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Exchange and correlation in the quasi-one-dimensional electron gas: The local-field correction
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The local-field correction for the quasi-one-dimensional electron gas in cylindrical quantum wires with
wire radius Ro is calculated within the sum-rule approach of the self-consistent theory of Singwi, Tosi,
Land, and Sjolander. The local-Geld correction is expressed by a generalized Hubbard form with two
coefficients, which are determined self-consistently. Numerical results for the exchange energy and the
correlation energy are presented for 0( r, & 20, where r, is the random-phase-approximation parameter.
We find that the exchange energy in the low-density regime is strongly enhanced compared to two and
three dimensions: c„(r,~ 00 ) ~ —ln(r, )/r, . For high density we find c„(r,~O) ~ —a /Ro, where a*
is the Bohr radius. For the correlation energy we get c„,(r, ~O) ~ —r, /Ro. The local-field correction
strongly reduces the correlation energy for small carrier density if compared with the random-phase ap-
proximation. We study the pair-correlation function, the plasmon dispersion, and the compressibility,
and we describe the effects of exchange and correlation on these quantities. The parameter for weak
coupling in wire systems is described by R, =4r, a */mR0 & 1 and strong coupling corresponds to R, ) 1.

I. INTRODUCTION

The random-phase approximation (RPA) is a very
efficient theory to describe the dielectric properties of the
interacting electron gas in the high-density limit.
Plasmons and electron-hole excitations are described by
the RPA. The local-field correction (LFC) takes into ac-
count corrections to the RPA due to the effects of ex-
change and correlation and becomes important at low
carrier density. A self-consistent approach for the LFC
and the static-structure factor (SSF) was proposed by
Singwi, Tosi, Land, and Sjolander (STLS) (Ref. 3) and
was used to calculate the LFC for the three-dimensional,
the two-dimensional" and the one-dimensional electron
gas. ' For a review on the STLS approach, see Ref. 7.

The LFC determines the dielectric function, the
plasmon dispersion, the ground-state energy, the
compressibility, and the chemical potential of the in-
teracting electron gas. Monte Carlo computations have
been used to study many-body effects in the three-
dimensional and in the two-dimensional electron gas.
The ground-state energies have been calculated with high
precision. Good agreement has been found for the
ground-state energy calculated within the STLS approach
and Monte Carlo calculations for r, &20. r, is the RPA
parameter. For one-dimensional electron gases, such cal-
culations have been performed only recently for an oscil-
lator confinement, however, in an external periodic poten-
tial. "

A sum-rule version of the STLS approach was recently
used to calculate the LFC of a Bose condensate" and an
electron gas' at temperature zero in two and three di-
mensions. In this approach, the LFC is described by an
analytical form with two coefficients (two-sum-rule ap-
proach), which are calculated using the STLS approach
for wave numbers q~0 and ~. The analytical form of
the LFC represents a generalization of the Hubbard

form' of the LFC and takes into account exchange and
correlation. In Hubbard's original expression for a
three-dimensional electron gas, only exchange effects are
taken into account. When the two coe%cients of the
sum-rule approach are known, the LFC is given in an
analytical form and can be used in more complex calcula-
tions, for instance, the calculation of the plasmon disper-
sion. In this paper, we describe the LFC for the quasi-
one-dimensional electron gas within the sum-rule ap-
proach. The Hubbard form of the LFC for wire systems
was proposed originally in Ref. 14, where cylindrical
wires have been studied and an analytical result for the
electron-electron interaction potential has been derived.

It was recently demonstrated in experiments' ' that
the collective modes in semiconductor quantum wires can
be described by the RPA. In these experiments, the elec-
tron density was su%ciently large in order to neglect the
effects of a finite LFC. With experiments as performed in
Refs. 15 and 16, but at lower density, one could study the
LFC as calculated in this paper. On the other hand, we
think that a study of many-body effects via the LFC is an
important issue by itself in order to understand better
many-body effects in systems with reduced dimension.

