
PHYSICAL REVIEW 8 VOLUME 52, NUMBER 15 15 OCTOBER 1995-I

Nonradiative recombination and its infiuence on the lifetime distribution
in amorphous silicon (a-Si:H)
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We present a detailed analysis concerning the inhuence of the defect density XD on the low-
temperature (T=-10 K) geminate recombination kinetics. It is shown that the lifetime distribution of
a-Si:H, measured by frequency-resolved photoluminescence spectroscopy, can be explained quantitative-
ly if it is assumed that radiative recombination is directly competing with nonradiative tunneling into de-
fect states. This allows us to determine the radiative lifetime distribution with high accuracy, which in
turn provides the unique opportunity to describe the recombination kinetics entirely, i.e., including its
nonradiative contribution. Interesting and nonintuitive consequences that are related to the competition
model are discussed.

I. INTROBUCTIQN

It is well known that hydrogenated amorphous silicon
(a-Si:H) gives rise to photoluminescence (PL) of high
efficiency at low temperatures. PL experiments thus pro-
vide an efFective tool for studying the recombination
kinetics in this material, detecting a substantial part of
the excess carrier population. The lifetime distribution of
the photogenerated carriers has been shown to be of par-
ticular interest, ' ' and most of the recombination mod-
els were derived on the basis of this quantity. There are
two experimental techniques commonly used for lifetime
measurements: time-resolved spectroscopy (TRS) and
quadrature frequency-resolved spectroscopy (QFRS).
While TRS records the PL decay, following a short laser
pulse, QFRS measures the 90' phase-shifted frequency
response under stationary excitation conditions. Though
equivalent in theory, it seemed as if the two methods
were producing confhcting results. Based on TRS data
Tsang and Street' derived the geminate-pair model, ac-
cording to which the recombining electron-hole pairs are
correlated, being created in the same absorption process.
The QFRS data, ' ' however, seemed to indicate that
there is no such correlation, which led to the distant-pair
model, where it is proposed that electrons and holes are
randomly distributed in space. This problem, which
arises due to the accumulating background carrier con-
centration in the band tails was finally resolved, and it
was shown by Bort et al. that geminate recombination is
also observable with QFRS, once the generation rate is
decreased below the critical value Go —5 X 10' cm s
There is, however, another important issue where a
discrepancy between TRS and QFRS data has remained.
This concerns the question of whether the nonradiative
channel introduced by the defects is actually directly
competing with luminescence, afFecting both quantum
efficiency and radiative recombination kinetics. At first
glance it appears as if this question should be easy to
answer, since, in the case of direct competition, the de-

crease of the PL quantum efficiency is usually expected to
correspond to a proportional decrease of the observed
lifetime [see Eqs. (4) and (5) in Sec. IIIB]. However,
while Tsang and Street' find that the fast contribution to
the PL decay becomes much more significant with in-
creasing defect density XD, the observed shift of the
QFRS lifetime spectra seems to be comparatively small.
It therefore appears as if TRS is pointing towards direct
competition, while QFRS is implicating just the opposite.

In this paper it is shown that the QFRS data are in
complete accordance with the concept of a directly com-
peting nonradiative recombination channel. This is done
quantitatively, giving a detailed analysis of how the
recombination kinetics are infIuenced in the presence of
this channel. The analysis allows us to derive the lifetime
distribution for the defect-free case, revealing that the
fast radiative process in the microsecond range is in fact
intrinsic and not defect related. This result is particular-
ly interesting and contrary to the view of Searle et al. "
and Boulitrop and Dunstan, ' who attributed the origin
of this process to a competing nonradiative channel. Fi-
nally, it is demonstrated that measuring the quantum
efficiency gpL as a function of ND may not be sufficient
for deciding whether competition is involved, and it is
shown that the TRS decay data may be misleading as
well, if not carefully analyzed.

