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We study the inHuence of long-range Coulomb interactions on the properties of one-dimensional
(1D) strongly correlated electron systems in the vicinity of the metal-insulator Mott-Hubbard phase
transition. It is shown that, in the metallic phase, the standard square-root singularity of the
compressibility at the transition point changes to a logarithmic one, due to the formation of a
1D Wigner crystal of solitons (holons). On increasing the soliton density in a finite-size chain, the
behavior of the compressibility reHects a sequence of crossovers between classical, low-density regimes
of perfectly or nearly ordered Wigner-crystal states, and quantum regimes of a nearly free Fermi
gas of solitons, followed (in the high-density limit) by a liquid phase of strongly correlated solitons.
In a mesoscopic situation, where the screening length in a 1D chain is controlled by a massive
electrode (gate) placed near the chain, there is a narrow region near the transition point where
quantum Quctuations melt the Wigner crystal and recover the universal square-root singularity of
the compressibility. Strong Coulomb interaction afFects the formation of the charge excitations in
the insulating phase, transforming the sine-Gordon solitons into quasiclassical Coulomb solitons.
Multiplicative logarithmic renormalizations of the characteristic soliton size and rest energy are
found.

I. INTRODUCTION

The metal-insulator transition induced by strong cor-
relations in an electron system is a problem of continuing
theoretical interest. In recent years, this problem has be-
come particularly important in connection with the dis-
covery of high-temperature superconductivity and sub-
sequent attempts to develop a consistent theory of this
phenomenon.

It is well known that the one-dimensional repulsive
Hubbard model

II = —t) (ct c;+i + H.c.) ~ U) n, tnN

is a prototypical model in which analytical description
of the dynamics of the Mott-Hubbard transition is avail-
able on the basis of its exact solution and well developed
nonperturbative methods. At exactly half filling (one
electron per site), the model (1) describes a Mott insu-
lator with a charge gap in the excitation spectrum. At
weak interaction, U « t, when the bare single-particle
spectrum can be linearized about two Fermi points and
the bosonization method is applicable, ' the low-energy
part of the charge sector can be mapped onto a quantum

sine-Gordon (SG) field theory given by the Hamiltonian
(see also Refs. 5 and 6),

(2)

Here, c, is the velocity of the charge excitations, II(x)
is the momentum density conjugate to the scalar Geld

p(x), and the coupling constant P2 = 8m. ~ The cosine
term in Eq. (2) originates from the Umklapp scattering of
electrons with momentum transfer 4k' = 2'/ao, where
ao is the lattice constant. The massive charge excitations,
or "holons, " are then identified as topological solitons of
model (2), the local holon density thus being defined as

The metallic phase of the Hubbard model, realized at
Gnite deviations Rom half filling, is described by the
SG model in the sector with a Bnite density n, of the
topological charge. When the chemical potential term
—@In, is added to Hs~, the transition to the metallic
phase occurs at the threshold value of p equal to the
charge gap L = m, c„m, being the soliton rest mass.
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Here, A is a transverse dimension of the system.
The basic effect of the unscreened repulsive Coulomb

forces in the metallic phase is the formation of a Wigner
crystal (WC) of solitons. Strictly speaking, in a 1D in-
finite chain of charges, the 1/r interaction does not fall
off fast enough to remove the infrared divergence in the
density-density correlation function. However, as shown
in Ref. 11, the 4k~ part of the correlator, describing
the density oscillations with a period equal to the av-
erage spacing between the solitons, decays slower than
any power law, thus making it reasonable to speak of a
nearly ordered state. At low densities n, a~ (( 1, the
Wigner lattice with period a = n, is not d.estroyed at
exponentially large distances L & L, where

L a exp(const/n, a~).

At low holon densities, n, (o « 1, where (o ——hc, /b.
is the characteristic quantum soliton length, interaction
between the solitons is weak. ' Therefore, the properties
of the system near the transition are completely deter-
mined by Fermi statistics of massive quantum solitons.
In particular, the compressibility of the system has a uni-
versal square-root singularity r (p —A) ~, typical
for quantum commensurate-incommensurate transitions
in one space dimension.