The exchange energy in wire systems depends on the
wire radius and was calculated already in Ref. 17. It is a
characteristic property of quasi-one-dimensional systems
that a geometric parameter (the wire radius Ro) enters
the interaction effects and the exchange energy and the
correlation energy depend on the RPA parameter and the
confinement parameter Ro. e,„(r„RO) and e«„(r„RO).
In this paper, we present numerical and analytical results
for the correlation energy and the exchange energy.

The paper is organized as follows. The model and the
theory are described in Sec. II. In Sec. III, we present the
results for the local-field correction and the pair-
correlation function. Numerical and analytical results
for the ground-state energy are given in Sec. IV. We ap-
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ply the theory in Sec. V and calculate the plasmon disper-
sion, the compressibility, and the chemical potential. In
Sec. VI, we discuss our results and we conclude in Sec.
VII. Some additional results are given in the Appendix:
the Hartree energy in cylindrical wires and simplified
confinement models are briefly discussed.

II. MODEL AND THEORY

A. Model

We consider cylindrical quantum wires' with the wire
axis in the z direction. With radius Rp the confining po-
tential U, in the xy plane is given by U, (r & Ro) =0 and
U, (r & Ro) —+ oo. The electron gas in the wire is charac-
terized by the one-dimensional carrier density N. The
RPA parameter for one-dimensional systems is described
as r, = 1/2Na *. a ' =EL /m *e is the effective Bohr ra-
dius defined with the effective electron mass m*, the
background dielectric constant cI, and the electron
charge e. For Planck's constant, we use h =2m. The en-
ergy is expressed in units of the effective Rydberg Ry*
given by Ry =m*e /2EI . For GaAs with
m*=0.067m, and cL =13, the relevant parameters are

0a*=100 A and Ry =5.4 meV. m, is the electron mass
in vacuum. The electron density 1V defines the Fermi
wave number k~ via N=2g„kF/n g„ is .the valley de-
generacy and in this paper, we use g, =1. In the follow-
ing, we measure wave numbers q in units of 1/Ro as
x =qR p. An important inverse length scale in the
Fourier space is the wave number qo=2/r, ' a*. In fact,
qp is the screening scale in the Bose condensate, where
only correlation effects are present. " The Fermi energy
E~ is given by ez/Ry'=(m/4g, r, ) an. d the Fermi wave
number by kFa'=m/4g„r,

The Coulomb interaction potential V(q) in the Fourier
space is expressed as'

One can show that Gs~is(q —&0) ~ 1/V(q~0) and
Gs~Ls(q ~ oo ) ~ const —0 (1/q ). Note, that Gsr„s(q)
~ 1/N ~ r, . The Hartree-Fock approximation (HFA) is
obtained by replacing S (k) in (2) by So(k), the SSF of the
free electron gas, which means that only exchange effects
are taken into account and correlation effects are neglect-
ed.

We suggest the generalized approximating (GA) ex-
pression for the LFC in one dimension as

a*

f [[q'Ro+qPo/C, i(r„.Ro)']'"]
f (qRo)

(3)

For the two- and three-dimensional electron gas, it is
known that within the Hubbard approximation' the
LFC has the form

G( ) ~ V([ 2+k2)1/2)/V( )
d —1/( 2+k2)(d —1)/2

The expression for Go~(q) can be interpreted as a
Hubbard-type expression' for the LFC, where the values
for q —+0 and ~ are determined by the two parameters
C»(r„Ro) and C2, (r„Ro). Exchange and correlation
effects are taken into account within a self-consistent cal-
culation of C»(r„Ro) and C2, (r„Ro). The limiting
behaviors of the LFC are given by

Go~(q ~0)=r, a 'f (qoRo/Cii )/'irRo Calif (qRo ~0)
and

Go~(q ~~ )=r, a*/m. RoC2, .

self-consistent STLS approach must be solved numerical-
ly. In one dimension, one finds

G „(q)= f dk [1—S(k)] .STLS
q V(q)

(2)

with

144 1f (x)= x'
32 I3([x[)IC3([x[)+ —64

3x 3x x4

(la)

(lb)
2+ k 2 ]1/2R

2g, f (qRo)
(4)

Supposing that Go~(q ~ ao ) & 1, we conclude that
C2, & r, a*/~R . o

In the Hubbard (H) approximation only the exchange
effects are taken into account in an approximating way in
order to obtain an analytical expression for the LFC.
The following expression was used in Ref. 14:

I3(x) and K3(x) are Bessel functions. We mention that
f(x «1)=41n(2/x) and f(x »1)=14.4/x and the
interaction potential in quasi-one-dimensional systems
depends explicitly on the confinement parameter Rp: the
limit Rp =0 cannot be studied.