II. EXPERIMENTAL BETAILS ANB RESULTS

The experiments were performed at T= 10 K in a stan-
dard FRS setup using light of 1.96-eV photon energy.
The modulation depth was kept at approximately 15% of
the bias light, with a constant generation rate
6=3X10' cm s ', which is sufFiciently low to ensure
geminate excitation conditions. The defect density was
varied by electron bombardment (2 MeV, 4 K) and suc-
cessive annealing between T=300 and 470 K in the range
XD = 1.7 X 10' —5.5 X 10' cm . XD was determined
after each annealing step by the constant photocurrent
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FIG. 1. (a) Relative luminescence intensity IpL for various
defect densities ND, at T=10 K. Solid and dashed lines are
theoretical predictions, calculated according to Eqs. (12) and
(17), respectively. For details see Sec. III C. (b) Same as in (a),
but on different scales.
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FIG. 2. (a) QFRS spectra for various defect densities ND, at
T= 10 K. (1) XD = 1.7X 10' cm, (2) 7X 10' cm, (3)
1.1X10' cm, (4) 3.2X10' cm ', (5) 5.5X10' cm . The
full circles are the original data points for curve 1. (b) Theoreti-
cal QFRS spectra, calculated according to Eq. (6). (1)
AD=1.7X10' cm, (2) 1.3X10' cm, (3) 1.7X10' cm
(4) 3.3 X 10' cm, (5) 5.6X 10' cm . Details are given in Sec.
III B.

method (CPM spectroscopy).
Figure 1(a) shows the familiar dependence of the rela-

tive luminescence intensity IpL on ND; whereas IpL is
nearly independent of the defect density for ND & 3 X 10'
cm, it decreases rapidly once ND exceeds 10' cm
The scatter of the data is remarkably small as compared
to data which are obtained if the defect density is varied
by changing the deposition parameters such as rf power,
substrate temperature, silane concentration, etc. How-
ever, in that case every single value for IpL corresponds
to a different sample with different properties, while the
data in Fig. 1(a) [and Fig. 2(a)] were obtained on only one
sample. Varying the defect density by electron bombard-
ment is therefore preferable, especially if the data are to
be analyzed quantitatively.

In Fig. 2(a) it is shown how the QFRS lifetime spectra

change with increasing defect density. For low values of
ND the spectra are only weakly dependent on the defect
density, consisting of the pronounced and well-known
"geminate peak" at ~-2 ms and a plateau that extends
into the microsecond range (curve 1). Then, correspond-
ing to the decreasing luminescence intensity, the signal
amplitude is quenched in the entire time domain and the
spectra are systematically shifted towards shorter life-
times. The shift, however, is smaller than what is expect-
ed from the decrease in IpL, and this was considered to be
evidence for a model according to which the defects in-
troduce a nonradiative but noncompeting recombination
channel. On the other hand, a closer look at the spectra
reveals that longer lifetimes are quenched much more
effectively than faster processes, eventually leading to a
situation where the geminate peak is no longer dominat-
ing the spectrum (curve 5). This result, again, is quite
typical for a competing nonradiative process that be-
comes faster as the defect density increases. Part of the
following discussion is to show that the defects indeed in-
troduce a directly competing nonradiative recombination
channel.

III. DISCUSSION

A. General considerations

As mentioned in the previous section, it is well known
that the steady-state luminescence intensity IpL is in-
dependent of the defect density once the latter is de-
creased below a value of ND -3X 10' cm, irrespective
of the preparation conditions for the samples. It further
has been shown that Ipl is independent of temperature
for T &50 K, provided that the generation rate 6 is low
enough to ensure geminate conditions; ' this is not the
case for high 6, where Ipi ( T) reveals a pronounced max-
imum at T=50 K. ' There is, however, an uncertainty
concerning the question as to whether the quantum
efficiency ilpi is unity under these conditions (low ND,
low T) or is intrinsically limited to some value qo(1.
Principally, it is of course important to know the true
value of go because this determines if there are other non-
radiative processes at low temperatures besides the one
which is introduced by the defects. Nevertheless, this is-
sue is of minor importance for the problem of how the
recombination kinetics are inAuenced by the latter. The
following analysis is thus restricted to nonradiative
recombination via defects, and for reasons of simplicity it
is assumed that go=1.

