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The ab initio pseudopotential method within the local-density approximation and the quasiparti-
cle approach have been used to investigate the electronic excitation properties of hexagonal (6H, 4H,
2H) and zinc-blende (3C) silicon carbide. The quasiparticle shifts added to the density-functional
eigenvalues are calculated using a model dielectric function and an approximate treatment of the
electron self-energy concerning local-field effects and dynamical screening. The inverse dielectric
function and the auxiliary function are generalized to hexagonal crystals. Good agreement with
the experimental results is obtained for the minimum indirect energy gaps. The k space location
of the corresponding conduction-band minima is clarified. Other excitation energies are predicted.
The in6uence of the quasiparticle effects on band discontinuities and the electron effective masses is
studied.

I. INTRODUCTION

The various polytypes of silicon carbide (SiC) have at-
tracted extensive experimental and theoretical interest
because of their extreme thermal, mechanical, chemical,
and electronic properties. Besides the physical question
of the reasons for the polytypism, the principal driving
force for the current resurgence in interest in silicon car-
bide is its potential as a material for high-power, high-
temperature, and high-frequency microelectronic devices
resistant to radiation damage.

Experimental studies of the electronic properties of the
SiC polytypes have been scarce due to the difIiculties
concerning the availability of high-quality single crys-
tals or perfect epitaxial layers. Choyke, Hamilton, and
Patrick ' found already in 1964 the famous linear rela-
tionship between the electronic energy gap and the per-
centage hexagonality up to 50%%uo, i.e. , the increase from
zinc-blende 3C-SiC to the hexagonal polytypes 6H-SiC
and 4H-SiC, whereas the variation from 4H- to 2H-SiC
(wurtzite) remains small. For a quantitative explana-
tion of these findings it is necessary to include quasi-
particle efFects. On the other hand, the basic behav-
ior of the gaps in the polytypes may be already un-
derstood without these efFects. In a wide energy range
optical absorption, reHectivity, spectroscopic ellipsome-
try, and electroreHectance measurements have been per-
formed for 3C, and 6H. Recently, reHectivity data
have been published for the polytypes 3C, 2H, 4H,
and 6H of interest here. High-resolution band-mapping
results exist only for the I A direction of 3C-SiC. Di-
rect measurements of the electron efFective masses by
means of the cyclotron resonance exist for 3C crystals
and chemical-vapor-deposited (CVD) layers of 6H or 4H
crystal structure.

Recently, the first-principles density-functional theory

(DFT) in the local-density approximation (LDA) has
been applied not only for studying the ground-state prop-
erties of SiC polytypes but also for describing their
electronic properties. ' ' ' ' ' Meanwhile, there is a
unified theoretical picture of the important features of
the band structures. The conduction-band minimum
state located at the X point for cubic 3C-SiC changes
to the LM line for 6H or the M point for 4H, and
then to the K point for the 2H structure. However, in
the 6H case its exact position on the LM line is under
discussion. 'i ' The energy gaps between the valence-
band maximum (VBM) at l and these states are under-
estimated but may be brought into rough agreement with
experiment after adding a rigid quasiparticle (QP) shift
of about 1.1 eV. ' For zinc-blende SiC the electronic-
structure calculations are already refined and exchange
and correlation (XC) of the electron-electron interaction
are taken into account on a more sophisticated level.
For noncubic polytypes such QP calculations are still
missing. Further open questions concern details of their
conduction-band structure, the effective masses, and the
k space location of the minimum in the 4H case.

In this paper, we present the results of ab initio pseu-
dopotential calculations for the electronic structure of
3C-, 6H-, 4H-, and 2H-SiC which are improved by a
proper inclusion of the QP effects. QP band structures
are calculated. We discuss the inHuence of the many-
body efFects in the excitation spectra on k space location,
energetical distance, anti the curvature of the important
band extrema.

