (47)
because the refraction index due to the x resonance is
n ((u) = ~s'pq(cu). For

~
wq —u ~, ~

(uq —wk
~
)) ugly one

can put g(cu) = )7(~I,) = 1. In Eqs. (46) and (47), we ne-
glect both the x spatial dispersion and the x incoherent
damping I' . This assumption is valid for uq —~ &) b or
w —wg )) 8, where h = Maxjk /2M» p /2M~, I' ) and
wg ——uq + ugly. For CuC1, b & 50 peV for temperatures
T&&OK.

where 0™+z——Re 0 +z
—0 +k + A{p + k) and q(~)

is given by Eq. (45). These final expressions are given
in the standard dimensional units. The two-p absorption
coeKcient K~ ~ and the third-order nonlinear suscepti-
bility y~ ~ are connected through the relation

Both fundamental interactions of the Hamiltonian {5),
the x-p polariton coupling and the x-x Coulombic at-
traction, enter into Eqs. (46) and (47) as well as into the
general expressions of Eq. (40). With the potential of Eq.
(26), the considered exactly solvable model of resonant
polariton-polariton scattering treats these basic interac-
tions beyond perturbation theory. Now, the two-p ab-
sorption of Eq. (47) can be interpreted in terms of a res-
onant cross section o

& &(p, k) of polariton-polariton
scattering. The m resonant factor of this cross section is

2r (p+ k)
&,.)-,.I(»k) - — (,)(~,+~ —~ —~~)'+ 4I:r-(p+ k)1'

(49)

Equation (49) is consistent with a basic requirement of
the general theory of resonant scattering. This reso-
nant factor enters into Eqs. (46) and (47). The spectral
width of the m resonant cross section given by I' (p+k)
of Eq. (28) equals the inverse radiative lifetime of a
metastable m "ground state. " Actually, the resonant
cross section o I I(p, k) describes both the mutually
inverse processes —m absorption and m optical decay
Ipolariton(p) + polariton(k) e+ m(p + k)].
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Equation (47) is valid in a low-intensity limit, in which
the intensity of the pump wave Ip & Ig is so small that the
two interacting polariton waves are similar (for CuC1 Ig
10 kW/cm ). As a result, Eq. (47) is symmetric with
respect to (p, w) ++ (k, tug). However, one can apply Eq.
(40) with Eq. (43) for the intermediate pump intensities

I

Ig & Ig & Ih. For these intensities, the transient x-m
splitting induced by the pump is still not well developed,
while the m absorption Lorentzian of Eq. (47) already
undergoes a power broadening caused by the pump.
For this regime, one gets for the two-p m absorption the
following change in Eq. (47):

~
+foal,

2

(0 —~ —~I,) + -(1~)z
~ PtA

(50)
(0 —~ —~~) + -(I' )z '(0 — —sr~) + a(I~)r + -(I )

where I' = 1 (p+ k), 0 = 0™+fkl,and the dimensionless field-dependent parameter a = a(Ii, ) is

~A v&o
I
M: (»I) I'

2 ((dg (d ) ((dt I'd ) C (&t tdk)

Here Mz+(p, k) is given by Eq. (37). For Ik -+ 0, the Beld-dependent parameter a -+ 0 and the right-hand side
of Eq. (50) transform to a Lorentzian. In order to estimate analytically the radiative pump-induced broadening we

approximate the right-hand side of Eq. (50) by the following ansatz:

r- 2r.e(I~)
r-.,(I„) (n- — —,) + —,'Ir-„(I„)]z ' (52)

where the effective m broadening is

[(Q~ ~ ~ )2 + (rm)2 (qm ~ ~ )2 + a(I )rvn + 1. (rm)2
—1

7r ~ /2a(Ik)

( Ql+ a(Ig))

Here, K(x) is the complete elliptic integral. If a(Ii, ) (( 1,
one can further approximate: &(o)

+
)(0) (o)

3 21,~(Ik) I' 1+ —a (Ik)8
(54)

(o)

The efFective Lorentzian of Eq. (52) with r,& of Eqs.
(53) and (54) shows how the pump-induced broadening
approaches the low-intensity limit with decreasing Ik.