B. Radiative and nonradiative recombination kinetics

The purpose of this section is twofold. First, it is
shown that the nonradiative channel, introduced by the
defects, is indeed directly competing with the radiative
channel. This is done quantitatively by deriving an
analytical expression for the QFRS signal and subse-
quently comparing calculated and experimental spectra
(see Fig. 2). The second part is then concerned with the
analysis of this competing mechanism and with the ques-
tion of how the recombination kinetics —including its
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nonradiative contribution —are afT'ected by it.
For low temperatures and geminate generation rates

the PL in a-Si:H is linearly dependent on the excitation
such that the rate of change of the excess carrier density,
following a short laser pulse, can be described as a super-
position of exponentials:

dn oo

=constX G(r) —exp( t/r)—dr .
dt 0 7

6 is the probability density for the generation of an
electron-hole pair with lifetime ~ and is usually called the
lifetime distribution. Since this decay contains both radi-
ative and nonradiative transitions, G consists of two con-
tributions as well, i.e., 6 =G„+6„,. The radiative part
of the decay, Ipi (t), is therefore given by

IPL(t) =const X f G„(r)—exp( t /r)d—r .
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The QFRS signal Y(co) is now easily derived by applying
linear-response theory, from which it follows that it is ba-
sically given by the sine Fourier transform of Ipi (t) (Ref.
26) that

FIG. 3. The radiative distribution function P„*according to
Eq. (11) and the corresponding QFRS signal.

Y(ni) =const X f G„(r) 2
dr .

1+co
(3)

As stated above, it is assumed that the detected lumines-
cence (described by G„)results from two directly compet-
ing recombination channels, one being strictly radiative
and the other one strictly nonradiative. It is further as-
sumed that the lifetimes of the two competing channels
can be treated like statistically uncorrelated variables
with distribution functions P, and P„„respectively. Con-
sequently, every recombination step is characterized by a
particular pair of lifetimes ~, and ~„„wherethe actual
time constant ~ of the transition is given by

(4)

The probability o. for the transition to be radiative is a
function of ~„and~„,as well, and it is obtained by

—1
Ty

Note that o. must not be confused with gpL, since there
are more than just two values for ~„and~„,and thus gpL
is given by the ensemble average (o. ) [see Eq. (12)].
With knowledge of P„andP„„G„canbe determined via
Eqs. (4) and (5), which allows us to subsequently calculate
the QFRS signal according to Eq. (3). As far as the latter
is concerned, however, it is more convenient to modify
Eq. (3) such that the dependence of the signal on P„and
P„,is given explicitly, thereby avoiding the numerical
calculation of G„.This is readily achieved by substituting
r via Eq. (4) and by replacing G„by the corresponding
distribution function for the two respective lifetimes.
Since ~„and ~„,are assumed to be uncorrelated, this
function is given by the product P, XP„,Xo., where the
factor o. accounts for the fact that only radiative transi-
tions are detected. Averaging over all possible lifetime
configurations then yields the QFRS signal. There are,

X
10'/( 10 '+ 10 "'

)

1+10 '/(10 "+10 "')

Xdx„dx„,. (6)

This equation presents the basis for the analysis of the
quadrature signals shown in Fig. 2(a), and in principle it
should be appropriate for every system where radiative
and nonradiative recombination are directly competing.

The next step is to determine the distributions P„*and
P„*„afterwhich the predictions of Eq. (6) can be com-
pared with the experiment. However, while P„*,is deter-

however, two reasons why this transformation should be
carried out with respect to the logarithmic lifetime vari-
ables and their corresponding distribution functions,
denoted by P„*and P„*„ratherthan referring to the linear
variables. The first reason is that the QFRS signal has
been shown to give a good approximation for G,*, the dis-
tribution function of log &o~, provided that G„ is

sufficiently broad. ' ' This indeed holds true for a-Si:H,
where 6„*is known to extend over several orders of mag-
nitude in time ' (see also Fig. 3, later in this section,
where the accuracy of the approximation is nicely
demonstrated). This interesting feature is particularly
useful, for it follows that the observed changes in the
QFRS spectra, which are consequently plotted as a func-
tion of log j o~= —log &0~, directly reveal how 6„*is
aftected in the presence of the nonradiative channel, spar-
ing the necessity of further data reduction. The second
reason is that the nonradiative tunneling model' is in
fact closely related to P„*„whichmakes it especially easy
to interpret the observed changes in terms of the pro-
posed model. With respect to these considerations and
using the substitutions x, =log~o'T x„,=log&o~„„and
z = log, ocr, one then obtains for the QFRS signal

