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A theoretical approach to the problem of the valence-band tail of hydrogenated amorphous
silicon is developed. A quantitative description of experimental data on the density of states (DOS)
in the region of the valence-band tail is attempted. A single-band three-dimensional version of
the Brodsky model complemented by an assumption of the; random size distribution of potential
wells and barriers was used in the calculation. This model corresponds to a solid solution where
the regions of amorphous silicon and those saturated by hydrogen play the role of constituents.
The Brodsky model restricts the depth of potential wells for holes by the di8'erence between the
valence-band tops of the crystal and hydrogenated amorphous silicon. The experimental total-
yield photoemission data on the DOS of hydrogenated amorphous silicon for various samples were
compared with theoretical calculations. The results show that a good quantitative agreement can be
achieved with the DOS for both undoped and doped samples. The random potential characteristics
deduced from a comparison with experimental data mainly on undoped and B-doped samples, show
no dependence on the level of doping, and, in fact, describe well the DOS of P-doped samples as well.
Earlier, a similar conclusion was drawn from the data on hole drift mobility. However, we obtain the
best coincidence with experimental data when the depth of the Huctuation wells is approximately
two times that assumed in the simplest version of the model. The possible reasons for this divergence
seem to be an additional fluctuation potential obeying the Gaussian statistics and (or) the shallow
B-acceptor states neglected in our calculations. We obtain also general and simpli6ed expressions
for the D-center band contour due to the interaction with a Huctuation potential. It is shown that
the band contour of these centers is a source of supplementary information about the Quctuation
potential, which is in qualitative agreement with data derived from comparison with the DOS of the
host band tail.

I. INTRODUCTION

Amorphous semiconductors of the group IV as well as
A111Bv and Ay1Bv1 compounds (Refs. 1—3 and references
therein) represent a wide class of systems where. disor-
der follows from structural damages. That distinguishes
them both from solid solutions and strongly doped crys-
tals and from liquid and glassy formations.

Amorphous silicon itself and its hydrogenated form has
attracted the attention of researchers~ 2' (and refer-
ences therein) for a long time. This is due to a tech-
nical application of this substance and a general inter-
est in the amorphous state. One of the major tasks
of theory is qualitative and quantitative explanation of
the electronic structure of these complex systems within
the framework of models of amorphous network accept-
able from the point of view of the structural analysis
data. ' ' ' ' A separate but rather important aspect
of this problem is one concerned with the origin of fluc-
tuation localized states of the hydrogenated amorphous
silicon valence bands.

An approach to the quantitative description of the
valence-band tail is presented in this work. The first
question is whether we can find the only reason which
is mainly responsible for the localization phenomenon in
this complex system. It is also important that the model
Hamiltonian has to be both physically meaningful and
tractable enough to be applicable to calculations in the

region of localized states where neither a perturbation
theory nor a coherent potential approximation are appli-
cable. Diferent mechanisms creating the localized fluc-
tuation states in the Q.-Si and 0;-Si:H valence-band tails
have been studied in many papers (and references
therein).

The short-range order is preserved ' in amorphous
silicon at least up to the second coordination sphere,
while the long-range order is completely broken because
of the relatively large number of dangling bonds ( = 10
cm s). The mean valence bond length appears to be
close to the crystal Si value, and the relative root-mean-
square deviation was estimated to be about 2 —4 /0. ' ' '

The valence bonds are oriented along directions close
to tetrahedral ones, and the angle root-mean-square de-
viations do not exceed 0.2 rad. ' ' ' lt was shown by
Joannopoulos that the local bond angle distortions hav-
ing the magnitude of the order of their dispersion give rise
to resonant states near the top of valence bands, while at
a larger perturbation the localized states split o8'.

The distribution of bond length and bond angle devia-
tions from their mean values in various models oi' amor-
phous network (and references therein) is assumed
to be Gaussian at a relatively small dispersion. This
circumstance allows us to suggest that the random po-
tential arising from these deviations should be charac-
terized by Gaussian statistics. The dependence of the
density of fluctuation states on the localization energy is
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determined by statistical properties of the random poten-
tial. As it follows from Refs. 32—35, the random potential
obeying the Gaussian law leads to the density of states
(DOS) decrease described by the exponential root square
dependence on energy. That is far enough from both the
well known Urbach behavior and a more complex
experimental dependence.

Stern has assumed that the random potential in
the amorphous silicon obeys modified Gaussian statistics
with a Rnite correlation radius. Later, a detailed study
of random potential of such a kind was performed
and it was shown that the model provided explanation of
the Urbach form dependence of the density of localized
states in the relatively narrow energy range, however,
the results are insufIicient for description of experiment
in a more wide range. We can conclude that the Gaus-
sian fluctuations and the corresponding random poten-
tial cannot be considered as a principal reason for the
tail states.

The valence bands of amorphous and crystalline silicon
are formed by the Sp -hybrid orbital of Si atoms, and
the valence-band top consists primarily of p components.
According to Weaire and Thorpe, this is due to the
by preservation of the short-range order.

Such a characteristic as the valence-band full width
is preserved approximately, while the band gap width
demonstrates some growth as coInpared with the crys-
tal and is found to be about 1.5 eV. ' ' The DOS of
the valence bands preserves the characteristic maximum
belonging to the p states, however, the structure of the
DOS in the depth of the valence bands inherent to the
crystal Si disappears. ' ' ' ' This fact is likely to result
largely from the topological disorder of the amorphous
network, which leads to the disappearance of the regular
sixfold ring structure of the diamond lattice. From this
point of view, it is demonstrative that the DOS of the
Bethe-lattice model describes the valence bands of
n-Si fairly well.

Of interest for our consideration is the result following
from the calculations of the model DOS of the Bethe
lattice, which has shown that at the same parameters
as the crystalline Si, the Bethe-lattice DOS appears to
have a smaller electron bandwidth. Therefore, the n-Si
valence-band edge shift, as compared with c-Si, can be
attributed at least partly to the destruction of the sixfold
ring structure.

Inhomogeneous distribution of structural damages can
create a considerable random potential relief for a hole.
Mathematical simulation of disordered systems widely
used for the description of n-Si and n-Si:H (Refs. 26—31)
assumes such possibilities.

A mechanism responsible for the random potential con-
nected with a dihedral angle random distribution was
considered by Singh. The dihedral angle distribution
in amorphous silicon models appears to be continuous
resulting in continuous and limited in the definite en-
ergy range distribution of the random potential. ' The
calculations of the random potential are given in the
paper, however, its possible role in the formation of
fIuctuation states has not been treated in detail so far.