Notice that, within a classical description, a soliton
system with a finite density would form a lattice at zero
temperature. However, quantum fluctuations repre-
senting the Goldstone mode of the soliton lattice destroy
the periodic structure. Therefore, in one-dimensional
(1D) electron systems, irrespective of the strength of the
interaction, the transition to the Mott phase always oc-
curs from a disordered phase, provided the interaction
between the electrons is short ranged.

In this paper, we shall be interested in qualitative
changes in the above described conventional picture of
the metal-insulator transition in a 1D correlated elec-
tron system, caused by long-range Coulomb interaction.
The effects of long-range Coulomb forces need to be
taken into account for an isolated electron chain, where
the Coulomb interaction remains unscreened, or in a
"mesoscopic" situation, where the screening length in a
1D chain is controlled by its distance D & L from a mas-
sive electrode (gate) and can be made very large (see,
e.g. , Ref. 14).

In Sec. II, we shall consider the case of a weak Coulomb
interaction, characterized by small dimensionless cou-
pling constant n = e /hc, = (o/a~, where a~
5 /e m, is the Bohr radius. We shall, therefore, assume
that the Coulomb interaction does not affect significantly
the insulating Mott phase of the system and focus on the
inHuence of the long-range forces on the soliton dynam-
ics in the metallic phase by adding to Hs~ the Coulomb
energy of interacting solitons:

order, so that the transition to the insulating phase takes
place from the Wigner-crystal phase.

Note that, in the absence of impurities producing pin-
ning of the WC, the soliton lattice can freely slide along
the one-dimensional channel. Therefore, in the ideal sys-
tem, the response of the soliton WC to a low-frequency
electric field is identical to that of a Fermi gas of soli-
tons. On the other hand, it is clear that thermodynamic
properties of the two systems should be different. We
show that upon crystallization of solitons in an isolated
chain, taking place near the transition to the insulating
phase, the square-root singularity of the compressibility
at the transition point is changed by a logarithmic one,
K 1/ ln[L(p —4)/e ]. Using simple arguments based
on the comparison of relative contributions of the clas-
sical Coulomb energy of the 1D WC and quantum ef-
fects, we show that, on increasing the density of solitons
("holons"), the behavior of the compressibility reflects
a sequence of crossovers between classical, low-density
regimes of perfectly (L & L ) and nearly (I & L )
ordered WC states, and a quantum regime of a nearly
free Fermi gas of solitons, which in the high-density limit
n (p » 1 is followed by the liquid phase of strongly cor
related solitons.

The presence of a large electrode near the chain does
not lead to qualitative changes in the weak screening
limit n, D & 1. However, in the strong screening case,
n, D (( 1, the above logarithmic behavior of the com-
pressibility is replaced by a power law, r (p —A )
A* being a renormalized gap. We also show that there
exists a vicinity of the transition point where quantum
Huctuations melt the Wigner lattice and recover the uni-
versal square-root singularity of K.

In Sec. III, we turn to the case of strong Coulomb in-
teraction, ((o/A)n » 1, afFecting the formation of the
topological excitations and magnitude of the gap in the
insulating phase. In this case, the charge excitations
may be called Coulomb solitons: they become heavier
(Ac » A) due to the strong electrostatic energy, and
extended ((~ && (o) due to the unscreened Coulomb re-
pulsion of charges "inside" the soliton. The behavior of
the Coulomb solitons in the conduction band at p ) Lt-
difFers from that described above. Namely, at low densi-
ties, n, (c « 1, the Coulomb solitons still condense into
a Wigner crystal and display the logarithmic threshold
singularity of the compressibility. However, at densities
n, (~ & 1, but still much lower than a&, the Wigner lat-
tice is transformed to a sine-Gord. on soliton lattice. The
compressibility saturates at values r (A~(~), char-
acteristic for a charge-density wave. In the Appendix, we
prove that the soliton system with strong Coulomb inter-
action can be treated quasiclassically at arbitrary values
of P, thus justifying the applicability of results obtained
in Sec. III, to the Hubbard model (P2 = 8vr).