II. METHOD

The starting point of the QP band structure calcula-
tions is the DFT-LDA, where the electron-ion interaction
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is treated by norm-conserving, ab initzo pseudopoten-
tials of the Bachelet-Hamann-Schluter type in the fully
separable Kleinman-Bylander form. " The electron wave
functions are expanded in terms of plane waves up to an
energy cutofF of 34 Ry. The restriction to the low cutofF
arises from the use of softened carbon pseudopotentials.
Details of their generating procedure and the discussion
of the validity can be found. in Refs. 3 and 28. Perform-
ing the self-consistent DFT-LDA calculations we apply
the computer code FHI93cP of Stumpf and SchefBer.
The total energy is minimized by a Car-Parrinello-like
procedure with respect to both the ionic and electronic
degrees of freedom. As a result we obtain the equilibrium
atomic geometry, i.e. , in the hexagonal cases the two
lattice constants as well as the unit-cell internal positions
of the atoms of the atomic basis. Simultaneously the
band structures are derived in DFT-LDA quality from
the Kohn-Sham eigenvalues.

As typical for semiconductors and insulators also the
indirect band. gaps for the SiC polytypes are und. eresti-
mated by the DFT-LDA procedure for the ground state
by about 40—50%. At least, many-body QP effects
have to be taken into account to treat XC during the
excitation of electrons and holes in a better way, e.g. ,
in the GR approximation for the self-energy, instead
of by the local potential of the DFT-LDA. More strictly
speaking, the validity of a perturbational approach is as-
sumed. QP corrections E (k) for a certain single-particle
state ~nk) (n is the band index and k the Bloch wave
vector) are calculated as the difference between the di-
agonal matrix elements of the XC self-energy and the
local XC potential governing the DFT-LDA. Adding the

(k) to the Kohn-Sham eigenvalues, one obtains the
QP energies. Explicitly, we apply a generalization of the
approximate proced. ure of the XC self-energy calculation
developed by Cappellini et a/. ' for zinc-blende and di-
amond crystals. This procedure starts from an LDA-like
treatment of the local-Beld contributions to the screened
Coulomb potential in the GW approximation for the XC
self-energy. The average electron density occurring in
this theory is replaced by a state average of the local den-
sity. The full energy dependence of the self-energy due to
the dynamical screening is described within a linear ex-
pansion around the corresponding DFT-LDA eigenvalue,
which is well justified for the upper valence and lower con-
duction bands and not too large energy diIIFerences. The
Coulomb singularity in the k space in the screened ex-
change contribution to the total self-energy is subtracted
applying the concept of an auxiliary function. The use
of a model dielectric function, which reproduces the
full randoin-phase-approximation (RPA) function with
high accuracy, allows an analytical representation of the
static Coulomb-hole contribution to the self-energy. The
described method represents an eFicient GW calcula-
tion scheme for the electronic band structure of cubic
semiconductors with small numbers of atoms within the
unit cell. It yields accurate results with a very lim-
ited computational efFort. We mention that the method
of Cappellini et al. ' is based on former simplifying
approaches, ' which, however, completely neglect ef-
fects of the local fields and the dynamical screening.

We have generalized the method of Cappellini et
aL ' for noncubic crystals with more than two atoms in
a unit cell. The diagonal (longitudinal) screening func-
tion e (q, ur) is related to the inverse (transverse) dielec-
tric tensor e &(q, cu) by g & q e &(q, w)qp/~q~ where
n and P stancl for the Cartesian components. The ten-
sor is represented in a coordinate system parallel to the
principal axes. Each component is described by a model
function. s For vanishing arguments e &(0, 0) changes
over into the tensor of the inverse high-frequency dielec-
tric constants with the independent components e~ and

I I

~ The above-mentioned particular form of the inverse
dielectric function guarantees its nonanalytic behavior
for vanishing wave vectors. The experimental values
used for the parallel dielectric constants oil