In this subsection we calculated within the bipolariton
model the m y~ ~ and K~ ~ and prepared our results for
a comparison with experimental measurements.

III. BIEXCITQN NONLINEAR OPTICAL
RESPONSE OF THE GIANT OSCILLATOR

STRENGTH MODEL

(0) (0)

(o)

In this section we describe briefly the giant oscillator
strength model and calculate with this model the m-
mediated y, y~ ~, and K~ ~ for a direct comparison with
the bipolariton model.

The giant oscillator strength model of Eq. (1) deals
with the following model Hamiltonian:

FIG. 4. Giant oscillator strength model. Diagram equa-
tions for the polarization operator II of the probe field. The
large bold squares are ascribed to the matrix element Mz of
the optical conversion x+ p ~ m, G and G are the free
m Green function determined by the m operators AK of the
model Hamiltonian (55) and the m Green function renormal-
ized by the pump wave, respectively.
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H = ) w (p)Bt B p + ~~(p)at„n p + 0 AtAp+ (nt B p
—Bt a ~)

+) Mg(p, l) (A +,n pB g ) —Ap+)B ~,,n )
l

(55)

The matrix element Mq(p, k) of Eqs. (2) and (55) is derived within a perturbation theory as Mq(p, k)
&(OIA +&[

—i 2'B &n, g]B &
o. &IO). This construction corresponds to the optical conversion z+ p ++ m.

The model Hamiltonian of Eq. (55) is inconsistent with the underlying e-h-p picture, as well as with the x-
p Hamiltonian of Eq. (55).2~ Equation (55) deals with a considerably sympliBed physical picture and masks the
important features of the resonant polariton-polariton scattering which is responsible for two-p m generation. With
the Hamiltonian of Eq. (55) one obtains the often used results for y„~&~, y~sl, and K&2l. The corresponding diagrams
are shown in Fig. 4.

Apart from the other matrix element (Mz) attributed to the large bold square dots, the equations of Figs. 2 and
4 have also diferent diagram blocks. For example, the diagram equations of Fig. 4 contain wavy lines due to the
electric component fk of the pump wave. These lines are absent in Fig. 2 because the proper matrix element M2(p, k)
involves for an I, creation only the x components of two interacting polaritoos. In comparison with the analysis of the
giant oscillator strength model given in Refs. 4, 6—9, and 21, we include also the interference terms (Zkj & + H.c.).
These terms are shown by the last two graphs of the first diagram equation of Fig. 4. They contribute to the total
x", F

I

— ~ I»1'*
The diagram equations of Fig. 4 result in the following expression for y„&

(p, ~; k, (uk, Ik) = eo 0 0,
~& + ~o (» ~) P& ~k + ~o (» ~)+~

27( (dg 2 2

I
M, (p, k) I'

~o(»~) [&o(»~)&o (»»~+~~) —
I
M~(»k) I'I ~~ I'] ' (56)

where the electric Beld Zg and polarization 7 g components of the pump are given by Eqs. (43) and (44) and

vo (p, k, ~+ ~g) = 0 +~ —(u —(ug ——I' (p+ k),
~o(p ~) = ~*(p)-~

(57)

(58)

In comparison with Eqs. (34) and (35), Eqs. (57) and (58) do not include the nonresonant x and m shifts. In the
low-intensity limit, Eq. (56) reduces to

3/2 [2~ —~ —~p)
~

@ ( ~")
~

X (I'd = ~~~k~ —~a~~)
32'Jl 'g((d)'g(ldg) (Mg —fd) (~g —Mg) 0 +&

—cd —BID —2I (p + k)
(59)

Z l'l(~, ~&)
&0 MGdg ~ex 2

2(dg —M —(dg)25C 'g ((d )77((dg ) (Ldg —Ld ) (Gag
—

41k )

x
/'p —k l —,'I -(p+ k)

2 ) (0 „—(u —~g)'+ -'[I' (p+ k)]'

The general expressions of Eqs. (40) and (56) as well as the corresponding Eqs. (46) and (47) and Eqs. (59)
and (60) for gl l and K~ l are different. In comparison, they contain different frequency-dependent factors. These
differences can be tested experimentally. However, at first one should define the m energy O~, wave function 4
and radiative width I' in Eqs. (56) and (60). These m parameters and functions cannot be derived self-consistently
&om the model Hamiltonian (55).