II. WEAK LONG-RANGE COULOMB
INTERACTION IN THE METALLIC PHASE

Therefore, one can expect that in finite-size (mesoscopic)
samples the "holons" form a WC with true long-range

In this section, we consider the inhuence of a weak
(n « 1) long-range Coulomb forces on the properties of
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the metallic phase near the transition to the insulating
state. In what follows, we shall assume that the transi-
tion is of the Mott-Hubbard type, although our conclu-
sions remain valid for any one-dimensional charged sys-
tem near the commensurate-incommensurate transition.
For example, one can imagine a 1D system of spinless
interacting particles moving in a periodic potential and
consider the case when the period is close to the mean
interparticle distance (see, e.g. , Ref. 15).

Assuming that the transverse width of the chain A ))
(p we expect that weak Coulomb interaction does not
acct intrinsic characteristics of the solitons, but changes
the character of interaction between them at distances
~x~ )) A. Treating then the solitons as pointlike objects,
forming at low densities a Wigner lattice,

we shall take into account the long-range repulsive forces
by adding the Coulomb interaction energy (4) to the total
energy of the system.

Here, it is worth stressing that by doing this, one as-
sumes tacitly the violation of the charge neutrality of
the chain. Such a situation occurs usually in mesoscopic
semiconductor devices (quantum wires and dots), where
electrons and the positive background charge are spa-
tially separated [see, e.g. , review (Ref. 14)]. In what fol-
lows, we will assume this kind of experimental setup.

The noncompensated (in the range accessible for elec-
trons) charge may be associated, for instance, only with
electrons above commensurate filling (this very case is
considered below). However, from the general point of
view the commensurate (dielectric) sta'te can be assumed
charged as well. It should be noted that the total elec-
trostatic energy plays a diferent role in the two cases
considered. In the metallic phase, it is the energy that de-
termines the minimal energy charge distribution (which
is a perfect Wigner crystal at low densities). On the con-
trary, in the commensurate phase, charge distribution is
fixed by underlying lattice (or by periodic external po-
tential). Then, the total electrostatic energy enters the
free energy of finite-size charged dielectric system as a
nonvarying quantity and can be omitted when studying
the intrinsic properties (such as gap for the charged ex-
citations) of the commensurate phase. Nevertheless the
long-range forces between particles can lead to (finite)
gap renormalization. It is the case of strong Coulomb
interaction that will be studied in the next section.

We first recall the standard picture of the Mott-
Hubbard transition in an isolated chain in the absence
of long-range interactions. Near the transition point,
(p —b, )/4 « 1, the limit of low soliton density is re-
alized, n, (p « 1, and the properties of the system ap-
proach those of a free spinless Fermi gas. The ground
state energy (per unit length) is given by the expansion

7r2
Zp(n, ) = b,n, 1 + —(n.(p) + 0(n, (p) —pn„(7)6

leading immediately to the square-root singularities in
the equilibrium density of holons and compressibility
near the phase transition to the insulating phase: ' 0

mhc, gp —A

Let us now take into account the long-range Coulomb
interaction. Using Eqs. (3), (4), and (6), one estimates
the electrostatic energy of a finite-size WC of solitons as

E~o„i(n, ) e n, ln(n, L) .

Comparing this with the kinetic energy of the solitons,
given by the second term in the right-hand side of Eq. (7),
we find that the Coulomb efFects are dominant, if n, &&

a& ln(L/any). (The same criterium could have been ob-
tained by estimating quantum corrections to the energy
of the WC caused by zero-point fluctuations. ) At these
densities, instead of (7), for the total energy we get

Zwc ——(4 —p, )n, + e n, In(n, L). (10)

In the region n, a~ & ln (L/a~), where the condi-
tion L & L is satisfied, with the length I given by
Eq. (5), the soliton system forms a long-ranged ordered
WC. Thus, the transition to the insulating Mott phase
occurs from the ordered WC phase, the latter being char-
acterized by a logarithmic singularity of the compressibil-
ity,

p —4 1
2e2 in[L(p —4) /e2]

'

1 1
2e2 in[L(y, —A)/e2]

It is assumed in Eqs. (12) that the deviation p —A exceeds
the Coulomb energy e /L.