——6.52
for 3C and ~ll~ = 6.70 f«6H are linearly interpo-
lated with the hexagonality to the cases of 4H and 2H,
whereas the constant value e~ ——6.52 (Ref. 40) is ap-
plied to all polytypes. The auxiliary function, needed to
treat the Coulomb singularity in the screened exchange
contribution for the hexagonal polytypes, is chosen to
be F(q) = -a /(3cos(aq ) —2cos(2q ) cos(~2 qy) +
—( —)2[1 —cos(cq, )]j with the two hexagonal lattice con-
stants a and c. According to the plane-wave expansion
of the single-particle states, the matrix elements of the
self-energy and the local potential are represented in mo-
mentum space. Summations over the Brillouin zone are
carried out using a special-point scheme. Typically six
(ten) mesh points are chosen in the irreducible wedge of
the hexagonal (fcc) Brillouin zone to calculate the elec-
tron density. In the case of the self-energy calculation
of arbitrary k points this number is increased to 24 in
half the Brillouin zone considering only the time-reversal
symmetry. The sum over reciprocal lattice vectors C in
the shift calculation is limited by the same energy cut-
oK of 34 Ry as in the DFT-LDA calculations. However,
much smaller values can be used to reach the same ac-
curacy of the QP shifts. Explicitly px450 plane waves
are taken into account for pH structures, whereas this
number is fixed at 470 for zinc-blende SiC. The number
of conduction bands plays a role. We find in the pH (3C)
case that 128 (64) bands are required to achieve full nu-
merical convergence of the self-energy in the considered
energy range. This can be reduced to px8 (8) for pH
(3C) in the case of the electron-density calculations.

III. RESULTS

A. Test: 3C'-SiC

The results for the QP shifts A (k) for a variety of
band states are summarized in Table I. Results are pre-
sented for the theoretical as well as the experimental lat-
tice constant. They are compared with data arising from
more accurate QP calculations, at the experimental lat-
tice constant, ' which take into account a full calcula-
tion of the inverse dielectric tensor within the RPA but
using difFerent methods. The overall agreement between
the four different types of QP shifts is satisfying. This
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TABLE I. Calculated QP shifts K (k) (in eV) for various
band states of zinc-blende 3t -SiC. The calculations are per-
formed either (a) for the theoretical lattice constant or (b) for
the experimental one (Ref. 40). The values are compared with
results of more sophisticated calculations (Refs. 23, 24) where
the experimental lattice constant is taken into account. The
shifts are represented with respect to the shift of the VBM at
I'. Its absolute value is Aqs„= —0.66 eV (a) and Aq5„= —0.64
eV (b), respectively.

Band state
r,.
I'i5
r„
I"jg,

Present (a)
-1.63
0.00
1.48
1.60

QP shift
Present (b)

-1.61
0.00
1.42
1.56

Ref. 22
-1.00
0.00
0.94
1.19

Ref. 23
-1.06
0.00
1.24
1.42

Xg„
X3v
X5„
Xg
X3C
Xg

-1.46
-0.57
-0.22
1.32
1.46
2.38

-1.46
-0.57
-0.21
1.30
1.43
2.33

-0.93
-0.75
-0.40
1.03
1.26
1.73

-1.07
-0.68
-0.36
1.15
1.41
2.12

Lg„
I3„
Lg
L3,
L1C

-1.50
-0.58
-0.08
1.45
1.64
2.07

-1.49
-0.57
-0.08
1.40
1.61
2.04

-0.95
-0.79
-0.15
1.07
1.37
1.73

-1.08
-0.70
-0.13
1.30
1.56
1.94

holds especially for the k dispersion of the shifts and their
dependence on the band index. With respect to the VBM
the smallest shifts appear for the highest valence bands
L3 and. X5 . The strongest shifts to larger binding ener-
gies occur for the lowest valence bands Lq, I'i„, and X~„.
They give rise to an increase of the valence band width of
about 1 eV. A similar tendency is observed for the unoc-
cupied conduction bands. There is a remarkable shift of
about; 1.0—1.5 eV of the lowest bands towards lower bind-
ing energies. These values increase somewhat for higher
conduction bands. Compared with the band-index de-
pend. ence the k dispersion of the shifts for a certain band
is smaller. Nevertheless, it is not negligible. In the ex-
treme cases of the higher valence bands the shift variation
reaches absolute values up to 0.7 eV. Consequently, we
note that the model of the "scissors" operator can give
a rough description of the gap opening by the QP effects
but not a reasonable description of the energy bands of
a rather complete QP band structure.