Appreciable changes in the density of valence-band

states occur after the saturation of amorphous silicon by
hydrogen. As a result, hydrogenated amorphous silicon
includes in the network a large quantity of hydrogen. Its
top limit of content has been estimated to be larger than
30 at. Po. Only a small f'raction of hydrogen saturates
the dangling bonds and, as a result, their concentration
lowers in good quality (device class) samples down to
10 cm or even less.

Further displacement of the valence-band top occurs
as a result of hydrogenation and, because of this, the
increase in the band gap width takes place. This can
be described approximately by the linear law Eg
1.5+1.5CH, where C~ is the relative concentration of hy-
drogen. At C~ ——0.3, the width of the band gap, accord-
ing to this equation, reaches a value about 2 eV, which
agrees with experimental data. We notice that the largest
possible value of the valence-band top displacement fol-
lowing from this formula is equal to 1.5 eV, which can be
achieved in areas where C~ —1. This value agrees with
the estimation of the maximum band gap in n-Si equal
to 3 eV obtained by Allan and Joannopoulos.

The shift of the valence-band top is followed by the oc-
currence of the structure in the depth of n-Si:H valence-
bands DOS, ' ' ' which demonstrates the hydrogena-
tion efFect on the valence-band electrons. We note here
two variants of explanation of the n-Si:H DOS structure
suggested by Allan, Joannopoulos, and Pollard, which
highlight also the possible reasons of the random poten-
tial occurrence. The major features of the DOS structure,
according to Allan, Joannopoulos, and Pollard, can be
equally well explained in two cases. First, it is possi-
ble that the hydrogenation leads to partial relaxation of
structural distortions resulting in the restoration of the
role of sixfold rings in some part of the volume and hy-
drogen saturates the dangling bonds of the sixfold rings.
Second, perhaps no recrystallization occurs, but hydro-
gen saturates surfaces of internal voids of n-Si:H or ones
of the small regions of crystalline order. In both cases,
the system was supposed to be highly inhomogeneous.
Allan and Joannopoulos and Brodsky have supposed
that the random potential in n-Si:H is produced by inho-
mogeneous distribution of the hydrogen over the volume
of the network.

This model has been described in detail by Brodsky,
who has assumed that hydrogenated amorphous silicon
represents the inhomogeneous system consisting of re-
gions containing only silicon (n-Si) divided by barriers
where Si-H bonds are placed. Taking into account the
different values of the band gaps, it is possible to sup-
pose that in areas containing n-Si, the band gap is re-
stricted by the crystal silicon value equal to 1.1 eV, while
its value in barriers, according to Ref. 23, can reach 2.5
eV and even 3 eV as it was estimated by Allan and
Joannopoulos. The n-Si:H band gap width is equal to
about 2 eV and, therefore, neglecting the fI.uctuations of
the conductivity band bottom, we estimate both the po-
tential well depth and the barrier height measured &om
the mobility edge level to be equal to 1 eV and 0.5—1 eV,
respectively.

This model can be considered as a phenomenologi-
cal description of the topological disorder effect together
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with the effect of hydrogenation. It is of interest, first
of all, because it contains the assumptions of the in-
homogeneous structure of n-Si:H compatible with those
taken for the explanation of the structure in the depth
of valence-band DOS. On the other hand, the model
has the doubtless similarity with a two-component solid
solution for which the behavior of the density of local-
ized fluctuation states ' has qualitatively agreed with
experimental data on o.-Si:H.

The amorphous silicon as well as the hydrogenated
amorphous silicon are characterized by the smeared
valence-band edge. ' ' ' At present, it is established
that the valence-band edge is a result of the superposition
of two constituents. The first is the fluctuation state tail
of the silicon host bands and the second is the dangling
bond bands (D0 and D— centers) contiguous to the tail.
Reliable separation of these two contributions is possi-
ble perhaps only in the case of the hydrogenated silicon,
where the deep center concentration is not too high. The
most detailed experimental information about behavior
of the density of states in the region of the valence-band
tail and in the band gap is available for hydrogenated
amorphous silicon ' ' and hereinafter just this case is
considered.

The mobility edge of the n-Si:H valence bands is placed
at the density of electronic states equal to about (2—
4) x10 eV cm s and minimum values of DOS, which
can be related surely enough to the tail states is about
10 —10 eV . cm . These values were observed in
the band gap at the depth about 0.6—0.5 eV below the
mobility edge.

The number of localized states in the tail is equal to
(3—5) x10 cm, in other words, to only about 0.3% of
the total number of p states in valence silicon bands.
This value shows that the random. potential effect on
the valence-band electron states is relatively weak. In
our calculations, we use the three-dimensional single-
band version of the Brodsky model complemented for
a mathematical definiteness by the law of the random
distribution of the potential well and barrier sizes.

For the last purpose, we divide the volume of the amor-
phous network into artie. cial cells containing an arbitrary
number of r & 1 atoms. Then we admit that every
cell can be characterized by one of two possible values
of the potential for the hole in the valence band. The
amorphous network is considered then as a solid solution,
which consists of the fracture c cells, where the potential
for the hole has the attractive character and of the re-
maining fracture (1—c) cells, where the potential has the
opposite sign.

Assuming the random distribution of these cells over a
volume of the network, we can obtain wells and barriers
of arbitrary sizes consisting of v, 2K, . . ., nv atoms. Prob-
abilities of their occurrences decrease as c or (1 —c)
with n increasing.

As a result, the model at v = 1 coincides with classical
model of an ideal two-component solid solution. At K, &
1, the minimum cell size K, is an additional parameter of
the theory. It influences such characteristics of the model
as the critical depth of the potential and the critical size
of the potential well. The first of these characteristics

is the amplitude of the potential, which is necessary for
splitting off the localized state from the border of the
continuous spectrum when perturbation is concentrated
within the volume of one cell. The second one is the size
of the potential well, which gives the same effect when
the amplitude of a model fluctuation potential is less then
the critical value.

The fluctuation well can split off the localized state
at a fixed magnitude of the attractive potential if its
size exceeds the critical one. Therefore, the number of
wells in the unit volume satisfying this criterion gives
immediately ' an estimation of the total number of
the localized fluctuation states. As far as the crystal sili-
con valence-band top is placed at the energy higher than
the tops of both amorphous and hydrogenated silicon the
valence-band top of crystal silicon will coincide with the
Lifshitz border that restricts the spectrum of a disordered
system.