The results (12), reflecting the dominant role of the
Coulomb eKects, are valid for a much wider interval of
the densities, n, a~ (& In(L/a~), although at n, a&,
true crystalline long-range order is already lost, and
the soliton system occurs in a quasiordered, "Wigner-
liquid"-like state, in which the density-density correla-
tions fall out slower than any power law:is (p(x) p(0))
cos(2irn, a) exp[ —Cgn, a~in(n, ~x~)]. At higher densi-
ties, quantum efFects become dominant. If the Coulomb
interaction is so weak that the condition n In(L/a~) && 1
is satisfied, further increase of the density brings it erst
to the interval a& ln(L/a~) &( n, && (p, where the
thermodynamic properties of the soliton system are close
to those of a free Fermi gas of low density. In this re-
gion, the compressibility follows the square-root behav-
ior, Eqs. (8). On further increasing the density, the high
soliton-density limit is eventually reached, n, (p )) 1,
where the short-range interaction between the solitons
becomes significant. The system occurs in a strongly
incommensurate liquid phase. If, on the other hand,
nin(L/a~) & 1, the low-density regime of nearly free
quantum solitons cannot be realized.
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e n 1 1

g" + (2D/ )'

= e n ln(nD) + C —2) Kp(47rknD), (12)

where t is the Euler constant, and Kp(x) is the Macdon-
ald function.

In the weak screening limit, n, D )) 1, from (12) one
Ands

Ec „~ e n, ln(n, D). (13)

This expression differs from Eq. (9) only in the replace-
ment I ~ D. Therefore, as long as the soliton density
satis6es the condition n, ))D, all the above described
results concerning the sequence of crossovers between dif-
ferent regimes in an isolated chain, together with the cor-
responding changes in the behavior of the compressibility,
remain. valid in this case as well.

In the strong screening limit, n, D (( 1, the density
dependence of the Coulomb energy (12) is changed by

Now we consider a more interesting situation typical
for "mesoscopic" experiments, when a massive metallic
electrode (gate) is placed at the distance D (A « D « L)
from the chain. The electrode provides screening of the
Coulomb interaction, which becomes strong at n, D (( 1,
leading to recovery of the quantum behavior of the soliton
system near the transition.

The classical electrostatic energy of the lattice, with
the electrode screening eKect taken into account, equals

correlation length (p, indicating the possibility of strong
renormalization of the characteristics of single solitons
by Coulomb interaction. From physical considerations
one expects that, in this limit, solitons become heavier
and extended, i.e. , the effective correlation length (c, be-
ing the size of the "Coulomb" soliton, may substantially
exceed (p. We shall study this situation assuming that
A &(p.

A consistent solution of this problem suggests intro-
ducing the long-range Coulomb interaction at the level
of the Hubbard model (1) and calculating the result-
ing spectrum of the charge excitations in such a system.
However, for a half-filled system, repulsive Coulomb ef-
fects can only increase the charge gap. For this reason,
reduction of the problem to the sine-Gordon model still
remains reasonable. First, we shall study the efFect of
Coulomb forces on topological solitons of the quasiclas-
sical sine-Gordon model. Then, we shall present argu-
ments explaining the applicability of the obtained results
to the holon dynamics in the Hubbard model (see also
Appendix) .

We shall be interested in topological solitons of the
sine-Gordon model (2) extended to include long-range
Coulomb interaction (4):

H = HSG+ H~.