Y(z)=const X f f P„*(x„)P„',(x„,)cr(x„,x„,)
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mined analytically according to the model proposed by
Tsang and Street, ' P„*will be derived on the basis of the
experimental data alone. This approach seems to be
mandatory, since, so far, it has not been possible to ob-
tain the radiative distribution for geminate excitation
conditions on theoretical terms. ' ' '

In order the explain the dependence of the quantum
efficiency gpL, and in particular the dependence of the PL
decay on the defect density, Tsang and Street' suggested
that the dominant nonradiative process at low tempera-
tures is the competing tunneling transition of a trapped
band-tail electron into a defect state. For an electron sur-
rounded by X defects at separations R1,R2, ,R&, the
transition rate ~„, is then given by total recombination
rate

N

r„,'=vo g exp( —2R, /a), (7)

where vo-10' s ' has the value of a typical phonon fre-
quency and where the localization length of the electron
was estimated to be e-10—12 A. ' ' lt can be shown,
however, that for all practical purposes it is sufficient to
consider only the separation between the electron and the
nearest-lying defect, which is due to the strong exponen-
tial dependence of the respective rates on R, Equation
(7) therefore reduces to the familiar expression

r„,' =voexp( —2R /a), (8)

from which it follows that the nonradiative distribution is
solely determined by the distribution function for the
nearest-neighbor distances, H(R). If the defects are ran-
domly distributed in space, as is usually assumed, then
H(R) is given by

H(R)=4mR Noexp( 4rrR ND/3—) . (9)

This distribution is basically identical with P
„„

since dR—:—,'a ln10 d log&or„„and with R (log, or„,)
=

—,'a 1nlO(log, or„,+log, ovo) one obtains

P„',(x„,)=—,'alnlOH(R(x„„)). (10)

The radiative distribution is determined on the basis of
the QFRS data shown in Fig. 2(a). This is achieved by
selecting one of the spectra and fitting it with Eq. (6),
where P„*is now the only unknown quantity. Of course,
this approach depends on the assumption that the nonra-
diative channel is indeed directly competing and correct-
ly described by Eq. (10). It is, however, subsequently
justified by the agreement which is obtained for the calcu-
lated and the recorded signals. At any rate, taking a
curve from the low defect-density range ensures that any
possibly falsifying impact of the proposed model is mini-
mized, because nonradiative recombination is then of
minor importance. Hence, P,* was determined by fitting
curve 1 (ND=1. 7X10' cm ), using the parameters
vo=10' s ' and a=11 A. According to the result that
the plateau in the microsecond range is related to a
second intrinsic radiative process, ' ' it was started out
with a superposition of two Gaussians for P,* and indeed
one obtains a very good fit for

P„*(x„)=0.431 exp[ —0.89(x„+2.7) ]

+0.072 exp[ —0.45(x„+6)'].
This distribution is given by the solid line in Fig. 3. Since
P„*is identical with G,* for X&=0, we have also plotted
the corresponding (ND =0) quadrature signal, given by
the dashed line. Further details concerning G,* are given
later in this section.

Now that the two respective lifetime distributions have
been determined, it is easy to calculate the QFRS signal
for any given defect density via Eq. (6), where ND
remains as the only free fit parameter. Figure 2(b) shows
the curves that give the best fit to the recorded signals
and the agreement is indeed very good. The shift of the
spectra is accurately reproduced, and the same holds true
for the increasing quenching efFect with increasing life-
time. It is also remarkable that the required values for