Comparing the absolute values of the four diII'erent

types of QP calculations in Table I, ane observes that
in general the plane-wave description of the eigenstates
(present calculation and Ref. 24) gives rise to shifts to
lower (higher) binding energies for unoccupied (occupied)
states which are larger than those &om the wave-function
expansion in terms af lacalized Gaussian arbitals (Ref.
23). A possible reason could be an underestimation af
the interatomic contribution to the self-energy due to the
stronger localization of the states. On the other hand,

20
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—10

—20
I Z KU X h, I" A L

I"IG. 1. The band structure of cubic 3C'-SiC within
DFT-LDA (dotted lines) and after inclusion of QP correc-
tions (solid lines). The energy zero is defined according to
the asymptotic behavior of the pseudopotentials.

our model calculation gives shift values for the conduc-
tion bands and higher valence bands which are 0.1—0.2 eV
larger than those of Backes et al. We trace back this
discrepancy mainly to the use of the experimental di-
electric constant e = 6.52, instead of the RPA value
e~ = 6.85. This gives rise to an averaged shift variation
of 5%. On the other hand, the variation of the lattice
constants of about 2% between the theoretical and ex-
perirnental values is only of minor importance for the
shifts. A further reason for the discrepancies results from
an overestimation of the local-field effects. The replace-
ment of the electron density in the screening function
by the state-averaged values works well for semiconduc-
tors like Si and GaAs. ' However, in the case of the
wide-band-gap material SiC with relatively large ionic-
ity of the chemical bonds such a replacement leads to a
slight overestimation of the shifts. The discrepancies of
0.4—0.5 eV are larger for the lowest valence band. Here
the linear treatment of the energy dependence of the XC
self-energy in the approximation of Cappellini et al.
breaks down. The dynamical screening eÃect has to be
treated more carefully.

The band structure resulting when the QP correc-
tions under discussion are added to the corresponding
Kohn-Sham eigenvalues from the DFT-I DA is plotted
in Fig. 1. Band. -mapping results exist for the upper
valence bands along the I'X line. We do not find com-
plete agreement between the measured and calculated
valence-band dispersions. This can be traced back to the
neglect of spin-orbit coupling in our calculations, which
should change the dispersion despite the smallness of the
spin-orbit splitting. The QP energy eigenvalues shown in
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TABLE II. Quasiparticle energies (in eV) for 3C-SiC. For comparison with other theoretical
descriptions (Refs. 23, 24) we present not only results (a) where the theoretical lattice constant is
taken but also values (b) where the experimental lattice constant (Ref. 40) is used.

Band state
r,„
r„„
r,.
~15c

Present (a)
-17.31
0.00
8.29
9.09

Present (b)
-16.92
0.00
7.67
8.72

Ref. 23
-16.44
0.00
7.35
8.35

Ref. 24
-16.13
0.00
7.81
8.66

Experiment (Ref. 40)

0.00
6.00, 7.59
7.75, 8.74

Xlv
X3V
X5„
Xj
X3,
Xg,

-11.82
-8.53
-3.49
2.59
5.77
16.71

-11.67
-8.38
-3.40
2.59
5.56
16.10

-11.24
-8.64
-3.62
2.34
5.59
15.78

-11.19
-8.38
-3.42
2.37
5.55
16.05

-3.6
2.390, 2.426

5.5, 4.7

Lg„
Lg„

Lg,
L3G

Lg,

-13.39
-9.39
-1.13
7.22
8.94
12.26

-13.19
-9.12
-1.14
6.73
8.73
11.96

-12.75
-9.42
-1.21
6.53
8.57
12.04

-12.65
-9.15
-1.11
6.76
8.68
12.08

-1.16
4.2
8.5

Values from Ref. 11.
Excitonic efFects are substracted.