At p « 1 the model is quasiclassical, and the excitations
we are interested in can be found by using trial functions.
A trial function, describing a static topological soliton
&p—:p(x = +oo) —p(x = —oo) = 2vr/P, will be chosen
in the form corresponding to the sine-Gordon model:

e2
Zc „)- r4

~

—
~

+2((3)(eD)'n4.
4D&

(14)
/'x —xp i

pc (x) = —arctan exp
~ )

(17)

As a result, the logarithmic behavior of the compressibil-
ity, Eq. (12), is changed by a power law:

p— - 1/3

8((3)(eD)2

r. ' = 3(8((3))'~ (eD)'(p —A*) (15)

where A* = A —e2/4D. The last formula describes an
additive renormalization of the charge gap caused by the
image forces (see, e.g. , Ref. 17) which is small for a weak
Coulomb coupling.

The range of applicability of Eqs. (15) is easily esti-
mated as a~D 2 (( n (( a&., in this interval, quantum
corrections to (14) are small. However, at lower densities,
n, & a~D, the Wigner lattice is destroyed locally by
quantum fluctuations. Therefore, there is a region near
the threshold, p —4' & (e /D)(a~/D), where the uni-
versal square-root singularity of the susceptibility, char-
acterizing the quantum commensurate-incommensurate
transition, is recovered.

Here, xp is the center of the soliton, and d is a variational
parameter that determines the soliton size. Its value is
found by minimizing the soliton rest energy:

OO
C 2 &P

2

E(d*) = — dx —'(0 yc) + (1 —cosPPc)c, 2 P2

e'p'
d

~.Vc(x)~„Vc(v)+ dx dy
8vr2 Q(x —y)2 + p2

(18)

~/2

27l j ln — n )) dp, (19)
dp P
A 2vr2

Substituting (17) into (18) and doing the integrals, we
easily find that, for a weak coupling o. (( 1, the param-
eter d* coincides with the size of an unperturbed kink,
d* = dp ——c, /wp, E(d*) = E, = 8hcup/P . For strong
coupling, o. & 1, the unscreened Coulomb interaction
leads to multiplicative renormalizations of the size and
energy of the soliton:

III. STRONG COULOMB INTERACTION &c =
27l

)) Zp. (20)
dp P

27r2

For strong Coulomb coupling, n & 1, the character-
istic (Bohr) radius a~ turns out to be shorter than the

Let us show that expression (20) can be obtained
within a consistent scheme, using solutions of the
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2

(u (k) = (up+ k c, 1+ n Kp(kA)
27r2

(21)

sine-Gordon equations. For a linearized problem, the
Coulomb interaction can be taken into account exactly,
leading to a modification of the spectrum of small per-
turbations ("optical phonons") of the field p (see, e.g. ,
Ref. 13),

show that, in the presence of long-range Coulomb forces,
the small parameter controlling the onset of quasiclassi-
cal regime, is in fact P/~o. , and not P itself, as is the
case for the "pure" SG model. This enables one to con-
clude that, in the strong-coupling case e /hc, )) 1, the
long-range Coulomb interaction leads to a multiplicative
renormalization of the Mott-Hubbard gap,

Since at z & 1 Ko(z) is exponentially small, the Coulomb
interaction mostly aKects the long-wavelength dynamics,
where the spectrum (21) takes the form

ln ~

hc, (A hc, )
(26)

with

~'(k) = (up + k'c,'(k), (22)

(23)

The appearance of fractional powers of a large logarithm
is typical for various quantum problems that explicitly
incorporate long-range Coulomb forces.

Now we consider Coulomb solitons in the conduction
band at p ) Ac. At low densities n(c « 1, where

Expression (22), difFers from the "phonon" spectrum
of the unperturbed sine-Gordon equation in that the con-
stant velocity c, has been replaced by a momentum de-
pendent efFective "velocity" (23). Analyzing the struc-
ture of the last term in Eq. (18), one concludes that,
when studying the inHuence of weakly screened (A « d, )
Coulomb interaction on the topological soliton of the
sine-Gordon model, it is sufhcient to change the exact
Hamiltonian, Eqs. (16), (2), and (4), by an approxi-
mate one in which the efFects of Coulomb interaction are
incorporated in a coordinate dependent velocity,

Iz —*olc, mc (x —xp) =c, ln' 27r2
(24)

In Eq. (24), it is assumed that ~z —zp~ )) A. For this
reason, it is possible to neglect in all calculations terms
containing derivatives of the "velocity, " ~c'(z)/c(z)

~
&& l.