are very close to the experimentally determined
values, the largest deviation being smaller than a factor of
2, which is well within the experimental uncertainty.
This result is very convincing evidence for the full appli-
cability of the nonradiative tunneling model, demonstrat-
ing that it allows for a quantitative analysis of the recom-
bination kinetics at low temperatures. Yet, it should be
noted that based on TRS data, Collins et aI. have pro-
posed a model where the defects are considered to act as
fast (r„,& 10 ns) and predominantly noncompeting recom-
bination centers. The respective experiment was carried
out at T-80 K and the PL was selectively detected for a
single emission energy Ep„.Though the latter is uncriti-
cal at low temperatures (T=10 K) where G„*is only
weakly dependent on EPL, ' ' ' it is not for T =- 80 K,
since the correlation between EpL and the observed
recombination kinetics is then quite strong. ' Consider-
ing that the data of Collins et a/. were obtained for an
emission energy 250 meV above the steady-state lumines-
cence peak energy, it thus seems questionable whether
the recorded PL decays are indeed characteristic for the
recombination kinetics of the excess carrier population.
In addition, it must be taken into account that tempera-
ture itself introduces a nonradiative path for T & 50 K
(see, for example, Ref. 23). Obviously, the respective ex-
perimental results are difficult to compare, but neverthe-
less it can be stated that the model of Collins et al. is
definitely not valid at low temperatures.

The good agreement between the measured and the
calculated signals makes it seem worthwhile to take a
closer look at some of the details concerning the lifetime
distribution G*=G,*+G„*,and how it is afT'ected in the
presence of the two competing recombination channels.
This is done in the following, starting with its radiative
fraction G,*.

As mentioned above, G,* and P„*are identical for
XD=0, since recombination is then purely radiative.
Figure 3 shows that this "intrinsic" lifetime distribution
consists of two pronounced structures, the dominant
geminate peak at loglor„=—2. 7 (2 ms) and a second peak
centered at log, or„=—6 (1 ps). The width of the former
is approximately 1.8 decades and slightly smaller than the
2.5 decades for the faster process, the ratio of their
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respective contributions to G„being close to 4:1. The
quadrature signals shown in Fig. 2 directly reveal how
6, evolves as the defect density increases, and, mainly,
there are two effects that need to be discussed. Firstly,
the distribution is shifted towards shorter times, which
can be seen most clearly for the geminate peak; and,
secondly, the ratio changes in favor of the ps process
while the signal amplitude is quenched in the entire time
domain. The interpretation of the latter is straightfor-
ward, since it follows from Eq. (5) that slow radiative pro-
cesses are quenched stronger than faster ones, thus ac-
counting for the changing ratio. The reason for the shift,
on the other hand, is somewhat unexpected. Because it is
correlated. with an increase of the nonradiative rate {de-
creasing )pz), it seems natural to interpret the shift in
terms of Eq. (4), in analogy to a system with only two sin-
gle lifetimes ~„and ~„„respectively. However, it turns
out that the lifetime dependence of the quenching eA'ect,
as defined by Eq. (5), accounts for the shift as well. This
shift is of a di6'erent type and similar to the e6'ect that is
obtained by multiplying a (bell-shaped) curve with a
monotonously increasing or decreasing weight function;
the respective peak positions of exp( —x ) and
arctan(x)exp( —x ), for example, being x=0 and
x =0.633. We now show that the lifetime dependence of
the quenching effect indeed accounts for virtually all
changes in the QFRS signals shown in Fig. 2.

The reason for this feature is that, initially, when the
quantum e%ciency starts to decrease due to the rapidly
decreasing pair-defect separations R, the major contribu-
tion to the PL nevertheless results from pairs where R is
large, such that ~„&w„, and hence ~—w„. Radiative
recombination in the vicinity of "close" defects, which
actually causes a shift of G„*in terms of Eq. (4), is only
relevant for very high defect densities when the probabil-
ity for these large values of R becomes negligible. This is
readily verified by calculating the relative fraction of car-

6 is obtained as

~=gpL'f P„*(x„)f P„*,(x„,)o(x„,x„,)dx„, dx„.
(13)

Figure 4 shows these two quantities as a function of ND,
and it is to be seen that the increase of the nonradiative
rate is not instantaneously followed by a shift of the PL
lifetimes. Instead, 5 remains in the order of unity for
XD + 5X 10' cm and w=w„ is thus a valid approxima-
tion in this range of X~. This allows us to rewrite Eq. (6)
in the following way:

F(z) =coilst X f P (x„)E'(x„)
10'+"

dx
1+10

where e is defined by

e(x„)= f P„*,(x„,)o(x„,x„,)dx„,. (15)