The most natural way to complete the treatment within Eqs. (56), (59), and (60) is to apply the bipolariton wave
equation (20) and to put 0 +& ——0 +&, I' (p+ k) = I' (p+ k), and 4 [(p —k)/2] = 4(p, k)/f(p, k). This gives
for two-p m absorption of Eq. (60)

K ((d, Cdk)
~o

MC 'g (&)'l7((dg ) ((dg —Cd ) (Mg —Mg)

4M i 2 )
21 (p+ k)

(" +~' — — ~)'+ —.'[I' (p+ k)]'
- 2 (61)
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Now, all the parameters of Eq. (61) are determined.
However, Eq. (61) yields a non-Lorentzian m absorp-
tion line. Moreover, Eqs. (47) and (61) give difFerent
frequency dependences of the integrated two-p absorp-
tion coefficient o( l(w) = f K~2l(u, idi, )dtui, . Although
the integration over the frequency up removes the dif-
ferent resonant factors in Eqs. (47 and (61), the dif-
ferent frequency dependences of o(2 (w) within the two
models are still present due to the implicit dependence
I" = I' [p(id) + k(ui, )]. Here, p = p(w) and k = k(wk)
follow the polariton dispersion of Eq. (21).

Another possibility to analyze Eqs. (56), (59), and (60)
is to use the m wave equation (19) unperturbed by the
polariton effects. Then, one has to put 4 [(p —k)/2] =
4'0[(p —k)/2] and 0 +& ——0 +~&. However, in this ap-
proach the m radiative width I' (p + k) is still unde-
fined. In order to determine this important m parameter
one can treat the m optical decay m ~ x + p by the
standard second-order perturbation theory:

—I' (K) =—

~ f~~(o) g ~( Kl~| & 2)
(—~+I —

x + —
I I

.2)) (62)

As we discussed above, the resonant polariton-polariton
scattering as well as a bipolariton metastable state can-
not be treated within the perturbation theory.

In summary, the giant oscillator strength model is for-
mulated to allow a direct comparison with the bipolariton
model and with high-precision experiments.

IV. OPTICAL PROPERTIES OF BIEXCITONS
IN CuCl: EXPERIMENTAL VERIFICATION

OF THE BIPOLARITON MODEL

We examine the following high-precision experimen-
tal results: (i) the m radiative width I' (K 0),
(ii) the resonant maxima of y( l = y~ l (w = 0 +k-
~i, , uzi„—ak, 0 +&

—idk), and (iii) the integrated two-p

absorption line shape 0( l(~) = f K~ l(cu, idk)d~k.

A. Measurements of g( ~ and I' by high-resolution
polarization spectroscopy

For the correct experimental evaluation of the reso-
nant m susceptibility y( ) and the radiative width I'
in the low-intensity limit Ii, ( 10 kW/cm, the spectral
resolution has to be & 10 p eV. The experimental setup

for high-resolution polarization rotation spectroscopy has
been developed in Ref. 18. The UV light source consists
of a Ti-sapphire ring laser (Coherent 899-02) and an ex-
cimer laser (Lambda 53 EMC), which pump a dye am-
plifier. An output of the UV light source is given by a
frequency doubler (LiIOs crystal). This UV source gen-
erates the circular polarized coherent pump light. The
pump pulse duration, its spectral width, and the repeti-
tion rate are 10 ns, 1 p, eV, and 10 Hz, respectively.
The intensity of the pump light Ii, 0.5—10 kW/cm2.

