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Photon emission from hot electrons in silicon
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In this work we present a theoretical calculation of the photon emission spectrum via direct
and phonon-assisted intra-conduction-band transitions, assessing the impact of the approximations
usually made in theoretical analysis of the phenomenon. We have compared our results to a previous
work, 6nding a marked disagreement. Our phonon-assisted emission spectrum has a much lower
efFective temperature, so that it overwhelms the contribution of direct processes over the range of
photon energies spanning from infrared to near-UV. We discuss qualitative arguments supporting
our results presenting also a simpli6ed model suitable for a much more efBcient implementation of
the spectrum calculation.

I. INTRODUCTION

Light emission from hot carriers in silicon devices has
been observed since the 1950s, and has received much
attention in recent years with the experimental analy-
sis of photon emission from metal-oxide-semiconductor
field-effect transistors (MOSFET's). ' The emission of a
photon due to the relaxation of a high-energy electron is
called direct if it occurs via an electron-photon interac-
tion only, instead it is called indirect if a third particle
assists the process. The third particle usually supplies
momentum to the electron, as the photon carries energy,
but almost no momentum.

At the beginning, two mechanisms were proposed
to explain this phenomenon: bremsstrahlung processes,
where the momentum is supplied by a charged cen-
ter, and a recombination between electrons and holes.
These conclusions were drawn on the basis of semiclas-
sical models. However, recent experimental evidences
have ruled out any contribution from impurity-assisted
processes and electron-hole recombination. Further-
more, Bude et al. have recently performed a theoreti-
cal calculation for direct (D), phonon-assisted (PA), and
impurity-assisted (IA) transition rates in silicon devices.
Their results show that for a typical n-MOSFET, the con-
tribution of recombination and IA processes is negligible
(except for impurity densities higher than 5 x 10 cm ),
while most of the photons with energy below 2 eV are
emitted from direct processes. Above 2 eV PA, processes
become dominant.

In this work, we critically review the calculations of the
photon emission &om hot electrons. First, we present
our refinements to the computational model of Ref. 7,
namely: (i) The introduction of a finite lifetime of the
initial state in second-order transitions, and (ii) the use
of a more realistic photon density of states.

Then we show that our calculated PA spectrum is
markedly different &om that of Ref. 7 leading to a domi-
nant contribution over all the considered spectral range.
Finally, we comment on these results presenting a sim-

plified model that presents much less computational re-
quirements nevertheless leading to results in very good
agreement with those previously obtained from the more
detailed calculations.

II. THEORETICAL FRAMEWORK

A. Direct processes

Direct transition rates have been calculated from a
first-order perturbation theory, using the Fermi golden
rule. The probability per unit time of a radiative tran-
sition from an initial Bloch state

~
v, k) to the final

state
i
v', k') is given by

W = —i(v', k'iR iv, k)i 8(E —E' —Ru),

where E and E' are the energies of the initial and fi-
nal electron states, and H is the electron-photon in-
teraction Hamiltonian. Since in the frequency range of
interest the photon modes have negligible occupation, in
the following, we will only consider spontaneous emission
processes; the interaction Hamiltonian for the emission a
photon of momentum q and polarization A is

—e h e'~'ihe),
mp 2e((u, 0)~O

where e is the electron charge; mo is the electron rest
mass; e(u, 0) the long-wavelength, energy-dependent di-
electric function; ep the unit polarization vector; ~ the
photon energy; and 0 is the volume of the crystal.