This definition is useful because it directly reveals the life-
time dependence of the quenching efFect as described
above: e is the average probability for a pair with life-
time ~„to recombine radiatively if it is located some-
where within the distribution of defects, and consequent-
ly e decreases monotonously with increasing ~„.This is
demonstrated in Fig. 5, where e is plotted for a defect

riers, denoted by 6, that recombine radiatively yet
without a shift of their respective lifetime ~, . Since the
quantum eSciency APL is given by

gpL= f G„*(x)dx

= f P„*(x„)f P„*,(x„,)o(x„,x„,)dx„, dx„,

10
O

10

)O17
I

)ol8

FIG. 4. The relative fraction 6 of carriers with lifetime w=w,
and the quantum e%ciency qpL as a function of Xz. The curves
were calculated according to Eqs. (1&) and (13).
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FIG. 5. The average probability e for a pair with lifetime ~„

to recombine radiatively within a distribution of defects, calcu-
lated according to Eq. (15) for ND =3.3X 1O' cm
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FIG. 6. QFRS signals, calculated according to Eq. (6) (solid
line) and Eq. (14) (dashed line) for ND=3. 3X10' cm '. The
solid line is identical with curve 4, Fig. 2(b).
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FIG. 7. (a) The nonradiative frequency response for various
defect densities, calculated according to Eq. (6), where o. is re-
placed by 1 —o. The values for XD are identical with the ones
in Fig. 2(b). (b) The corresponding nonradiative distributions
P„*„calculatedaccording to Eq. (10).

density of ND =3.3 X 10' cm . The comparison of Eqs.
(3) and (14), on the other hand, shows that

G Q P)fc

and thus the changes in the QFRS signals of Fig. 2(a)
must be predominantly an effect of the lifetime-dependent
quenching. This is nicely illustrated in Fig. 6, where a
QFRS signal calculated for XD =3.3X 10' cm via Eq.
(6) (solid line) is shown, together with the respective ap-
proximation calculated via Eq. (14) (dashed line). Note
that the marked inAuence of %D on G,* is directly related
to the fact that P,* is a broad and slowly varying func-
tion, since otherwise the modulation with e would be
ineffective. This means, however, that for systems with a
narrow, 6-like distribution P, , the initial decrease in gpL
will not be accompanied by a shift of the QFRS signals,
which is quite a deceiving result, for it seems to indicate
that the nonradiative channel is not competing with the
radiative path.

Another important aspect of Fig. 6 is that it con-
clusively demonstrates that the origin of the ps process,
which becomes more pronounced with increasing defect
density, is completely independent of the defects. The
most common point of view, according to which this
structure is induced by the competition with a fast nonra-
diative channel (see, for example, Refs. 11 and 21), is
therefore proven to be incorrect. This result is consistent
with our recent analysis of low defect-density materi-
al, ' ' where we have proposed that the fast process
rejects the direct competition between radiative recom-
bination and the final stages of thermalization, based on
the result that the latter was shown to end in the ps
range. ' However, there might be other explanations con-
cerning the true origin of this process, indicating that the
issue requires further investigation.

A very interesting feature of the competition model is
that it allows us to study the nonradiative kinetics quanti-
tatively, since G„,is determined by P„*and P„*,in exactly
the same way as 6,'. The only difference concerning the

calculations is that the probability o. for a radiative
recombination step has to be replaced by the probability
for nonradiative recombination, which is simply 1 —o..
The easiest way to examine the inAuence of the defect
density on G„*,is, thus, once again, to calculate the
respective frequency response, denoted by Y'„,. Figure
7(a) shows the spectra that correspond to the ones which
are shown in Fig. 2(b), being calculated for the same de-
fect densities. The main difference between the two types
of signals is evidently the strong shift of F„,with increas-
ing XD. This behavior -is readily understood by studying
the respective distributions of P„„whichare plotted in
Fig. 7(b). The cutoff'of the signals in the ms range is ob-
viously due to the competition with the radiative distri-
bution P„,which is a rapidly decreasing function for
longer lifetimes, such that G „*, is virtually zero for
log&pz&0. For log, p'T( 5, on the other hand, G„*,is al-
most identical with P„,since then in the vast majority of
cases the effective lifetime is determined by the nonradia-
tive process, the average logarithmic radiative lifetime
being only —3.3. It follows that for high defect densities,
when gpL is small as compared to unity, the recombina-
tion kinetics will be entirely determined by P„„and
therefore by the statistical distribution of the electron-
defect separations. In the frame of the proposed model
this is the expected result.