Fig. 1 are listed in Table II for the high-symmetry points
L, I', and X. Apart &om the lowest valence band we
observe a rather good agreement between the four dif-
ferent QP calculations. This holds especially when we
also calculate the DFT-LDA eigenvalues at the experi-
mental lattice constant. Automatically the total values
decrease in agreement with the fact that the use of a
smaller lattice constant corresponds to the application
of hydrostatic pressure. Apart &om the lowest valence
band the overall agreement of the three difFerent QP cal-
culations is improved by changing the lattice constant
in our DFT-LDA calculation to the experimental value.
The only exception concerns the conduction-band mini-
mum at X. This can be explained by the stifFness of the
corresponding DFT-LDA eigenvalue against variation of
the lattice constant due to the softening of the carbon
pseudopotential.

Only a few band structure energies have been extracted
from optical measurements. Apart &om the L~ state
the experimental level positions at X and L can be ex-
plained by the QP eigenvalues. However, there is dis-
agreement with older experimental data for the I' point.
The conduction-band levels, which are 6.00 or 7.75 eV
above the VBM and have been identified with s-like (I'i, )
or p-like (I'is, ) states, lie already higher in energy than
the corresponding DFT-LDA eigenvalues. A critical dis-
cussion of this fact is given in the paper of Rohlfing et
al. On the other hand, the same level positions recalcu-
lated by Lambrecht et al. &om recent re8ectivity mea-
surements agree excellently with our predictions at the
experimental lattice constant.

B. In8uence of hexagonality

The variety of QP shifts calculated for the hexago-
nal polytypes at the high-symmetry points I', K, H, A, M,
and L in the hexagonal Brillouin zone are represented in
Fig. 2 together with those for 3| -SiC versus the cor-
responding DFT-LDA energies. One observes no clear
behavior within the difI'erent groups of bands. On the
average, the positive (negative) QP shifts increase with

—3—15 —10 —5 0 5 10
DFT —LDA eigenvalue E„(k) (eV)

15

FIG. 2. Quasiparticle shifts versus DFT-LDA energies for
the polytypes under consideration. The asymptotics of the
pseudopotentials is used as a unique energy zero for all poly-
types. The following high-symmetry points are selected: I',
K(U), X, and L for 3C; A, L, LM, M, I', H, —dKanf ro
2H; M and I' for 4H as well as 6H. 3C: dots, 2H: crosses,
4H: triangles, 6H: diamonds.
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TABLE III. Band structure energies (in eV) at high-symmetry points I', K, H, A, M, and L in
the hexagonal Brillouin zone within the DFT-LDA and including the QP shift. Only the uppermost
valence band and the lowest conduction band are given. In addition, the lowest valence level I'~„ is
indicated to characterize the valence-band width. For comparison the zinc-blende band structure
is also represented within the hexagonal Brillouin zone (3H). The symmetry notation of Rashba
(Ref. 43) is used.