The evaluation of the matrix element leads to the mo-
mentum conservation rule k' = k+ q + C. Since q is
very small in normal processes (G = 0), the states ~v, k)
and iv', k') have almost the same wave vector (k = k')
and the number of umklapp processes (G g 0) is neg-
ligible because they occur only at the very borders of
the Brillouin zone. By neglecting the polarization of the

0163-1829/95/52(15)/10993(7)/$06. 00 52 10 993 1995 The American Physical Society



10 994 S. VILLA, A. L. LACAITA, AND A. PACELLI

emitted light, the rate given by Eq. (1) must be averaged
over all the possible orientations of ep. This procedure
is equivalent to replace the dot product in Eq. (2) with
its average on the solid angle, that is

10

410—

ep. —+

The monochromatic emission rate 1/v; (Ru) for a
given initial state ~v, k) is obtained by integrating the ob-
tained single-transition rate over Anal states. Formally,
at this stage, we should take into account the probability
for the final state to be already occupied, however, this
occurrence can be neglected because we are not dealing
with a degenerate semiconductor.

The resulting expression is
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FIG. 1. Photon density of states, as calculated from the en-
ergy-dependent dielectric function (solid line) and for a con-
stant refractive index (dashed line).

where p(Ru) is the photon density of states.
Note that the integration over the Anal states has been

split into a sum over the band index v' and an integra-
tion over photon modes. Since the photon momentum
is small, it can be assumed that the matrix elements do
not depend on q and this latter integration reduces to a
multiplication of the rate given by Eq. (1) by the number
of photon states with frequency between cu and u + dw

given by

(5)

where n = ge(u, 0) is the refractive index. The fre-
quency dependence of the dielectric function e(cu) was
neglected in Ref. 7. Although the variation of the refrac-
tive index with energy is not dramatic, its derivative with
respect to energy strongly aÃects the photon density of
states [cfr. Eq. (5)j, which is directly proportional to the
emission rate. In fact, as the refractive index of silicon
varies from about 3.5 at low frequencies to about 7 at
3 eV, the photon density of states is enhanced by one
order of magnitude at 3 eV (Fig. 1). Although this ef-
fect is attenuated by the presence of the factor e(w, 0) in
the denominator of Eq. (4), there is still an enhancement
of the spectrum by a factor of 4 at 3 eV. Therefore, we
have used the experimental energy-dependent refractive
index in Eq. (4) and in all subsequent calculations.

The rate of emitted photons per unit time and energy
has been finally obtained by integrating Eq. (4) over the
initial states.

) f(vk) dk,
7ern

V

where f(v, k) is the occupation probability of the elec-
tron state ~v, k). In our calculations, we have chosen the
normalization factor for f (v, k), satisfying the condition

Q f(v, k)d k = 1,

which corresponds to the presence of one electron in the
crystal volume.

B. Phonon-assisted processes

The computation of PA radiative scattering rates has
been done using second-order perturbation theory; the
expression of the probability per unit time of a given PA
transition is

W = iMi2i b(E —E' —Ru + Ruo),

where the sign + corresponds to absorption or emission
of a phonon with energy ~0. This expression is quite
similar to Eq. (1), but in this case, the matrix element
Mi2 has a more complicated form. For the sake of sim-
plicity, in the following, we will label the eigenstates of
the overall system with a unique index comprehensive of
both the quantum numbers of the electron and the fields;
the initial state is ~i) and the final state

~
f). Moreover,

we will give the analytical expressions only for a tran-
sition with both phonon and photon emissions. In this
case, the second-order matrix element is

~. (f~H +Ho~v)(v~H +Ho~i)
12 g E )

'U

where the sum over ~v) is performed over all the possible
intermediate (or virtual) states. The energies E;,E„are
now the total energies of the system electro'h+fields in
the initial and the intermediate state, respectively. The
selection rules for the virtual states are imposed by mo-
mentum and spin conservation, but not by energy con-
servation. In fact, a transition can violate energy con-
servat jon of a quant jty QE —P E . provided
its characteristic time scale is shorter than A/AE This.
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condition is the physical origin of the denominators in
Eq. (9), where the matrix elements are proportional to
the transition lifetimes for the virtual state lv),

(12)

The constraints imposed by momentum conservation
reduce the virtual states to the Bloch eigenstates, with
one of two possible wave vectors, namely, k' = k; —q or
k'„' = k; —qo, where k; and k„are the wave vectors of the
electron in the initial and intermediate state, hq the mo-
mentum of the emitted photon, and hqo the momentum
of the emitted phonon. The states with the first wave
vector k' arise as intermediate states in processes, where
the interaction with the photon precedes that with the
phonon; in the following, these processes will be called
type (A). On the other hand, states with the wave vec-
tors k" occur as virtual states on the processes, where the
interaction order is reversed: They will be called type (B)
processes.