The Gaussian fluctuations of the potential, due to a
small bond length, and angle deviations can be included
into the model. They can play a significant role at least
in those areas where the potential has the attractive char-
acter for the hule.

In this work, we also consider the form of the band
produced by the dangling bonds remaining unsaturated
by hydrogen. The band of the dangling bonds overlaps
with the fluctuation tail of the valence bands at a con-
centration equal to about 10 cm on the depth ap-
proximately 0.3 eV below the mobility edge as it follows
from the experimental data.

Considerable interest in the deeply localized states
in both doped and undoped a-Si:H is concerned with
studies of the thermal equilibration in amorphous
silicon s ~(and references therein).

Local centers embedded in the inhomogeneous envi-
ronment exhibit the broadening of the band, because of
their interactions with an environmental random poten-
tial. We suppose that in distinction to the tail fluctuation
states, the wave function of a local deep center is largely
concentrated within the volume of its own deep poten-
tial well, where fluctuations are not present and only the
exponentially decreasing tail of the wave function of the
center penetrates beyond the limits of this well. Because
of a small value of the wave function beyond the deep
well, the broadening of the deep center band is condi-
tioned by those fluctuations that have the largest prob-
ability within the volume restricted by the radius of the
deep center wave function. These are mainly the single-
cell fluctuations that lead to the Gaussian broadening
of the band, despite the fact that the random potential
obeys the binary statistics. However, the more complex
statistics of the proposed random potential makes the
deviation of the fluctuations from the Gaussian statistics
quite reliable, which can result in a more complex form of
the band. Indeed, the observed bands in n-Si:H (Ref. 13)
have the forms distinguishable from the Gaussian ones.
As it is shown in our work, the band asymmetry depends
on the parameter c in the considered model. Therefore,
it is connected with the ratio between fractures of the
volume occupied by potential wells and barriers. In our
band contour calculation, the deviation of the fluctua-
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tions from the Gaussian statistics is taken into account.
The structure of the paper is as follows. In Sec. II

of the paper, the model Hamiltonian in question is de-
scribed at an arbitrary value of K and the main results
of the theory ' in the more transparent form are pre-
sented. The third section is devoted to the investigation
of the form of the deep center band. Further, in Sec. IV,
we present the simple equations enabling us to express
the main parameters of the theory through observable
characteristics of DOS. In Sec.V, we present the results
of the numerical analyses and the comparison of the the-
ory with the experiment at the minimum value of the
minimum cell size, i.e., at K = 1. The discussion of
results is presented in the last section of the paper.

We assume a continual description that is acceptable in
the case of a weak scattering limit. ' The weak scat-
tering limit supposes that the single cell is not able to
split oK the bound state and actual potential wells have
sizes considerably exceeding the minimum cell.

The single band Hamiltonian in the efFective mass ap-
proximation can be written in the form

H = — V' —Vpz, (r),2M

where M is the efFective mass of the particle. The sta-
tistical properties of the random potential according to
Eq. (5) are described now by the continual distribution
function,

II. B.ESULTS QF THEOBY

A. Model Ham. iltonian

P(Vpr, (r)) = cb[VFL(r) —(1 —c)A]

+(1 —c)h'[Vpz, (r) + cA] .

We suppose that amorphous medium is divided into
microscopic cells of size Kvp, where vp is a volume per
one atom in the silicon lattice and K is an integer. We
present the Huctuation potential in the form of the sum
over the cells,

B. Halperin-Lax conception

Using results, ' we write the averaged expression for
the imaginary part of the Green function of the particle
as

Vpr, (r) = ) V„(r). 1 1—(ImG((u)) = P «, (r)
KVp

V„= V = cV +. (1 —c)V

We accept this value as a point of reference for an energy.
Then the depth of the attractive potential well V —V
and the height of barriers V —V are equal to

V —V = (1 —c)A, V —V = —cA,

respectively, where

VR VA (4)

The random filling of each of the cells is described by
function of distribution

Here, n enumerates the cells and V (r) is the potential
defined within the cell with the number n. Further, we
assume that the value of the potential within a cell of
one kind is equal to V (r) = V, and within a cell of
the other kind it is equal to V (r) = V and suppose
inequality V ) V, so that cells of the first kind have
the attractive potential, while cells of the second kind
possess the repulsive one. Concentrations of cells of the
first and second kinds are taken to be equal to c and
(1 —c), respectively . The mean value of the potential at
a random filling within any cell in the whole considered
volume is equal to

x(exp( —i(r —it) [(u+ H]~, ~, )), (8)

[~+ H]~.,~., =
KVp

Wt. (")[~ + H] V't. (r ) .

Here, ~ is the localization energy counted from the mean
level of the potential Vpg, yt, is the so-called trial wave
function of the localized state introduced by Halperin and
Lax for an approximate calculation of the DOS in a
disordered system, arid angular brackets designate aver-
aging with distribution functions like (7) taken at every
point of the volume considered. This means summarizing
all possible configurations. The Halperin-I ax conception
supposes that there is only one wave function, within the
small interval of energies du near any localization energy
w, which possesses the spherical symmetry and describes
well enough the overwhelming majority of the solutions
really existing in this energy interval in a disordered sys-
tem. If such wave function exists, it does not depend on
the configuration and, therefore, summarizing all possi-
ble configurations is possible.

The norm of pq, is chosen in such a way that the inte-
gral over the whole volume

&(V (r)) = &(V )

= ch[V„—(1 —c)A] + (1 —c)8(V„+cA),
(5)

for a value of r within the cell with number n.

V~, (r) =).Vt, (r-) =1
KVp

is equal to unit. The normalization integral is preserved
in Eq. (8) for convenience.

The result of averaging the imaginary part of the Green
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function can be presented in the form of the Laplace
transformation,

1—(ImG(cu)} = 1
2'

x exp

d're i, (r)

KVp

KVp

d3r
i(7- —it) ( 7«, (r))'

2M

E(—it) = expjtVFL(r)«', (r)) .