In the framework of such an "adiabatic" perturbation
theory, the topological soliton has the standard form:

4 (z —xpi
pc(z) = +—arctan exp

~ d x )
(25)

where the soliton size, do, is replaced by a coordinate
dependent, smooth function d(z) = c(z)/urp. One can
easily check that the energy of the Coulomb soliton (25)
exactly coincides with Eq. (20).

Using the solution (25), the standard scheme of quasi-
classical quantization can be easily developed (see, e.g. ,
Ref. 18). It can be shown that the one-loop quantum
correction to the classical energy of the Coulomb soliton
has the same form as in the usual sine-Gordon model,
b,E, = —Rup/~. Within the traditional scheme of qua-
siclassical quantization of solitons of the SG model, the
relative smallness of quantum corrections is provided by
the small value of the coupling constant P « 1. In our
case, the solitons can be treated classically already, due
to the large Coulomb energy. Therefore, it seems nat-
ural to expect that formula (20) remains valid for arbi-
trary values of P, including the "extreme quantum case"
P 8m (from the point of view of the usual SG model).
This conjecture is confirmed in the Appendix where we

(c —(o(x ~ ln'
I

~n
~(A

Here, om(z) is the elliptic amplitude, and k(n) is the
elliptic modulus fixed by the soliton density,

2k%(k) = (n, d*) (29)

where K(k) is the complete elliptic integral of the I order,
and d* is defined in Eq. (19). The energy density of the
soliton lattice equals (see also Ref. 20)

E„( ) = E —' (E(k) —
—,'(1 —k')~(k)&

k
(30)

[E(k) is the complete elliptic integral of the II order].
Strictly speaking, expressions (28)—(30) are valid quan-

titatively in the high-density limit n, d* )) 1 (k —+
0), where the lattice of strongly overlapping solitons
smoothly transforms into a charge-density wave. The
energy is then given by

vr2
Ep(n) = —(A.d*)n.', (31)

and the compressibility of the system is no longer depen-
dent on the density: v ~ A d* = const.

is the characteristic size of the Coulomb soliton, the
charges in the conduction band can be considered as
pointlike. The unscreened, long-range Coulomb interac-
tion leads to the formation of a Wigner crystal, with the
energy density and compressibility still given by formu-
las (9) and (12), respectively. On increasing the density
n & (c « a&, the solitons start to overlap, thus grad-
ually diminishing the role of long-range forces. The WC
state crosses over to a classical SG lattice.

The energy density of such a classical lattice can be
readily estimated, using well-known periodic solutions of
the sine-Gordon model,
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IV. CONCI USIONS

In conclusion, we have shown that long-range Coulomb
forces drastically modify the properties of 1D electron
systems in the vicinity of the metal-insulator phase tran-
sition. In the metallic phase, the long-range Coulomb
interaction leads to the formation of a Wigner crystal
of charged quasiparticles and, therefore, changes quali-
tatively the critical behavior of the system at the tran-
sition point. The properties of the insulating phase are
also changed, if the Coulomb interaction is strong. In
this case, the Mott-Hubbard gap is strongly renormal-
ized, and the charged excitations in the Mott phase can
be described as quasiclassical Coulomb solitons.

ics, the action enters the path integral as exp(iS/h), one
immediately observes that the SG coupling constant P
leads to an effective renormalization of h: ti ~ hP2. The
quasiclassical limit, therefore, corresponds to the region
of small P (P &( Sar) the well-known fact in the theory
of quantum SG model.

(2) Case no= 0. This model describes Coulomb ef-
fects in a Luttinger liquid, or equivalently, small quan-
tum Quctuations in a 1D Wigner crystal. Notice that-in
this case P has lost its SG meaning; it simply redefines
the Coulomb coupling constant. Since at wp ——0 both
terms of the action are bilinear in P, rescaling of the field
would be of no use. Therefore, we are left with possible
(temporal and/or space) coordinate transformations:
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AP PENDIX.