Separating the contributions of (A) and (B) processes,
the matrix element can be written as

I II

Mg2 ——M" + M

The matrix elements of the interaction Hamiltonians
are null if the intermediate Bloch state is already occu-
pied. Therefore, excluding the case of a degenerate n-
doped semiconductor, we can sum over conduction band
states only.

As regards the analytical form of the second-order ma-
trix elements, it must be noted that they have real poles
which, from a numerical standpoint, could cause insta-
bilities on the integration algorithm. However, this poses
no problems because, in the cases where the denomina-
tors vanish, some approximations assumed in the deriva-
tion of Eq. (8) break down; the most important one is
that state decay is neglected. In fact, a more rigorous
approach should take into account the finite lifetime of
electron states leading to equations similar to (7) and (8),
in which an electron self-energy appears in the denomina-
tors, shifting the poles into the complex plane. In addi-
tion the Dirac b function should be replaced by a spectral
energy function. However, this latter refinement would
result only in a slight smoothing of the emission spectra
at the cost of a great increase of the computational re-
quirements and it has been neglected. The self-energy
introduction brings instead significative changes in the
results, because the imaginary part of the self-energy I'
takes into account the damping of quasiresonant tran-
sitions. In these cases, the standard second-order per-
turbation theory would predict transition lifetimes un-
physically longer than the lifetimes of the Bloch states
involved. Therefore, we have used transition matrix ele-
ments in the form:

In this equation, we have explicitly divided the total en-
ergy of the intermediate state into electron energy (E„)
and emitted particle energy (Ru or ~p). It should be
noted that the introduction of I'; does not a8'ect matrix
elements of nonresonant transitions, since the real part
of the denominators in Eq. (12) is dominant.

We have estimated the self-energy using the Born ap-
proximation and retained only the imaginary part I';,
since the real part is of the order of few tens of meV and
is, therefore, negligible. I', is given by

h(n„~. + 1)
v, v Je

2pLt)q qo
(14)

where p is the mass density of silicon and n„& is the
phonon occupation number given by a Bose-Einstein
distribution at the lattice temperature. The quantity
A„(k, k', v, v') is often referred to as deformation poten-
tial. It could be obtained from pseudopotential calcula-
tions, at least for small wave vectors.

The transition probability of Eq. (12) must be inte-
grated over initial and final Bloch states, over the pho-
ton mode and the phonon mode. The integration over the
four wave vectors can be reduced to an integration over
k and k'. This is done by using momentum conservation
to eliminate the integration over phonon momentum and
then supposing that, as in the direct case, transitions
di8'ering only by the wave vector of the emitted photon
have nearly the same probability and so replacing the
integration over q with a simple multiplication by the
optical density of states (5). The resulting emission rate
per unit time and energy is then

02
S(~) = ) ) —p(~) d(Ru)

l
Mg2

l

~i ~f

xh(E —E' —M + %up) f(k, , v, )d k; d ky.

where 1/r, is the scattering rate for the initial state taken
from the energy-dependent scattering rate obtained from
full-band Monte Carlo simulations. In order to refine
the calculation, either the Fock approximation for the
self-energy insertion or the finite lifetime of the interme-
diate state could be introduced in the calculation; how-
ever, this would only give higher-order corrections, with
respect to the framework of present calculations; there-
fore, we have not included these refinements in the com-
putational model.