1—(ImG(cu)} = exp( —A[—it])
dsr «2, (r) 1

KVp 2'

Substituting Eqs. (13) and (14) into Eq. (10), we present
the imaginary part of the Green function as

+~(p,', (r) —ln 72,(r —it) (10) dr exp( A[r]—),
where t is the free parameter of the Laplace transforma-
tion and 7Z(r —it) represents the result of averaging the
exponents with the distribution function (7),

'R(r —it) = dVFL(r)P(VFz, (r))

x exp(i(r —it) VFz, (r)«, (r) )

= c exp(i(r —it)(1 —c)A«, (r))

where

A[—it] = d3r 62
t 2~(&«( r))' +~«, (r)

—ln R(—it)

+(1 —c) exp( —i(r —it)cA«, (r)) .

Therefore, the introduction of the trial function p&, (r)
identical for all variants of cell filling makes it possible
to obtain an approximate but closed expression for the
imaginary part of the Green function.

A[r] = d r
i7 (V'«, (r)) + ~p,', (r)

Kvp 2M

—ln((expiivvpr, (r)p,*,(r))))). (18)

C. 13ensity of states

To And the number of states at localization energy u,
it is necessary to take into account the fact that the point
of reference of r for «, (r) is arbitrary. Therefore, there
are (rvo) of ways to choose «, (r). As the valence-
band top is formed by triply degenerated p states, we
have also to multiply the expression for the density of
states by (2l + 1),

p((u) = (ImG(~)),
(2l + 1)

7l KVp

R(r —it)ln'R(r —it) = ln'R( —it) + ln 'R it—(13)

Then the second item of Eq. (13) can be presented as

R(r —it)
ln = ((exp(irVFz, (r)(p,', (r))}}, (14)

where l = 1.
Equation (12) together with (10) and (11) allows us to

determine the density of states if the function «, (r) and
the parameter t are known.

We transform the expression ln 'R(r —it) in the manner

The demand of the action A[—it] extremum leads to
the equation of the particle motion,

( & +~ —&i (;))v~, (~) =o,62

2M (19)

where

6
( ) = 1 R( 't) = ((V (")}}

Bt&pi r

is defined by means of the self-consistent solution «, (r)
of nonlinear Eq. (19), which gives also the value of the
parameter t. Function (20) describes a smoothed poten-
tial well that is created by the fluctuations of the cell
concentration.

The potential well is formed within some volume when
there appeared an excess of the attractive cells as com-
pared with the mean concentration. As a result, the po-
tential within this volume has an attractive character.
The localized state in the three-dimensional case appears
when the potential well exceeds the power of the critical
cluster. This is, in a general case, a cluster with an ex.—

cess of attractive cells which results in splitting o6 the
localized state with nearly zero localization energy.

It follows from Eqs. (20) and (11), that the function
Uq, (r) is restricted in such a manner that its value does
not fall out of the interval,

where double brackets denote the averaging with the
weight factor

(1 —c)a & U„(r) & —ca. (21)

(&(—'t) . .)(( ))

When the description of the fluctuation potential in
the model is exact, only the limiting values (1 —c)A and
—cA are allowed. The intermediate values of Ui, (r) have
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appeared after the averaging procedure, as a result of
approximate solution of the problem.

D. Critical cluster

Equation of motion (19) has too wide a class of the
solut, ions and we have to constrain the trial function by
means of restrictions, ' which make the trial function
more similar to the real solutions of the model system
described by the Hamiltonian of Eq. (6).

The additional restriction introduced in Refs. 43 and
44 constrains the behavior of the trial function pt, (r) in
the region of a small r. It is concerned with a behavior of
the wave function of the localized state within the region
occupied by a critical cluster. Equation (19) coincides
within the critical cluster with the linear Schrodinger
equation, which completely defines a behavior of pi, (r)

there and makes it identical to the solution of the problem
in a virtual crystal approximation for the same localiza-
tion energy.

To reach an accordance with the Halperin-Lax concep-
tion, we have to suppose that there exists the uniquely
defined and most probable critical cluster in this problem.
There is a wide tegion of the concentration where the
most probable critical cluster is the sphere compacted by
the attractive cells. It is possible to find analytically the
critical size for such compact clusters in the virtual crys-
tal approximation. The noncompact critical clusters
represent a more general case. In the region of concen-
trations c actual for hydrogenated amorphous silicon, the
compact clusters are more probable.

We consider the spherical form fluctuation well con-
taining in its center the critical cluster compacted by
attractive cells. Then the expression for 'R( —it) can be
written as

c exp[(1 —c)At@„(r)], r&B
7Z it-

c exp[(1 —c)At(p„(r)] + (1 —c) exp[ —cAtp„(r)], r ) R„ (22)

where

h~
B

2 2M(l —c)4

Then we have for Ui, (r),

exp ( —tApt2, (r))
c+ (1 —c) exp ( —tE(pi2, (r))

r&B.
(24)

For convenience, we introduce a new variable p(r), which will describe a local deviation of the attractive cell concen-
tration from its mean quantity equal to c. This variable can take its values within interval

(1 —c) ) p(r) ) —c. (25)

The variable p(r) accepts the maximum and minimum values in areas occupied by the attractive or repulsive cells
exclusively. The local values of the cell concentration of the first and second kind are now equal to [c+p(r)] and
[1 —c —p(r)], respectively. With help of p(r), we rewrite Ut, (r) as

where

exp( —tp,',6)
c+ (1 —c) exp( —t(pt2, A)

Then we can find that

exp( —tAy~, ) =
c+p 1 —c (28)

where the reduced notation p = p(r) is used. Taking
into account Eqs. (19), (26), (28) and the notation in-
troduced, we present A[—it] in the form

A[—it] =— d'r ( c
&c+p)

(+ln
/q1 —c —p)

(29)

The integrand of Eq. (29) at r & B when p = (1 —c)
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A[~] =
(

d3r . h2
x~ — pt, (r)v' pt, (r) + ~(p„(r)

Kvp 2M

is equal simply to ln(c).
Adding and subtracting function irUt, (r)p~, (r) in the

integrand of Eq. (18), we present this expression as

1—(ImG(~)) =

where

1 dsr ( c
exp ln

/

/2~pz((u) KVp (C+P j
( ) 1—c—p

x
ii1 —c —p)

(36)

—Ut, (r) pt, (r ) —ln((exp( —iw [VFr, (r)

—&~ (")lv', ("))))
I

(30)

With the help of Eqs. (27) and (28), averaging with the
weight factor identical to Eq. (15) can be written as

~'(~) = m2

/ „„el,(")
- 2 (37)

The function p(u) represents the statistical deviation of
the localization energy (d) in the potential well of Eq. (26),
due to interaction of the localized state with surrounding
random potential.