Band state
LDA
-15.71
0.00
5.53

QP
-17.28
0.00
6.95

LDA
-15.74
0.00
5.43

QP
-17.30
0.00
6.92

LDA
-15.68
0.00
6.01

3H
QP

-17.20
0.00
7.62

LDA
-15.83
0.00
5.11

QP
-17.39
0.00
6.66

K2„
+2c

-2.09
3.45

-2.31
4.88

-1.67
3.93

-1.85
5.45

-2.22
3.81

-2.36
5.41

-3.95
2.14

-4.12
3.68

H3 v

H3,
-2.30
3.63

-2.49
5.06

-2.49
3.19

-2.68
4.68

-3.23
5.12

-3.34
6.78

-1.71
5.26

-1.83
6.86

+5,6v

Ag, 3,
-0.09
5.59

-0.09
7.02

-0.19
5.64

-0.20
7.14

-0.34
5.77

-0.31
7.35

-0.69
6.18

-0.75
7.81

M4„
Mg

-1.10
1.99

-1.40
3.25

-1.12
2.21

-1.23
3.56

-1.80
1.26

-1.82
2.69

-1.19
2.76

-1.13
4.28

L'1,2,3)4v

L i,3

-1.31
2.05

-1.63
3.36

-1.55
2.63

-1.68
4.06

-1.05
2.68

-1.03
4.22

-2.33
3.34

-2.30
4.85

4H we observe a rather pronounced flatness of the low-

est conduction band in the k space direction towards the
next-neighbor M point in the Brillouin zone. However,
this indication for an additional minimum is widely lifted
after inclusion of QP effects. In the 6H case the situation
is less clear. Several recent DFT-LDA calculations3'
but not all find the minimum to occur at the LM line.
Such a theoretical k space position seems to be in agree-
ment with experimental conclusions &om phonon ener-
gies involved in luminescence replicas as well as consid-
erations of the Kohn-Luttinger interference e8'ect. We
And a dependence of this lowest conduction band and its
minimum position on the numerical details, the conver-
gency of the energy-minimization procedure to determine
the bands or the inclusion of QP effects. This sensitivity
of its k space location to the details of the electronic-
structure calculations is studied in more detail in Fig. 4
for the flat lowest conduction band along IM in 6H.
With increasing number of time steps taken into the Car-
Parrinello-like energy-minimization procedure we find a
displacement of the considered minimum towards M. Si-
multaneously, the nonparabolicity of the considered con-
duction band diminishes. The convergency of the result is
checked by comparison with a direct diagonalization. We
find agreement after 240 time steps in the Car-Parrinello
procedure. The sensitivity itself can be understood in
terms of the flatness of the band along LM. The k dis-
persion of a band of about 0.01 eV approaches or even
undercuts the accuracy of the underlying DFT-LDA cal-
culation and much more that of 0.1 eV of our QP cal-
culation. After inclusion of QP effects we find an even
stronger tendency to stabilize the conduction-band min-

imum at M and an upward shift of about 0.6 eV. It is
accompanied by a slight change of the band curvature.

Together with the generally accepted position at K for
the conduction-band minimum in the wurtzite 2H struc-
ture a clear picture of the dependence of the indirect
energy gap on the percentage hexagonality of the poly-

5.24

5.22

5.20

5.18

I
5.16

Ul
tD

LU

4.54

4.52

4.50

4.48
M

Wave Vector

FIG. 4. Lowest conduction band of 6H-SiC along the IM
line resulting from a QP calculation and different DFT-LDA
calculations which take into account difFerent numbers NT
of time steps in the indirect diagonalization procedure. QP:
solid line (NT = 240), DFT-LDA: dashed line (NT = 240),
dot-dashed line (NT = 60).
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type follows from the calculations. For OP&'& hexagonality
(3C-SiC) the lowest conduction-band minimum starts at
X (fcc Brillouin zone) or M (3H Brillouin zone) roughly
2.59 eV above the VBM. The minimum in 6H (33'Fo)
appears at an energetic distance of about 3.25 eV at
M. This value increases somewhat in the 4H case (50'Po

hexagonality). This behavior of the lowest conduction-
band state in the k and energy space explains the exper-
imental endings, the so-called Choyke-Hamilton-Patrick
relation. Certainly, our theoretical values slightly over-
estimate the transition energies compared with the ex-
perimental values 2.390 eV (3C), 3.023 eV (6H), 3.265
eV (4H), and 3.330 eV (2H). However, the agreement
can be improved when the exciton binding energies of
the order of 0.03—0.05 eV (Ref. 40 and interpolated)
are added to the experimental values and the DFT-LDA
eigenvalues are calculated at the experimental atomic po-
sitions and not at equilibrium positions which minimize
the total electronic energy. The remaining discrepancy
of about 0.1 eV can be traced back to the inaccuracies
in our shift calculations which can be lifted by a more
proper treatment of the local-field contributions to the
XC self-energy.