The nonpolar electron-phonon Hamiltonian for an elec-
tron in the state lv, k) and an emitted phonon of the gth
branch is given by
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III. NUMERICAL IMPLEMENTATION

The calculation of the emission spectra from direct
transitions requires the three-dimensional integration of
Eq. (4) over initial states in k space, weighted by the
electron distribution. %'e have used a histogram method
with a uniform integration mesh fine enough to properly
manage the dependence of the electron-photon matrix
element on wave vector. More precisely, we adopted a
grid with 88 points on the I' —X axis and 60951 points
in the irreducible wedge (IW). This calculation poses no
relevant numerical problems or CPU requirements.

The calculation of the PA light emission is much more
time consuming, because it requires a six-dimensional in-
tegration over the Brillouin zone. Moreover, the second-
order matrix element Mq2(k, k') strongly depends on
the wave vectors k and k', due to changes of both the
virtual-state lifetimes and the photon matrix elements.
Therefore, some simplifications are needed to numeri-
cally handle the calculation. Regarding the electron-
phonon interaction, we have chosen the model imple-
mented in the device analysis using Monte Carlo and
Poisson solver (DAMOCLES) full-band Monte Carlo.
In this model, the approximated phonon dispersion is
composed by three distinct branches only: longitudinal
acoustic, transversal acoustic, and optical; the matrix el-
ements are in the same form as in Eq. (14), where the
deformation potentials are taken as the product of an
isotropic coupling constant A„(qo, v, v') and an analytic
overlap factor,

meshes in k space: a fine grid for the computation of the
electron-photon interactions and the bands eigenvalues;
a very coarse grid (89 points in the IW) for the overlap
integrals. Band eigenvalues and matrix elements were
calculated with a three-parameter local empirical pseu-
dopotential method; more precisely only the lowest four
conduction bands were considered and a plane wave basis
of 137 G vectors in the reciprocal space was used. Care
was taken in order to avoid sampling the coarse mesh on
symmetry points, where numerical problems can occur,
due to degeneracy. The PA emission was obtained us-
ing Eq. (15), neglecting light polarization and quantum
interference. This means that we have integrated tran-
sitions rates, in which the squared magnitude of' matrix
elements ~M12~ has been replaced by

2

E„+~0 —E; + iI';

where the operator H is the scalar operator that can be
obtained by performing the substitution (3) in the oper-
ator given by Eq. (2). The scalar properties of the ob-
tained electron-photon Hamiltonian joined with the par-
ticular isotropic form of the electron-phonon Hamiltonian
can be used to fully exploit crystal symmetries, thus re-
ducing both initial and final-state wave vector integration
into the irreducible wedge.

IV. RESULTS

where the constant Bo is taken equal to the radius of a
sphere with half the volume of the primitive lattice cell.

The dependence of A„(qo, v, v') on phonon wave vector
module qo is taken as linear for the two acoustic modes,
and constant for the optical one. Following the notation
of Ref. 12, the deformation potentials are given by Az, ~go
for longitudinal-acoustic phonons, LTAqo for transverse
acoustic, and to DKop for optical ones. In Ref. 12, two
sets of coupling constants are reported; the erst, labeled
as "erst band, " has to be used for phonon scattering be-
tween two electronic states both belonging to the first
conduction band; otherwise, the values of the set labeled
"other bands" must be used. This model can estimate
only the magnitude of the electron-phonon matrix ele-
ments without giving information about its phase. This
does not afFect the calculation of erst-order processes,
but for higher order processes there is quantum interfer-
ence between indistiguishable transitions; therefore, the
knowledge of the phases of all the matrix elements is,
in principle, required. However, we will show in the fol-
lowing that the absence of significant correlations makes
quantum interference negligible in the calculation.

It must be noted that the k dependence of our electron-
phonon matrix element is due to that of the overlap factor
only, which is a slowly varying function compared to both
transition hfetimes and electron-photon matrix element.

We have exploited this property by using two difFerent
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FIG. 2. Comparison between direct (solid line) and PA
spectra (dashed line) for a sample electron distribution, shown
in arbitrary units (dashed-dotted line).