(( .))—:/ dV~~(")P(V~" (")) E. Estimation of mobility edge position

where the auxiliary distribution function

&(VF~(r)) = (c+p)~[VFL(r) —(1 —c)&]

+(1 —c —p)b[VFz, (r) + cA] (32)

is introduced.
Expanding the last item of Eq. (30) in a Taylor series

in powers of i7rp~„we get for A[r] the expression

A[~] = i~ — p(, ,(r)V' yt, (r) + ~p„(r)
d3r . 62

Kvp 2M

7-2 i7-3—Ut, (r)y,', (r) + m, — m, + . , (33)

where

d3r
(V', ( )) [ +&][1— —p]

KVp
(34)

and

m3=a' d'r 2 3(p„(r)) [c+p][1 —c —p][1 —2c —2p] .
KVp

(35)

As it follows from Eqs. (34) and (35), moments m2 and
m3 represent the first two nonzero powers of the matrix
element of the interaction of the localized state described
by the wave function p(,,(r) with the fluctuating environ-
ment, i.e., with the difference between statistically pos-
sible values of the random potential and its smoothed
value Ut, (r) If u is the e.igenvalue of Eq. (19), then the
expression in square brackets of Eq. (33) is equal to zero.

Restricting the expansion in Eq. (33) by the square
item in 7 powers and substituting this into Eq. (16), we
obtain the Gaussian integral, which can be easily calcu-
lated. As a result, we have

cL~
EBE ~ I4

V~r 6

Here, v„ is the number of the cells in the compact critical
cluster

&cr =
(1 —c)A

- 3/2

(39)

The expression for the imaginary part of the Green
function derived as a result of a variational procedure ap-
plied to the highly nonlinear functional A[—it] presents,
in a general case, an infinite series in cumulants due to
A[a] expansion in Eq. (33). The series is created by
the interaction of the localized state with fluctuation po-
tential. The interaction is conditioned by the fact that
the trial wave function pt, (r) does not coincide as a rule
with an eigenfunction of any configuration of the random
potential and, therefore, the problem of the stability of
the solution within the chosen class of trial functions ap-
pears. We consider the problem, restricting ourselves by
the first item of the series.

Quantitatively, the interaction is measured in terms of
the difference between really possible values of the ran-
dom potential and its smoothed value being described by
Ut, (r). The value p (w) is expressed by the second power
of the matrix element of this difference averaged over all
possible configurations.

At ~ m (1 —c)A the value p ~ 0, which shows that
near the Lifshitz border, the solution coincides with ex-
act one. There is a wide interval of localization energies
where inequality p (( w takes place. Therefore, pt, (r) de-
scribes the stable solution of the problem and Eqs. (12)
and (36) give the value of the DOS in the region of local-
ization energy w & p((d)). The next items of expansion of
A[a] Eq. (33) in this region are considerably smaller and
decrease with p~, (r) powers in the integrand increasing.

In the opposite limit, w (( (1 —c)A the dependence

p(u) has the form4 p(~) = Q~EBE/2. The value
EBE deflning the p(u) dependence slope in the region of
the band edge can be written as
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The value E„is the critical depth of the potential in the
volume of one cell in the efI'ective mass approximation,

Then the self-consistent value p can be found from equa-
tion

2M
i

—vip
i(4~

(4O)
KVp

d'r f c
ic+ p)

( ) 1—c—p

+ln/ (1-c—p)

and the integral I4 is a function weakly dependent on the
energy

—4X,Y

(1+Y)'
2M~

CX' ) (41)

where X„represents the radius of the compact critical
cluster in units of de Broglie wavelength. The value of
I4, at small but finite u, is approximately equal to 0.5.

In this region, p(cu) decreases slower then w with w

decreasing. Therefore, above some energy ~, the value
p(w) will exceed the localization energy.

We denote as MME the point where p(w) is equal to cu.

It is defined by equation

Cd = P(M) . (42)

The situation described by Eq. (42) means that fluctu-
ations of the potential are able to shift the localized state
back into continuum with the probability equal to almost
a unit. At small values of w, where w « (1 —c)A, the
inequality w « p(w) takes place. Therefore, the states
with energies w & p(w) cannot be considered as localized
ones any more and we can consider the solution of Eq.
(42) MME as the estimation of a mobility edge position.

A more accurate calculation of the mobility edge po-
sition requires the solution of the quantum percolation
problem for the system of interacting localized states dis-
tributed in some interval of localization energies. The
DOS of the localized states is distributed in a relatively
narrow energy interval in this case. Therefore, the prob-
lem is analogous to one considered by Ching and Huber,
where a simple relation was established between mean
distance spacing the localized states and the radius of
their interaction at the quantum percolation threshold.
Despite a very difFerent approach, the relationship of the
same order takes place in the considered system between
the mean space and the radius of a wave function of states
just below ~ME.

c+p
=n ln~ c+P

To transform p (w), we substitute the value p into Eq.
(34). Taking into account the definition of p (w) follow-
ing from Eqs. (34) and (37), we conclude that the value
of p2(pi) can be presented as

~'(~) = V t, (r)(c+ p)(1 —c —p) &'
KVp

3 - —2
'tl

x cp„(r)
K'Up

Q2 (+p)(1- -p) (45)

1 1 ( ) n(c+p)
—(ImG(p~)) =—
7r 2~(c+ p)(1 —c —p) (c+p)

i n(1 —c—p)
x

i(1 —c —p j (46)

On the other hand, we find a probability of the compo-
sition fluctuation at random filling of the volume consist-
ing of n cells by cells of two' kinds under the condition
that the mean composition is define by concentration
c for cells of the first kind and (1 —c) for cells of the
other one. The probability of obtaining the configura-
tions with n +z ——n(c + p) cells of the first kind and
ni, „- ——n(1 —c —p) cells of the other kind is propor-
tional to the binomial coefIicient and can be presented
by expression

The substitution of Eqs. (44) and (45) into Eq. (36)
results in the estimation of the imaginary part of Green
function

F. Relationship with binomial coe%cients
n. C~c+f)(] C)~z —c

A~+pcD] g pc
(47)