With (3), we conclude that

Cii, H(" Ro)=8g" (5a)

B. The local-field correction C2i H(r„Ro) =2g„r,a /Roar . (5b)

In the STLS approach for one-dimensional systems,
the LFC G(q) is given by a one-dimensional k integral
over the static-structure factor (SSF) S(k), which is
determined by the LFC. The coupled equations for the

Note, that C2, ~ increases with decreasing density and
decreasing wire radius. C» H does not depend on the
wire radius. Within the HFA, we get a slightly different
behavior for the coefficient C&i HFz', compare Eq. (5a)
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with Eq. (11).
Using the analytical expression for the LFC, we find

the following two equations to determine the two
coefficients C, ,(r„Ro ) within the two-sum-rule approach:

f(qoRo/Cil( r Ro))
C„(r„R,)

=2I dx [f(x)+x df (x)/dx][1 —S(x)] (6a)

and

00=2 dx [1—S(x)] .
C2, (r„Ro) o

We mention that x in Eq. (6) corresponds to qR o. Similar
equations have been derived before for the Bose conden-
sate" and the electron gas' in two and three dimensions.
In the following, we use C» =C» (r„Ro ) and
C2, =C2, (r„o).

For R0=a* and r, )3, the pair-correlation function
g(z =0), determined by C2„becomes slightly negative.
In these cases, we proceed as follows: we determine C21
by the condition Go~(q~ ~ )=1 and calculate C» by
the one-sum-rule approach via Eq. (6a).

C. The static-structure factor

find SG&(q —+0) ~ [q /ln(2/qRo)]' . For large wave
numbers, we get So~(q ~ ao ) =So(q )2kF ) = 1.

In the following, we solve the equation (6) for the
coefficients C» and C2„with Eq. (7) for the SSF. We de-
scribe three approximations: (i) the Hartree-Fock ap-
Proximation with SGA(q)=So(q) (Cll, HF& and C2l, HF&)
(ii) the MSA for the LFC with So~(q) =SMs~(q)
(C» Ms~ and C2, Ms~), and (iii) the generalized approxi-
mation with So~(q) (C» and C2, ). The equations (6), (7)
are much easier to solve than the full STLS equations.
Moreover and more important, with C» and C21, we get
an analytical expression for the LFC, which can be used
in more complex calculations. We calculated C11 and
C2l with a personal computer (Power Macintosh 8100).

III. RESULTS

A. The two-sum-rule approach

In the HFA, the coe%cients are given by

21,HFA

2kF~,=2I dx [f (x)+x df (x)/dx][1 —So(x)]

From the interacting Bose gas, "we know that the SSF
contains the LFC G (q). For the interacting electron gas,
the SSF must include exchange effects. ' In the follow-
ing, we use an analytical form of the SSF and we suggest-
ed the following generalized approximating (GA) expres-
sion

C21,HFA

2kFz,=2I dx [1—S (x)] .
0

(10a)

(10b)

So~(q) = 1

[1/So(q) + I/S~(q) ]' (7)

With Eq. (8), we find

Cll HF~( rs ~0)= 2gU (5rs ) [ 14.4 lii( 7TR o/2gU rsvp )

The term So(q) in (7) represents the particle-hole spec-
trum and the second term represents the plasmon excita-
tions. The SSF of the free-electron gas in one dimension
is given by

so( l ql & 2k+ ) = l ql /2kF

—9.7094]' /3m,

Cll HFA(rs ) gv P[ z ] s

C21,HFA 2g a ~RO~ '