The linear polarized probe light is generated by a usual
UV dye laser pumped by the excimer laser. The initial
broad spectrum ( 170 peV) is reduced to the spectral
linewidth of 3 peV by an air space Fabry-Perot inter-
ferometer (FSR = 225 peV, Gness = 75). The intensity
of the probe light I0 0.18 kW/cm2. The photon en-
ergy w (h = 1) of the probe light is tuned by a change
of the air pressure in the interferometer. The intensity
of the probe light transmitted through the sample and a
crossed polarizer (analyzer) is measured by a photomul-
tiplier (Hamamatsu R654).

Single-crystal platelets of CuCl, a sample No. 1 with
the thickness d = 9.8 pm and a sample No. 2 with
d = 22.8 pm, are held in an immersion-type cryostat
at 2 K. We measure the polarization spectrum of the
probe light due to the two-p m resonance as a function
of u + cup. In the present experiment, the photon en-
ergy of the pump light up ——3.18622 eV is fixed. In our
excitation geometry, the resonant coupling between the
counterpropagating pump and probe light involves the
m's with K = k —p = 3 x 10 cm . A very small
additional signal is also present due to the interaction
between the probe and the pump wave rejected back at
the rear surface of the sample. This geometry involves
the m's with K = k + p = 8.85 x 10 cm . However,
both signal peaks are well separated in &equency.

The width and the maximum of the resonant polar-
ization signal due to the m's with K = 3 x 10 cm
are shown in Figs. 5(a) and 5(b) and 6(a) and 6(b) as
a function of the pump intensity for samples 1 and 2,
respectively. The signal intensity is given by

(6S)

where An(~, Ii,) is the pump-induced nonlinear change
of the complex re&active index between the two mutually
opposite circularly polarized components cr+ (cr = 1, 2)
of the probe and p0 is the wave vector of the probe light
outside the sample. Only one of these two components of
the linear polarized probe light couples with the circular
polarized pump light in the resonant generation of m's.
The corresponding resonant m nonlinear susceptibility
y& l is connected with An(Ik) by

(64)
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where n (w) is the linear polariton refractive index and
Fg, is the amplitude of the electric field of the incident
pump light.

According to Figs. 5(a) and 5(b), the pump-induced
broadening of the polarization signal vanishes at the
pump intensity II, & 1 kW/cm . This intensity-
independent limit of the width of the m polarization spec-
tra is attributed to the radiative width I' (K) of an m.
According to Figs. 5(a) and 5(b), the corresponding val-
ues are given by I' (K = 3x10 cm ) = 24+2 peV and
36 + 3 p eV for samples 1 and 2, respectively. The same
thresholds on the pump intensity take place for the reso-
nant values of the polarization signal [see Figs. 6(a) and
6(b)]. Namely, only for II, ( 1 kW/cm can these values
be attributed to the corresponding y~ ~. Then, with Eqs.
(63) and (64) we estimate y „=(3.0 + 0.9) x 10 4 esu

and y „=(1.7+ 0.6) x 10 4 esu for samples 1 and 2,
respectively.

B. Measurements of the two-photon m absorption

The experimental configuration of the two-p m absorp-
tion measurements is shown schematically in Fig. 7.

The pump and probe light are linear and circular po-
larized, respectively. Now, the circular polarized probe
light can be decomposed in a coherent superposition of
the two components with the mutually orthogonal linear
polarizations. According to the selection rules in CuCl,
only the component polarized parallel to the polariza-
tion of the pump light gives rise to the m pump-probe
absorption. The polarized beam splitter (see Fig. 7) al-
lows us to separate each linear polarized component of
the transmitted probe. Then, the corresponding inten-
sities Io

~~

and Io ~ are detected independently by the
p-i-n photodiodes (Hamamatsu S3072). The intensities
of the pump and probe light are II, = 2—10 kW/cm and
Io ——0.4 kW/cm, respectively.