For the best interpretation of the physical sense of Eq.
(36), we consider below the case where p does not depend
on r within the potential well and integrals of Eqs. (36)
and (37) simplify. To find the expression for the imagi-
nary part of the Green function, we replace the function
p(r) in Eq. (36) by its mean value p within the region
limited by the wave function cpt, (r) size, i.e. , within the
volume containing n cells, which in turn, we deGne by
means of equation

d'rp, ', (r)
'

O' Cr ("
KVp K'Up

where the composition fluctuation is described by the
excess of np- cells of the first kind,

—n, &np=nP&ng (48)

Factorials n, n +„, and ni,-z of Eq. (47) can be trans-
formed with help of Stirling formula,

n! = /27m exp(n ln n —n) . (49)

In terms of variable p instead of np, the expression for the
normalized probability of the fluctuation R'„- = n R'
is expressed as
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where

( ) n(c+p)

2vr(c+ p)(1 —c —p) (c+p)
1 —c ) n(l —c—p)

x
i(1 —c —p)

(50)

that even a semiquantitative approach to this problem
gives valuable additional information about the Huctua-
tion potential of the amorphous network.

Further, we use the results ' and present the contri-
bution into imaginary part of Green function, due to the
D center like

—c&@&1 —c. (51)
—(Im G (ur)) = exp( —AD[ —it])D CD
1r 2K

r D„, [~t, (r)]'

Now we see that the magnitude of the imaginary part
of the Green function is connected with the Auctuation
probability TV„- through the equation

jI.—Im G((u) = —W~ .

x d7. exp— (53)

Here, CD is the concentration of D centers, which will
be considered much less than both c and (1 —c). The
AD[—it] and A~ [r] are defined by the equations

The expression is an analog of Eq. (36) when pn cells are
homogeneously distributed within the volume occupied
by the potential well of the localized state. It can be
useful for the estimation of the imaginary part of the
Green function if it is possible to find the values of n and
y for the localized state with the depth w.

G. Contour of D-center band

AD[ —it] = r 6
2M (+& ~ (")) + ~(& ~ ("))

Rp

&D(~t, )'
p Kvp

d3r
ln 7ZD (—it),

Kvp
(54)

The D-center band contour formed as a result of Huctu-
ations of the binding energy caused by the interaction of
the localized particle with the environmental random po-
tential represents the classical example of inhomogenous
broadening. Hereafter, we shall think that the central
part of the attractive potential of the deep center does not
depend on the environment and does not contain a Buc-
tuation component and the volume of this central part
assume to be equal to Kvp. In this approximation, the
band contour contains the information about both the
value of the root-mean-square deviation and. an asym-
metry in the statistical distribution of the positive and
negative values of the random potential.

For the ideal quantitative description of the band
broadening, we need to have more realistic d.ata on both
the central part of the potential and, consequently, the
wave function of the center. Nevertheless, we will show

AD[r] = d3

M(&V t(r))' +~(V t( )r)'
vvp 2M

r
&~ Vt, (r )( )

dsr 7Z~ (7 —it)
ln)~ Kvp R~ (—zt)

—'L7

(55)

'7'v, ( )+ v, ( ) - U, ( )~, ( ) = o (56)

where

Here, Bp is the radius of the central part of the po-
tential well of the deep center, A~ is its depth, pt, (r)
is the normalized wave function of the localized state,
which is a solution of the equation derived as the result
of minimization of A~[—it],

Utr ( ) ~
(1 c)~ 1

exp( —tA (ptD (r) )
' j r &Bp.

c+ (1 —c) exp( —t&(~t, (r)) )
(57)

The expression for the well depth beyond the limits of its central part can be written in the form similar to Eq. (26),

U„(r) = 4 p~(r) = 4 pD, r)Bp, (58)

where p~(r)—:p~ is now defined by the relation

p~(r) = (1 —c) 1— p[—t&(v, ( ))'l
c+ (1 —c) exp[ tA((ptD(r))—

]
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ALi[ —it] =— P C
ln .

KVO C+ po

C+P~

After the transformations analogous to ones fulfilled in
Eqs. (26) to (29), we obtain for ALi[ —it] and A~[7] ex-
pressions,

where

m2 = c(1 —c)A „„(~'(r))'
)R Kvo

(65)

I —c —po
1 —c (59)

T
ln((exp(''r(&t. (")) [I'Fi (")

~)R Kvo

—U„(r)]f))D,

ALi[~] =—

(60)

where the double brackets mean averaging with a new
auxiliary distribution function

&~(&F~(r)) = (c+p~)~[I'FL(r) —(1 —c)&]
+(1 —c —p~)8[VFi, (r) + cA]. (61)

Substituting Eqs. (59) and (60) into Eq. (53), we ob-
tain the contribution to the imaginary part of the Green
function of the states localized in deep centers. For the
calculation of the band contour, it is necessary to know
the solution of Eq. (56) for each value of the localiza-
tion energy w. The solution of this equation also gives
the function po and, therefore, the self-consistent con-
figuration of the potential well beyond the limits of its
central part. At the localization energies near the band
maximum, we use the simplified expression for Eq. (53),
which is deduced as a result of expanding Eq. (55) in the
vicinity of the eigenvalue of Eq. (56), when U~, (r) = 0
air &Bo,

62
V' p (r) —

(happ (r) —ALi~ „(p (r) = 0. (62)

The eigenvalue of Eq. (62) corresponds to the energy of
localization, due to the central part of the potential. It
coincides with the center of gravity of the band and is
denoted as ~o. For this value of the localization energy
A~ [

—it] = 0, and for A~ [a], we have

~2m,2A[7.] = —iv. ((u —(up) +
2

i7-3mO
3 +

(~'(r))' = 1

—(ImG ((u)) = de exp i7. u —~0

~2mo i~3mo
2 3

2
+

6

where only the erst two nonzero items of the expansion
in powers of ir(p ) are preserved. Substitution of Eq.
(63) into Eq. (53) leads to the expression of the band
contour suitable in the vicinity of its maximum in the
form of integral

ms = c(1 —c)(1 —2c)A „„(~'(r))'.
KVO

(66)

Equations (64)—(66) result in the fact that the value and
the sign of D-center band asymmetry depends on the
third moment given by Eq. (66). The analogous results
can be also obtained from more accurate expression (53)
by expansion of A[a] in series of cumulants. As follows
from Eq. (66), the sign of ms changes at c = 0.5. In
the region c ) 0.5, the maximum value of the density of
states shifts towards w ( wo, while at c ( 0.5, the defor-
mation of the contour of opposite sign takes place. Thus,
the form of the band contour within the framework of the
performed consideration contains information about the
Huctuation potential and defines the region of the model
parameter c that gives the attractive cell concentration.