C. QP influence on band discontinuities and electron
efFective masses

There is an ongoing debate concerning the existence
of novel electronic properties of heterostructures (more
strictly speaking heterocrystalline structures) on a base
of different SiC polytypes. Two extreme points of view
occur. On the one hand, the viewed structures should
have properties like heterostructures on a base of differ-
ent materials. On the other hand, these structures give
rise to new polytypes with averaged properties. The most
interesting heterocrystalline structures are those between
3C with a small energy gap and a pH structure with a
much larger gap. The most characteristic parameters of
such heterostructures are the band discontinuities LE
between the valence-band maxima (VBM) at I and AE,
between the minima at X (3C) and M (4H, 6H) or K
(2H). Under the assumption that interface dipoles are
negligible, they can easily be determined since the asymp-
totics of the pseudopotentials define a unique reference
level for all combinations as indicated in the band struc-
tures of Figs. 1 and 3. The dipoles are indeed expected
to be small in view of the similarity in charge density
and bonding in the polytypes. This seems to be also
confirmed by the 3C/2H calculation of Ref. 46. For the
combinations 3C/pH we find AE, = 0.74 eV (p = 6) and
0.99 eV (p = 4 and 2) as well as AE„= —0.02 eV (p = 6),
—0.05 eV (p = 4), and —0.13 eV (p = 2) indicating type-
II heterostructures with pronounced electron wells in the
3C layers and flat hole wells in the pH polytype. These
values are modified after inclusion of the QP effects, to
AE, = 0.70 eV (p = 6), 0.97 eV (p = 4), and 1.10 eV

(p = 2), and AE„= 0.00 eV (p = 6), —0.10 eV (p = 4),
and —0.24 (p = 2), respectively. In general, the QP cor-
rections increase the type-II character of the considered

TABLE IV. EfI'ective masses of electrons in the conduc-
tion-band minima in units of the free-electron mass mo. For
comparison the values neglecting the quasiparticle efFect are
given in parentheses. Full converged DFT-LDA bands are
taken into account. Only the independent components of the
tensors are presented. The principal axes (~~ and J ) are Xi'
[001] and XU [110] (3C), KH [0001] and Ki' [1120] (2H),
and ML [0001] and MI' [1100] (4H, 6H). Since the little
group of the M point (C2„) is smaller than that for the K
point (Cs„), a second perpendicular mass along MK [1120] is
given for 4H as well as 6H.

Mass 3C (X)
0.67

(0.67)
0.24

(0.25)

6H (M)
0.51

(1.95)
0.71

(0.75)
0.30

(o.27)

4H (M)
0.19

(o.32)
0.60

(o.57)
0.28

(o.32)

2H (K)
0.25

(0.26)
0.43

(0.45)

heterostructural combinations. The hole wells are more
pronounced and the effective gap of the total system is
decreased.

The inHuence of the QP effect on the efFective masses
and, hence, the k dispersion vary with the polytype and
the extremum under consideration. We discuss this ef-
fect for the conduction-band. minima. The corresponding
results are listed in Table IV. This table presents the in-
dependent components of the eRective-mass tensor with
principal axis parallel to the c axis (hexagonal polytypes)
or to the XI' connection line (zinc blende) and, respec-
tively, perpendicular to these directions. In general, the
QP inHuence is weak and give rise mostly to a rather
small decrease in comparison to the DFT-LDA values.
In the case of the well established minima at X or K in
3C-SiC and 2H-SiC, respectively, the QP inHuence on
the effective masses of the electrons is really negligible.
The strongest changes happen for m~

~

of 4H and, in par-
ticular, 6H. The underlying reason, the sensitivity of
the bands parallel to the MI line to the details of the
numerical calculation, has been already discussed above.
Small k-dependent shifts of the energies of the flat band
along MI give rise to drastic changes of its curvature.