The transmitted intensity Io
~~

of the component that
interacts resonantly with the pump light is given by

Io, ll(~ ~I, ) = 2Io exp [
—nl. (ur)d —nNL((u, (uI„II,)d]

(65)

where nl. (u) and nNr, (~, ~I„II,) are the linear polariton
absorption and the nonlinear m absorption induced by
the pump, respectively. Another linear polarized cora-
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FIG. 5. The spectral width of the m polarization signal of
samples 1 (a) and 2 (b) as a function of the pump intensity
I&. The counterpropagating pump-probe geometry, the coher-
ently photogenerated m's have the wave vector K = 3 x 10
cm

FIG. 6. The maximum of the resonant m polarization sig-
nal of samples 1 (a) and 2 (b) vs the pump intensity I&. The
pump-probe geometry is the same as in Fig. 5. The dashed
line in each figure shows the quadratic law for the eye guide.



11 030 A. L. IVANOV, M. HASUO, N. NAGASAWA, AND H. HAUG 52

Polarizer

Pump lig

Polarizer
X/4 plate

Probe light

pump light inside the crystal and (ii) minimize an ac-
cumulation of the real x's generated by the pump and
probe light due to the background linear and nonlin-
ear optical processes. The experimental dependence of
the normalized integrated two-p m absorption spectra
0.( ) ((u) = cr( ) (w)/o( ) (u) =

2 ) is shown in Fig. 8 (cir-
cle dots).

pie
C. Comparison of the experimental results

with the two models

PD 0
Polarized

I
bearrl splitter

I Photo diode
(PD j

0, II

FIG. 7. The experimental con6guration for two-p I, ab-
sorption spectroscopy.

Ip ~((d, cdk) = 2Io exp [—ng(id)d] (66)

From Eqs. (65) and (66) one concludes

(67)

where nNL(~, ark, Ii, ) is connected with the two-p m, ab-
sorption coefFicient by the simple relationship

ponent of the probe undergoes only the linear polariton
absorption:

(i) The exactly soLvable bipolariton model In. order
to estimate nuinerically Eqs. (46) and (47) of the ex-
actly solvable model one has to solve Eq. (28). We use

co ——34 meV as the only input m parameter for Eqs.
(26)—{32).The corresponding m radius is deterinined by
4o(p) as a = 9.3 A. . The following x and polariton pa-
rameters of CuCl have been used: eo ——5.6, ~q ——3.2022
eV, ~gq ——5.7 meV, and M = 2.6mo. The dependence
I' = I' (K) as a result of the numerical solution of Eqs.
(28)—(31) is shown in Fig. 9 (solid line). The feature of
the theoretical curve F (K) at K = Ko ——8.85 x 10s
cm with a jump of the first derivative is due to the van
Hove feature in a joint density of bipolariton states which
is determined by the function b'B(p, K) of Eq. (29) (see
also the corresponding discussion in Ref. 22). According
to the numerical calculations, I' (K = 0) = 27.4 peV.
Thus, the quantitative agreement between the theoreti-
cal and experimental results is rather good, particularly
because there is no fitting parameters in the exactly solv-
able bipolariton model. For comparison, the two experi-
mental points I' (K = 3 x 10 cm ) are also shown in
Fig. 9.

The experimental dependences I' ' on the pump inten-
sity Ii, shown in Figs. 5(a) and 5(b) cannot be attributed
to the dynamical transient pump-induced broadening

nN1. {(u,(ui, Ii, ) = (Ii ) K (ur, ~i ) . (68)

Here, {Ii,) is the spatially averaged pump intensity inside
the crystal:

!II0
I 'lI.
I 'I

l l
I

I

1 —c
(Ii) = Ii,

( )d

Finally, the two pm absorption c-oefficient K(2) (w, wi, ) is
evaluated with Eqs. (67)—(69). This method allows us to
extract the two-p absorption kom the linear absorption
background as well as to avoid an infIuence of the fluctu-
ations of the probe intensity Io. These Buctuations are
identical for both components, Io

~~

and Io ~, and accord-
ing to Eq. (67) automatically cancel each other. From
the measured K&2)(id, ui, ) we find the integrated two-p
absorption o.( )(u) by the straightforward numerical in-
tegration over the frequency ug.