III. RELATIONSHIP OF THEORY
PARAMETERS

%PITH EXPERIMENTAL DATA

p(cu) —c - exp( —~/EiiE) . (67)

EnE defines the slope of the dependence p(w) in the re-
gion of the band edge and is given by Eq. (38) above.

In order to reconcile the density of states below MME
and above MME we take into account that the density
of states dependence on energy is defined mainly by the
exponential factor of Eq. (67) and that the density of
states has no discontinuities at w = &FAME. Then, present-

Experimental data on the valence-band tail have a
number of characteristics that can be used to And pa-
rameters of the theory. For this purpose we can exploit,
in particular, the value of the density of states at the
mobility edge, the slope of the linear dependence of p(w)
in the region of the valence-band edge, and the slope of
ln p(ur) in the Urbach region, i.e. , the parameter of the
Urbach rule.

The purpose of this section is to obtain theoretical ex-
pressions for mentioned characteristics in the form con-
venient for determination of the theory parameters from
the data on the density of states. Equations (12) and
(36) give the value of the density of states at w larger
then the value of the localization energy dispersion p(w).
The estimation of the mobility edge position by means
of Eq. (37) leads to the value urME = EBF/2.

The experimental value of the density of states at the
mobility edge for n-Si:H is supposed to be about (2—
4) x102i eV cm . It is easier to find the simple the-
oretical expression for the DOS in this point by means
of extrapolation of the exponential factor dependence of
the DOS from the region of small u to ~ = ~ME.

The exponential factor of p(w) in the region u (( (1—
c)A has the form
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p( )= 2l+1 e" t'

exp (—
@BE)

ing p(w) in the region ~ & ~ME, in the form

(68)

with the restriction on the value c following from Eq.
(71). Moreover, the flt of the form of the band with the
help of Eq. (64) enables us to find both ms and m2.

we obtain the satisfactory extrapolation of p(u1) into the
region of small u. Taking into account that MME

EBE/2, the DOS value at the mobility edge is estimated
by the expression

p(~ME) = 21+ 1 C

r vo +2~wM2E
exp

2) (69)

The expression for the DOS at the mobility edge gives
us the first equation for the determination of theory pa-
rameters. The second equation can be deduced from
comparison of the value of the Urbach parameter EU and
EBF. The theoretical value EU is given by expression

(1 —c)A

8v„ ln(l/c)
(70)

Thus,

EBB c ln(1/c) 4~2

1 —c 3

The value of EBE can be found from experimental data
on the slope of p(cu) in the region of the band edge.

The experimental data give the value of EBE approx-
imately equal to (5—6)E~. As it follows from Eq. (71),
the theoretical value of the relationship depends mainly
on the concentration c. The function given by Eq. (71)
accepts the value suitable for the description of the ex-
perimental data in the region c & 0.5, however, in in-
terval 1 ) c ) 0.5, its variation is rather small and errors
of determination of the relationship from experimental
data exceed this variation. Therefore, in this region of c,
Eq. (71) only restricts the interval of c from below, but
it does not enable us to indicate the unique acceptable
value. Equations (69) and (71) and one of two Eqs. (38)
or (70) permit us to find the quantities of parameters 4
and E„,while the size of the cell x remains undefined.

To clarify the role of parameter v and to estimate its
value, we have to consider the behavior of p(w) in an
entire observable interval. The value of r. has the heavi-
est influence on the behavior of p(~) in. the region of the
deepest states. This fact is connected with the circum-
stance that the value of K determines v„. As long as
the value c " is fixed by the experimental value of the
density of states at the mobility edge, r increasing leads
to the necessity for (1 —c)A to decrease. The (1 —c)A
decreasing means that the Lifshitz border localized on
depth (1 —c)A moves towards the mobility edge. That
leads to the drastic decreasing of the DOS in the region of
deep fluctuation states. For the quantitative estimation
of m value, the numerical calculations are necessary.

To get complementary information on the parameters,
we can analyze the data on the D-center band. The m3
of Eq. (66) defining the asymmetry of D-center band
depends on the parameter c, so it is possible to answer
the question whether or not the form of the band agrees

IV. RESULTS OF CALCULATIONS
AND COMPARISON

WITH EXPERIMENTAL DATA

The calculations performed have shown that the value
of parameter r resulting in the best fit of DOS to the
experiment was equal to a unit. In this case, the depth
of potential wells (1 —c)A appears to be about 1.9 eV.
Taking into account that the mobility edge position MME
is equal to 0.15 eV, we obtain the potential well depth
counted from the mobility edge equal to 1.75 eV. The to-
tal amplitude of the random potential 4 and, therefore,
the barrier height depend on the value of the concentra-
tion to be chosen. The latter was taken equal to c = 0.73
in order to fit the D-center band broadening and the sign
of its asymmetry. As a result, L appeared to be equal
to about 7 eV and E„ to 10 eV. All these values vary
slightly at small changes of the density of states at the
mobility edge within the limits (2—4) x10 i eV i cm

The results of calculations of the function p(~) at
v = 1 and at optimum values of parameters are demon-
strated in Fig. 1. The straight lines representing linear
approximations of p(w) in the band edge and Urbach re-
gions are also shown there. Besides, the arrow at MME is

- )02&

g Q20

E
q p19

0
qp18

3
)017

—1016

- &015

FIG. 1. Curve (1) presents the theoretical DOS in the tail
region. It is calculated at values of parameters close to opti-
mum. The line (2) presents the linear approximation of p(u)
dependence in the region of valence-band edge, the slope of
this line is given by the value of EBE. The Urbach region of
p(cu) presents line (3) with slope equal to Urbach parameter
EU . The mobility threshold tuMs is marked by an arrow [the
value is obtained from Eq. (42)]. The dashed vertical line is
the mean level of the random potential. The curve (4) gives
the contour of the deep center band described by Eq. (64)
at c = 0.73. uo is the localization energy of the deep center
without interaction with the Huctuation potential, and cu

is maximum of the band.
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plotted, and it gives the estimated mobility edge position
according to Eq. (42). In Fig. 1, the theoretical form of
the D-center band also is presented. It is calculated with
the same parameters of the Buctuation potential. The
deep center band form given in Fig. 1 agrees qualita-
tively with contours presented in Fig. 7 of Ref. 13. The
comparison of theoretical curves with experimental data
has been fulfilled combining the experimental DOS with
a theoretical curve in the mobility edge region.