We now take a look at the quadrature signals, denoted
by F&, which are obtained by superimposing the spectra
of Figs. 2(b) and 7(a). It follows from G'=G„'+G„*,that
these signals, shown in Fig. 8, reveal how G* evolves as
the defect density increases. For AD=1.7X10' cm
I's resembles curve 1 in Fig. 2(a), reffecting the fact that
recombination is predominantly radiative. For higher
values of ND the nonradiative contribution increases rap-
idly, although the radiative fraction is still clearly distin-
guishable for ND = 1.7 X 10' cm . Then, there is a
rather drastic change in the kinetics such that for
XD =3.3 X 10' cm the remainder of the PL is merely
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FIG. 8. QFRS signals, which are obtained by superimposing
the signals of Figs. 2(b) and 7(a). For details see text.

recognizable as a small shoulder in the spectrum. For
XD=5.6X10' cm this shoulder has practically van-
ished and the kinetics are mainly determined by the non-
radiative channel.

It should be emphasized at this point that the discus-
sion of the distribution functions 6„*,and 6* is not an
academic construct. The competition model relates 6,*
and 6„,in an unambiguous way, making it sufficient to
measure either one of the two quantities. Hence it is
secondary that FRS is restricted to the radiative fraction.

C. The quantum e%eiency

As shown in Sec. III B the quantum efFiciency gpL is
easily calculated once the distribution functions P„"and
P„*,have been determined. The respective prediction of
Eq. (12), using the same values for vo and a, is given by
the solid line in Fig. 1(a). Again, the agreement with the
experimental data is very satisfying. Peculiar, however,
is the circumstance that the data can be described just as
well by a noncompeting model. Street, Knights, and
Biegelsen found that the observed dependence of gpL on
ÃD can be fitted by the well-known expression'

ture" model is noncompeting by definition, since the de-
cision as to whether a pair recombines radiatively or non-
radiatively is independent of the respective lifetimes,
decoupling the kinetics of the two recombination chan-
nels.

Figure 1(b) demonstrates that the two models are
indeed quite difFicult to distinguish for defect densities
lower than AD=10' cm, but that they yield entirely
different results for higher values of XD (see also Refs. 9
and 28). While the noncompeting model leads to the
strong exponential decrease of gpL, competition predicts
a considerably weaker dependence, close to a power-law
behavior with exponent P= —1.5. In order to decide
whether the gp„data really indicate a competing nonra-
diative channel, it is therefore necessary to measure this
quantity in the high defect-density range. However, for
reasons given in the previous section, such an experiment
needs to be carried out using an electron-bombardment
sample. This was done by Street, Biegelsen, and Stuke,
and it is found that the dependence of gp„on XD is then
indeed much weaker than exponential.

In this context it should be noted that TRS is confront-
ed with a somewhat similar problem, making it difficult
to decide whether the nonradiative channel is actually
competing or not. It has been shown that the PL decay
in a-Si:H consists of a fast and a slow component; the fast
component becoming more significant with increasing
XD, while the slope of the slow decay remains virtually
unaffected. ' This behavior is generally considered to be
the characteristic feature of a competing nonradiative
recombination channel, which is correct if the radiative
channel is governed by a single process. However, if
there are (at least) two radiative processes separated in
time, which, for instance, holds true in the case of a-Si:H,
then it is possible to obtain very similar decay curves
without competition being involved. This happens if only
the slower of the two processes is quenched by the nonra-
diative channel, such that the increasing contribution at
short times merely reflects the fact that the faster process
remains uninfluenced. This interesting problem can be il-
lustrated by calculating the a-Si:H decays with respect to
both models. In case of competing recombination chan-
nels, the decay is obtained by the sine Fourier back-
transform of Eq. (6), which leads to

rlpL =exp( 4~RCXD /3), — (17)

where Rc defines a critical capture radius for the defects.
This is demonstrated by the dashed curve in Fig. 1(a),
which corresponds to 8&=105 A. However, although
Eq. (17) was derived on the basis of an approximation
within the competition model, it is in fact typical for a
noncompeting recombination process. It assumes that
every defect is surrounded by a sphere with volume
V&=4m.Rc/3, representing a critical capture cross sec-
tion: every electron-hole pair that is generated within
such a sphere is captured in a nonradiative process, while
it thermalizes and subsequently recombines radiatively if
generated outside. In this case the quantum efficiency is
identical to the probability of a pair being generated out-
side of a sphere Vc, which, depending on the defect den-
sity, is then given by Eq. (17). This sort of "direct cap-