In the experiment, photon energies of the probe and
pump light satisfy the condition u ) 0 (o)/2 )
in order to (i) reduce the spatial inhomogeneity of the

1o 4—

Clr

CD

C:
Q

3.1 8

oo
0 v V

3.19 3.ZQ 3.21 3.22

FIG. 8. The normalized integrated two-p rn absorption line
shape o~ l(cu). Circles: the experimental result; solid curves:
the bipolariton model; dash-dotted curves: the giant oscilla-
tor strength model with the biexciton wave function 4'o of
Eq. (19) and without the interference terms; dashed curves:
the giant oscillator strength model with the bipolariton wave
function 4 = @/f of Eq. (20).
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FIG. 9. The dependence of the m radiative width I' on
the total m momentum K. Bold points: the experimental val-
ues of 1 (K = 3 x 10 cm ) found from Figs. 6(a) and 6(b);
solid line: r™= I' (K) of the bipolariton model; dashed line:
I' = I' (K) of the giant oscillator strength model [Eq. (62)].

precision experimental results for I' (K 0), y „and
o (2) (~)

(ii) The giant oscillator strength modeL —As discussed
above, for the giant oscillator strength model one has to
determine first the m wave function O' . Here, one can
either use the biexcitoii wave function of Eq. (19) or the
bipolariton wave function of Eq. (20).

(1) ilJ = 4'o(p) the biexciton wave function of Eq.
(19): This choice corresponds to the conventional inter-
pretation of the giant oscillator strength model.

The result of the numerical calculations of I'
I' (K) with Eq. (62) is given in Fig. 9 (dashed line).
Here, we again use the deuteron model wave function
4o(p) of Eq. (32) with eo ——34 meV. The calculated
curve does not reproduce the experimental points for
K -+ 0, the corresponding I' (K = 0) = 160.0 peV.
However, difFerent model m wave functions 4'o(p) can
give the different values of I (K = 0) even for the fixed
m binding energy eo (see, e.g. , the discussions in Ref.
15).

The resonant value of y( ) = y(s)(u = 0 +kp+k
~(0)~i„.|dk, —ui„O +&

—&uk) plays a crucial role in the un-
ambiguous discrimination between the two models. Ac-
cording to Eq. (59),

of Eqs. (53) and (54). The corresponding thresholds
It 10—30 kW/cm given by the condition a(Ik) ( 1
of Eq. (51) exceed considerably the experimental ones.
Thus, we conclude an incoherent, kinetic origin of the
pump-induced broadening in Figs. 5(a ) and 5(b) due to
a stray generation and accumulation of the real x's and
m's which inHuence I' . A still further decrease of the
pump pulse duration to a subnanosecond time scale will
allow one to avoid this incoherent efFect.

From Eq. (46) we estimate the resonant maximum

Value Of ymax fOr 0 +k
—u —tdg = 0 aS &max = g (~ =(3) (0) (3) (3)

p+

&p+i, —~i„~k, —~i„0 +„—~i, ) = 1.05 x 10 esu. In—4

this estimate, uk is chosen to be the experimental value
of 3.18622 eV, which is very close to 2™.This value

of y (~ = 0 +k
—uzi„cubi„—ui„B +&

—ui, ) obtained
within the exactly solvable model is again in rather good
quantitative agreement with our experimental results.

The calculated line shape of the normalized integrated
two-p m absorption coefficient o( )(u) for the bipolari-
ton model is shown in Fig. 8 (solid line). The theo-
retical curves reproduce the measured line shape within
the experimental accuracy. These numerical calculations
use Eq. (47) for K(2) (w, wi, ). Our experimental scheme
(see Fig. 7) for the two-p m absorption involves the lin-
ear polarized pump light, while the corresponding self-
consistent theory is given for the circular polarized pump.
As we discussed above, this difFerence can infIuence the
final expression for the total resonant m nonlinear sus-
ceptibility y„& (p, w; k, wi„ Ii, ) of Eq. (14). However,
we have checked that in the low-intensity limit of the
pump both polarizations give the identical pump-probe

) (ld = ld; Cdg, —tdg, ld) alld K( ) (M, (de).
Thus, we conclude that the bipolariton model with

the scheme of Eq. (3) explains quantitatively the high-

X „=X (~ = ~1~+k —~i ~i, —~i, ~~+i, —~k)(3) (3) m, (0) m, (0)

rm(p + k)
(70)

TABLE I. Comparison of optical properties.