In Fig. 2, a comparison of the theoretical density of
states exhibited in Fig. 1 with the experimental density
of states for the sample of B-doped cr-Si:H (at diboran
concentration in the gas phase equal to 10 ) (Ref. 13)
is carried out. According to Ref. 13, up to 98% of states
of deep centers are eliminated in surface layer of the
sample and this fact enables us to observe the deep tail
of valence-bands. Experimental and theoretical curves
agree in the wide range of the density of states.

To avoid the division procedure of the valence-band
tail and of deep center bands, we have used for compar-
ison two experimental spectra (Fig. 3). The first one
corresponds to undoped sample and the second one to
a sample grown at diboran concentration in a gas phase
equal to 10 [see Fig. 4 (Ref. 13)]. Both spectra coincide
at photon energies larger then 5.4 eV, while at smaller
energies they show a considerably diferent behavior that
is concerned with the larger concentration of D centers
in the erst sample. As a theoretical curve is used, on
the one hand, the curve was like the one given in Fig.
1, which shows a good agreement with the experimental
curve for the doped sample in the energy region larger
than 5.1 eV. On the other hand, the curve obtained by
summation of contributions of deep centers of Eq. (64)
and the valence-band tail of Eq. (36) agrees well with the
curve for undoped sample. It was found that the sum-
mary band describes well the experimental curve for the
undoped sample at value c = 0.73 when p = 0.2 eV and
the relationship (ms) ~ /(mz) ~ —1.

1022:
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FIG. 3. Comparison of the theoretical dependence of the
DOS built by addition of the Quctuation tail states and states
of deep centers with experimental curve (Ref. 13). Curves (1)
and (2) are the experimental data (Ref. 13) for undoped and
B-doped samples, points (3) give the theoretical tail of the
valence-band DOS, circles (4) present the contour of the deep
center band, crosses (5) are the result of the addition of data
(3) and (4). The other notations are the same as in Fig. 1. .

Figure 4 shows the spectrum of the sample grown
at phosphin concentration in the gas phase equal to 10
and the theoretical curve built of contributions of the tail
and the deep center states as well as in previous case. The
localization energy ~0 for the deep center and concentra-
tion CD were chosen in such a way as to combine the
experimental and theoretical curves in the region of the
maximum value of the deep center band. The contour
of the D-center band was calculated at the same value
of parameter c = 0.73 as in the previous case. In Fig.
4, one can see that the good agreement of experimental
data with the theory takes place in the wide range of
energies.
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FIG. 2. Comparison of the theoretical DOS tail vrith ex-
perimental curve (Ref. 13) for the B-doped sample: (1) is the
experimental curve, points (2) present the theoretical results.
The other notations are the same as in Fig. 1.

FIG. 4. Comparison of the theoretical and experimental
data for the sample doped by phosphorus (Ref. 13). The
curve (1) presents the experimental data, points (2) are the
theoretical tail of the valence-band DOS, circles (3) give the
contour of the deep center band, crosses (4) are the result of
the addition of data (2) and (3). The other notations are the
same as in Fig. 1.
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V. DISCUSSION

The demonstrated results show that the random poten-
tial parameters, deduced from a comparison with exper-
imental data mainly on undoped and B-doped samples,
show no considerable dependence on the level of doping
and, in fact, describe well the DOS of P-doped. samples as
well. This conclusion coincides with the opinion about
weak dependence of the random potential on the sample
nature based. on measurements of the hole drift mobility.

The D-center band form (Do center in undoped sam-
ples and D center in samples doped by phosphorus )
also does not depend on the kind and the level of doping.
This circumstance finds that the explanation in our work
as the only reason for the D-center band broadening in
the model is the interaction with the random potential.
It is conditioned by the relatively small changes of both
the mean localization energy uo and the wave function
when passing from one sample to the other.

There is the considerable divergence between ampli-
tude of the random potential derived from the fit to the
experimental data as compared with ones assumed in the
model. Taking into account the fact that the valence-
band top shift at transitions from crystal silicon to o.-
Si:H is equal to about 1 eV, we see that the potential
well depth measured from the mobility threshold in the
calculations appeared to be larger. All other energy pa-
rameters at v = 1 are also almost twice larger then the
preliminary estimations have given.

To diminish the divergency, we have examined v ) 1.
The good concordance of the calculated DOS with ex-
perimental data in the energy interval u & 5.3 eV has
been obtained at r = 3, yielding the depth of the wells
equal to 1.3 eV, which still exceeds the difrerence of the
band tops of the crystal and hydrogenated amorphous
silicon. Greater values of v giving the better coincidence
with model parameters lead to the deviation of the the-
oretical curves from the experimental data at energies
approaching the mobility edge.

The value K = 1 was chosen mainly because it gives the
best fit to the experimental DOS for B-doped samples

in the region of photon energies 4.9—5.2 eV. If, as it was
admitted by authors, the band concerned with shallow
acceptor states of B is situated in the region 5.25—5.43
eV, it is necessary to take the last fact into account in
the fitting procedure. That could affect the value of the
potential amplitude, which we need to describe the ex-
perimental data.

It is possible, however, to find the other reason result-
ing in analogous consequences. The model supposes
that in regions occupied by the amorphous silicon where
the potential has an attractive character for holes, the
well depth is limited by the crystal silicon band top. At
the same time, fiuctuations of valence bond lengths and
angles in the amorphous silicon take place resulting in
the random Gaussian potential. These fluctuations in
the fraction of wells equal to about 0.5 could increase
the depth and result in the increase of the density of lo-
calized states in a region of large localization energies,
which is required in this case. Then the well depth con-
nected with that part of random potential, which is de-
scribed by binary statistics, can be taken smaller and
that can give the best coincidence with the initial as-
sumption. Calculations performed have shown an almost
obvious result that the root-mean-square amplitude of an
additional Gaussian potential is the quantity defining the
well deepening. The estimation of the amplitude of the
Gaussian potential in the work gave the value O.3 eV for
the potential connected with a bond angle deformation.
That is approximately two to three times less than it is
required to achieve the agreement with the experiment.
The results of the calculations show that the model de-
scribes well the major features of the band tail and might
be fruitfully used for the analysis of further experimental
information.
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