IpL(t)=constX f J P„*(x„)P„*,(x„,)10

Xexp[ —t(10 "+10 "')]

Xdx, dx„,. (18)

where the radiative distribution and its dependence on
ND is given by

G„*(x„)=P„;(x„)+exp( 4m R cXD /3 )P„*2(x„)—. (20)

For the noncompeting situation, the decay is calculated
via

IPL(t) =const X J G„*(x„)10"exp( —t10 ")dx„,
(19)
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FIG. 9. (a) PL decays for competing recombination channels,
calculated according to Eq. (18). (1) XD =1.7X10' cm ', (2)
2 X 10' crn, (3) 4.3 X 10' cm, (4) 7 X 10' cm, (5)
1.2X10' cm '. (b) PL decays for noncompeting recombina-
tion channels, calculated according to Eq. (19), using the same
defect densities as in (a).

Here P, ; denotes the ps process while P„2denotes the
geminate peak, quenched by direct capture, again using
the value RC =105 A. Figure 9 shows the respective re-
sults, corresponding (a) to competition, and (b) to non-
competition. Indeed, both sets of data reveal the features
of an increasing fast decay, -while the slope of the slow
component remains nearly ND independent. As a matter
of fact, competitive quenching of only the slower process
would again yield curves that look very much the same.
Nevertheless, there are some noticeable differences, mak-
ing it possible distinguish between the different models if
the data are quantitatively analyzed. The point is, how-
ever, that it is essential to be aware of the fact that the
so-called "typical features" by no means provide unambi-
guous evidence for a competing nonradiative channel,
and that there might be a problem where none is expect-
ed. In light of this, it should be considered an advantage
of the QFRS technique that difficulties of this kind are
avoided, since the spectra directly reveal how the radia-
tive lifetime distribution G,* evolves as the defect density
is changed.

In this paper we have shown that the competitive non-
radiative tunneling model can quantitatively account for
the QFRS lifetime spectra and their dependence on the
defect density. This in turn allows us to determine the in-
trinsic (ND =0) geminate lifetime distribution with high
accuracy, revealing that it consists of two clearly resolv-
able structures. In addition to the well-known geminate
peak centered at r-2 ms, there is a second one in the ps
range, contributing to luminescence with approximately
20 jo. In contrast to the common and most intuitive
view, it is shown that the increasing contributions to the
QFRS signal at short times for increasing values of ND,
are in fact not induced by the competition between
"slow" radiative and "fast" nonradiative transitions. In-
stead, it rejects that long radiative lifetimes are quenched
more effectively than faster ones, such that the ps process
emerges due to the suppressed geminate peak. An in-
teresting feature of the presented analysis is that the non-
radiative lifetime distribution may be studied concomi-
tantly. This allows us to illustrate how the kinetics are
changed in favor of the nonradiative channel as the quan-
tum efficiency decreases, demonstrating that they are
completely determined by the nearest-neighbor distribu-
tion for the pair-defect separations once 1VD exceeds
5X 10' cm . Analyzing the dependence of the quan-
tum efficiency on ND, it is shown that the competing non-
radiative channel actually leads to a power-law behavior
for gpL with an exponent close to P= —l. 5, and not, as it
is often assumed, to an exponential dependence. The
difference is marginal as long as the defect density does
not exceed AD=10' cm, but it becomes quite pro-
nounced for higher values of ND. Finally, we have point-
ed out that TRS data may be misleading if not carefully
analyzed. This is due to the fact that it is usually can-
sidered to be conclusive evidence for a competing nonra-
diative channel if the contribution to the decay at short
times increases with increasing XD. However, we have
shown that very similar decays can be obtained without
competition being involved.
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