The direct and PA spectra have been calculated for a
sample electron energy distribution (EED) also consid-
ered in Ref. 7. The EED is a Gaussian fit of a Monte
Carlo simulation for an n-MOSFET. Figure 2 shows
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the calculated spectra (in photons js eV) along with the
EED (in arbitrary units).

It is interesting to assess the role of the initial-state
lifetime on the calculation of the PA spectrum. From
a numerical standpoint, the tI'; term in Eq. (12) limits
the magnitude of the terms when the energy differences
E —E,+Lu+Ruo or E„I —Ef —~+Leo vanish, and the
virtual-state lifetime becomes infinite causing numerical
instabilities. In Ref. 7, this effect was accounted for by
taking out of the sum the terms corresponding to those
transitions with a virtual-state lifetime greater than the
initial-state lifetime. In this way, nearly resonant tran-
sitions are overestimated (by taking I'; = 0), while reso-
nant transitions are neglected. Our calculation does not
need to take care of resonant transitions as a special case,
as they do not make the algorithm unstable.

Figure 3 shows the effect of the initial-state lifetime on
the PA spectrum. The figure compares the actual calcu-
lation for the emission rate (solid line) with the two spec-
tra obtained by enhancing the initial-state lifetime by a
factor of 200 (dashed line), and by omitting the resonant
terms (dashed-dotted line) as in Ref. 7. Note that the
intensity of the long-lifetime spectrum is the highest and
shows a much larger numerical noise, since some terms of
Eq. (12) can assume very large values at resonances in k
space. Instead, the other two spectra are almost identi-
cal. This means that the approximations introduced by
neglecting the resonant terms and the damping due to
the initial state lifetime compensate each other and that,
aside from physical considerations, the two models are
almost equivalent.

In order to have a quantitative feeling on the impact
of the quantum interference on the computed emission
rate, we have fully computed the emission spectra using
a slightly modified model that accounts for interference.
More precisely, the squared magnitude of transition ma-

trix elements used in this model was given by

In this way, we accounted for quantum interference only
among processes of the same type (A or B) In .this equa-
tion, the vector character of electron-photon Hamiltonian
has to be taken into account explicitly summing transi-
tion rates over different polarizations; in fact, the use of
the replacement (3) in interference terms should cause a
loss of the phase of the electron-photon matrix element.
Moreover, since we cannot make a guess about the phase
of the electron-phonon matrix element it was supposed to
be a positive real number. It can be easily verified that
these assumptions together with the previously discussed
difFerent modeling of resonant processes lead to Eqs. (5)
and (6) in Ref. 7.

The quantitative comparison between spectra obtained
with or without accounting for interference has shown
difFerences smaller than 1%. This means that the phases
of the matrix elements for the various processes are al-
most randomly distributed; although the phase of the
electron-phonon matrix element cannot be known, we can
reasonably think that this would not affect the results.
In fact, only a very strong correlation of this phase with
respect to that of electron-photon matrix elements and
energy denominators would bring interference effects to
relevance. Since Ref. 7 reported only the relative com-
parison between direct and indirect processes and not the
absolute intensity in photons per unit carrier, time, and
energy, we have multiplied that results by a renormaliza-
tion constant in order to equalize the two direct spectra.
Figure 4 shows the comparison of our results with those
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FIG. 3. PA photon spectra computed assuming a realis-
tic initial-state lifetime (solid line), compared with the re-
sult obtained by enhancing the lifetime by a factor of 200
(dashed line) and by omitting the resonant processes as in
Ref. 7 (dashed-dotted line).

FIG. 4. Comparison between the calculated phonon-
assisted (PA) spectra from this work (solid line), from Ref. 7
(dashed line), and the electron distribution in arbitrary units
(dashed-dotted line).
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Eq. (20) (dashed line), N(Ru) given by Eq. (19) (solid line).