The agreement with the available data from cyclotron-
resonance measurements for 3C-, 6H-, and 4H-SiC
(Refs. 13—15) is satisfying. We find for the Xl and
XU directions in 3C the values m~~

—— 0.67mp and
m~ ——0.24mp. There is practically no variation of these
values with the QP efFect or with the numerical details of
the calculation, especially the number of time steps taken
into account. The two values are in excellent agreement
with the observations in Ref. 13. The longitudinal mass

m~~
——0.67mp is exactly reproduced, whereas in the per-

pendicular case the experimental value m~ ——0.25mp is
slightly underestimated after the inclusion of QP effects.
In the 6H case the measured values are m~~ ——2.0mp and

m~ ——0.42mp. These values are in very good agree-
ment with the DFT-LDA endings in Table IV. However,
for the parallel mass the small wave-vector dispersion of
the QP correction perturbs the agreement. On the other
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hand, the experimental value for m~ lies in between the
two theoretical ones in the DFT-LDA as well as the QP
case. For 4H the measured values are m~~

——0.29mo
and m~ ——0.42mo. The first value lies in between our
DFT-LDA and QP results. The second one seems to ap-
proach the average value of the two transverse masses
given in Table IV. In any case the theory confirms that,
in contrast to 6H, the mass parallel to the c axis is
the smallest one in a 4H polytype. Assuming an elec-
tron movement in the basal plane in the [1120] direc-
tion and a relation p~/p~~ = m~~/m~, i.e. , neglecting the
anisotropy in the electron scattering, the anisotropy of
the electron mobility is reproduced in the case of Ref. 14
(pz/y~[ = 0.69) whereas another 4H value p~/p~~ = 0.83
(Ref. 47) is underestimated. Very recently we received
unpublished 4H data, m~~

——0.33mo, m~i ——0.58mo,
and m~2 ——0.31mo, where the directions are speci-
fied. These masses are in excellent agreement with our
DFT-LDA values in Table IV. The same holds for the
QP-corrected bands. Only in the ML direction is the dis-
cepancy larger for reasons discussed above. The masses
m~~ = 0.22mp (0.34mp) and m~ = 0.18mp (0.24mp), de-
duced recently from an effective-mass approximation fit-
ted to the spectra of the excited states of nitrogen donors
for 4H (6H) in Refs. 49 (50), fail the comparison. On the
other hand, the anisotropy of the electron masses for 6H
still remains a problem. The remarkable anisotropy of
m~~/m~ = 4 found in cyclotron-resonance studies4 can
be reproduced within our DFT-LDA treatment, at least
for an average of the perpendicular masses. However,
it cannot be confirmed after inclusion of the QP effects.
Unfortunately, the accuracy of the QP effects for the Rat
conduction band along IM is not high enough to give an
ultimate conclusion. Minor changes of the QP shifts for
difFerent k points give rise to remarkable changes of the
band dispersion in the Qat-band case.

IV. SUMMARY

In conclusion, we have studied the electronic excitation
properties of various SiC polytypes combining the first-
principles pseudopotential method in the framework of
DFT-LDA with a proper calculation of the quasiparticle
eKects. We have shown that the simplifying treatment of
Cappellini et at. of the XC self-energy within the GW
approximation is suKcient for near-band-gap excitations.
At the experimental lattice parameters we found an ac-
curacy of about 0.1 eV. It can be improved by a more
careful treatment of the local-field contributions to the
screened potential in these wide-band-gap semiconduc-
tors.

The resulting QP shifts of the DFT-LDA bands vary
with the polytype, the band index, and the position of the
Bloch state within the Brillouin zone. A scissor opera-
tor can indicate the tendency of the opening of the band
gaps. However, by no means is it able to explain the
details of the quasiparticle band structures. They con-
cern the k space location of the band extrema, the exact
magnitude of the band discontinuities of structures based
on diferent SiC polytypes, as well as the curvature of
bands, or more strictly speaking the corresponding eKec-
tive masses. The results presented allow an explanation
of the trend of the energy gaps with the hexagonality as
well as the absolute magnitude of these energies.
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