Then the action transforms to1, (Ai), (AplS = — d'x
i

—
i

(Bpp)' —
i i

(Dip)'
2 (Ao) qA, )

, (Aol
&Ai)

t9 pB p
X] X/1

(We see that there is actually one rescaling parameter,
the ratio Ao/Ai. So in this case, it was sufficient to rescale
either space or time. )

Let us choose

Let us rewrite our inodel, given by Eqs. (2) and (4),
in the Langrangian formalism. Being interested in dis-
tances along the chain, much larger than its transverse
dimension A, we introduce the "Minkowsky" action in 1
+ 1 dimensions:

Then

Ag = i/nGp.
Ap

(A5)

(dd'x (B„p)' +—, ', cos Pp)

S = i/nGP — d x (Bop) — (Big)
2 ncP2

2 , B~ (p tel p
nGP dxo —dxi dxi

X] X]&
+ dxp dory

|9](p l9yi (p
&1'

X$ X]r
(A6)

where x~ = (c,t, x), (p = 0, 1), cr„= 0/Ox~, and nG is
the dimensionless Coulomb coupling constant that difFers
from that introduced in the Introduction by a numerical
coeKcient. It will be proven in this appendix that strong
Coulomb interaction (nG )) 1) brings the model (Al)
to a quasiclassical regime at arbitrary P. We shall first
consider two simple cases.

(1) Case nc= 0. This case corresponds to the "pure"
SG model. Following Ref. 21, we rescale the G.eld,

(A2)

This representation has a very simple meaning. The
overall prefactor is proportional to i/nG. Therefore, large
o.~ have a tendency to drive the system to a quasiclassical
regime. At the same time, we observe that the local gra-
dient term (8 p)2 becomes of minor importance com-
pared to the Coulomb one. This means that the spectrum
of renormalized plasmons is entirely determined by the
long-range Coulomb efFects. In our paper, this is clearly
seen in formula (21) (without w02 term), where one is al-
lowed to drop 1 in the square brackets to obtain (22) (also
without wo term). The spectrum is simply given byis

to obtain u) (k) - nGP2k2in(l/ski). (A7)

1
SSG

Mp
d x |9~ + cos

8
(A3)

Since in the Feynmann formulation of quantum mechan-

(8) General case: nG, ceo g 0. We now turn to the ac-
tion (Al) and rescale the field and coordinates according
to (A2) and (A4), respectively. We obtain
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1 2 1 (Ai&—
I

—
I

(~p&)'
p

1 KAp) Mo——
I

—
I
(0 P) +A A —cosP

2 (Ai) C

l'Ap l cii4 A 4—crc
I

—
I

dip dxi dxi
&Ai) X] Xg~

First, we define the ration Ai/Ap, requiring that

1 (Aib (Ap)—,
I

—
I
=crc

I

—I.P' EA. ) &A )

(AS)

(A9)

S = ~ d2x —(Op/)
P f

2 , (~i&)'

~o+ cos P — dip dhi dmin
C X$ X/1

(A10)

Then, we set Ap ——I/P2 and arrive at the following ex-
pression for the action:

As expected, formula (A10) explicitely shows that the
quasiclassical regime is controlled not by P, but by the ra-
tio gal /P. This means that we are able to approach the
quasiclassical limit either in the standard, "sine-Gordon"
way, i.e., by decreasing P, or in the "Coulomb" way,
by increasing n~. This is a direct confirmation of our
guess (see Sec. III) that the soliton system with strong
long-range Coulomb interaction behaves quasiclassically
at arbitrary values of P. Second, the topological, cosine
term has a standard amplitude, so that there is no spe-
cial reason to neglect it even in the presence of strong
Coulomb interaction. Its role becomes less important
in the limit of large total topological charge, i.e., high
soliton-density limit; but this is the standard situation
even for the "pure" SG model. And finally, the charge-
density space correlations, including those between the
solitons, as well as those responsible for the transforma-
tion of SG individual solitons into Coulomb ones, are
mostly controlled by the Coulomb, triple-integral term,
provided that cr~P )) l.
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