FIG. 6. Comparison between the spectrum obtained from
the full calculation (solid line) and the simplified one (dashed
line).

computed by Bude et a/. for the same EED. The shapes
of the direct-transition spectra are identical, while the
PA spectra are markedly difI'erent. More precisely, our
spectrum has a lower effective temperature than the EED
for energies greater than 1 eV, while the PA spectrum of
Ref. 7 has a temperature higher than the EED over the
entire energy range.

The frequency dependence of the dielectric function
that; we have used in the calculations gives an upward
correction of the spectrum; this means that if the actual
photon density of states were considered in Ref. 7, the
temperature of their PA spectrum would have been even
higher.

In order to check our results, we have investigated how
the PA spectrum is afI'ected by the total number of al-
lowed transitions and by the average lifetime of the vir-
tual states. Figure 5 shows the EED (dash-dotted line)
and the dependence (solid line) of the quantity,

f (E)g(E)g(E —Ru) dE,

on the photon energy her, where g(E) is the electron
density of states. %(bur) gives the total number of al-

lowed transitions, weighted by the RED, and is slightly
cooler than the EED. Figure 5 also shows the dependence
(dashed line) of the quantity

f(E)g(E)g(E —Ru)r (E, Ru)dE, (20)

where 7 (E, Ru) is the average lifetime of the virtual states
involved in the PA transitions starting from states at en-
ergy E, with the emission of a photon ~. From a physi-
cal standpoint, this corresponds to take constant both the
photon and the phonon matrix elements in the numera-
tors of Eq. (12): Note that the introduction of the virtual-
state lifetime has further cooled the spectrum. Moreover,
the shape of I(Ru) is almost coincident with the shape of
the PA spectrum previously shown in Fig. 4. This means
that there is no significant correlation between the in-
tensity of a PA transition and the energy of the emitted
photon, thus making reasonable that the detailed calcu-
lation should give a spectrum cooler than the EED.

Finally, it is worth introducing a simplified model: In
the assumption that the EED depends only on the elec-
tron energy, the PA emission rate given by Eqs. (15,17)
can be written in the equivalent form:

0
s(ku) =

2

) 5 p(ku)d(~) — . r (k, , v', E, —~)f(E,)d k;
&i

+ s 5 ) (Mp)d(AQ/) . r (kf ) v ) Ef + RLJ)f (Ef + Act))d kf )

0 (fIII-lv")

tf I I

where we have defined

2' 0'(k, v, E) =— ) l
(k, v lHp lk', v')

l

~l

xh(E —Ek + ~p)d'k'.

Note that if the energy of the eigenstate lk, v) is equal
to E, then r (k, v, E) is the electron-phonon scatter-
ing rate for the eigenstate. Since the Anal spectrum
is obtained from a weighted average of many uncorre-
lated contributions, it is expected that the replacement
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of r(k, v, E) with the energy-dependent scattering rate
r(E) should lead to numerical results fairly close to those
from the detailed calculations. The validity of this ansatz
is confirmed by the comparison shown in I ig. 6.

This simplified approach leads to three major improve-
ments:

(i) The numerical implementation of the simplified
model is much more eKcient, since the computational
requirements have been lowered to the same order of di-
rect transitions case.

(ii) The computation of the electron-phonon matrix
elements is no longer needed; the only quantity required
is the energy-dependent scattering rate, which could be
found in almost any Monte Carlo published report.

(iii) In cases of extremely high-doped semiconductors,
the contribution of brehmsstrahlung radiation could be
easily computed by simply replacing the electron-phonon
scattering rate by ionized-impurity scattering rate.

V. CONCLUSIONS

In this work, we have reported and commented upon a
theoretical calculation of photon emission by direct and
phonon-assisted transitions. Our analysis di8'ers from
previous work in a more detailed treatment of purely
quantum effects. In contrast with previous estimates, we
have found that PA transitions play a key role over all
the considered energy range.
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