Bipolariton Giant oscillator Experimental
model strength model results

r (&eV)

g".'„(x10-' esu)

27.4

1.05

160.0

0.18

24 —36

1.7 —3.0

where for the optical range one can put ~@o(~ )~

~@o(0)~ . Thus, y( )(w = ~)l +i, —ui, uk, —wm, ~1 +i,
wi, ) is insensitive to @p because for K (( a the m
radiative width I' (K = p + k) of Eq. (62) is also pro-
portional to ~iso(p 0)

~

due to the b function in the
integrand. As a result, the wave function 4o falls out
from the final expression of Eq. (70). From Eq. (59) one

estimates y (u) = 0 +„—)uk,'(uk, —(ui„0 +„—(uk) =rn(0) m(0)

0.18 x 10 esu. This value, unique for the giant oscilla-
tor strength model, disagrees by one order of magnitude
from our experimental data. The comparison of y

(3)

and I' (K 0) of the two difFerent models with the cor-
responding experimental values is summarized in Table
I.

The calculated curves of the normalized integrated
two-p m absorption of the giant oscillator strength model
without the interference terms ' (Zi, 'P& + H.c.)
are shown in Fig. 8 (dash-dotted line). This line shape
does not reproduce the experimental points. However,
the two-p m absorption coefficient K(w, wi, ) of Eq. (60),
which includes these interference terms of the giant os-
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cillator strength model, gives the integrated absorption
o.( )(w) similar to the bipolariton model, if ~wt —cup)

~

))
r*.

(2) @ = 4(p, k)/ f (p, k) the bipolariton wave func-
tion of Eq. (20): In this way one automatically receives
I' = I' from the bipolariton model. This value is in
agreement with the experimental results.

However, the maximum resonant y~3~ & 1 esu evalu-
ated by Eq. (59) with the bipolariton wave function of
Eq. (27) considerably overestimates the corresponding
experimental values. Formally, this result is due to the
resonant bipolariton energy denominator hO(l, K) of Eq.
(27). In comparison with the exactly solvable bipolariton
model, the giant oscillator strength model cannot remove
this feature from y(s) and K( ) of Eqs. (59) and (60) [see
also Eq. (61)].

The integrated absorption coefEcient o( )(m) calcu-
lated with Eq. (61) is shown in Fig. 8 (dashed line). The
corresponding curves fit the experimental points worse
than the bipolariton model. However, the main qualita-
tive shortcoming of the giant oscillator strength model
with the bipolariton wave function 4 = 4/f is a non-
Lorentzian absorption line of Eq. (61).

V. CONCLUSIONS

In this work we have developed and applied the con-
cept of a bipolariton in order to analyze the nonlinear

optical response of an m state. This concept treats an m
as a metastable state of the two polaritons quasibound
through the Coulombic interaction of their x compo-
nents. Then, the m optical decay and the two-p m opti-
cal generation are mutually inverse processes in terms of
resonant polariton-polariton scattering.

The main conclusions of the work are as follows.
(i) The exactly solvable bipolariton model is worked

out for the deuteron potential of the x-z interaction. This
model allows us to calculate self-consistently within the
x-p dynamical system all the m optical characteristics:
the I radiative width I' and the radiative correction

(the m Lamb shift) of the m energy 0, the third-
order m nonlinear susceptibility y~ ~, and the two-p m
absorption coefBcient K~ ~.

(ii) The high-precision measurements in CuCl of I'
y~ ~, and K~ ~ discriminate the bipolariton and giant os-
cillator strength models in favor of the first one.
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