(1 lb)

(12)

and

So(lql —2k )=1.
The SSF S (q) for plasmons is defined as"

1/2

(8b)

Numerical results for the coefficients C11 HFA and

C21HFA are given in Table I for R0=a* and different
values of r, . These numerical results are in agreement
with the analytical results as described by Eqs. (11), (12).
The factor —9.7094 in Eq. (1 la) is determined by

S~(q) = q
4mNV (q) [1—Go&(q) ]

(9)
lim dx x x —14.4 ln - = —9.7094 .P

P~co 0
(13)

The SSF, as given in Eq. (7), corresponds to a generalized
Feynman-Bijl form, where, however, one-particle excita-
tions and collective excitations are taken into account.

Our analytical expression for the SSF represents a very
powerful formulation of the relevant physics in many-
particle systems. For e =0, we get So~(q)=So(q) and
this approximation describes the SSF in the HFA. For
6(q)=0, we obtain with S (q)=[q /4mNV(q)]' the
mean spherical approximation (MSA) (Ref. 9) for the
SSF: So~(q)=SMs~(q). For small wave numbers, we

The detailed form of the confinement, which determines
the integral given in Eq. (13), appears in the second order
term of C„l HF~(rs~0), see Eq. (11a).

For R0=a', our results for the coefficients C» MsA,
C21 MsA, C», and C21 are given in Table I. We find that
C» and C21 increases strongly with increasing r, and the
r, dependence of C2, is stronger than of C». For
r, &0.4, our numerical results are very near to the results
in the HFA: C;1HFA=C, 1=C,1MsA. The difference be-
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TABLE I. Parameters for the local-field correction: C11,HFA(RO) C21,HFA(RO) C11,MSA(Rp),

C21 MsA(Rp), C11(RO), and C»(Rp) for Ro =a and for various values of r, .

0.01
0.04
0.1

0.4
0.6
0.8
1

2
3
4
6
8

10

C11,HFA(a

0.3774
0.6316
0.8695
1.4551
1.7261
1.9599
2.1690
3.0078
3.6626
4.2185
5 ~ 1553
5.9474
6.6463

C21,HFA (

0.006 37
0.025 46
0.063 66
0.2546
0.3820
0.5093
0.6366
1.2732
1.9099
2.5465
3.8197
5.0930
6.3662

C]1,MSA(Q )

0.3774
0.6314
0.8666
1.3104
1.3697
1.3597
1.3271
1.1694
1.0758
1.0146
0.9362
0.8857
0.8492

C21 MSA(a *)

0.006 37
0.025 45
0.063 31
0.2229
0.2921
0.3406
0.3770
0.4901
0.5643
0.6233
0.7181
0.7949
0.8608

C11(a*)

0.3774
0.6315
0.8676
1.3605
1.4899
1.5541
1.5902
1.7150
1.8887
2.1059
2.6048
3.1341
3.6663

C21(a )

0.006 37
0.025 45
0.063 39
0.2323
0.3189
0.3900
0.4516
0.7121
0.9666
1.2352
1.8096
2.4128
3.0301

tween C;»„A and C,.&
is due to correlation efFects. These

efFects are small for r, &(1, but they are large for r, ) 1.
In general, we find C2& HF& ) C2& ) C2& Ms&, which leads
for large wave Ilumbers to GMsp, (q) )Go/(q) )GHFp, (q).
It is clear from GMs&(q) )GoA(q) that the MSA overesti-
mates correlation efFects.

In Fig. 1, the LFC for r, =1 and Ro=a* is shown in
the HFA [GH„~(q)] and in the sum-rule approach
[Go~(q)]. The difFerence between Go~(q) and GH„~(q)
is due to correlations. The LFC calculated in the HFA of
the STLS approach [Eq. (2) with S(k) replaced by So(k)]
ls a 0 ll wll ~GSTLS, HFA(q)]. Note that GH„A(q) is in
good agreement with GsTis H„~(q). We mention that the
LFC is large for small wave numbers, due to the fact that
6 (q ~0) o= I/V(q) ~ 1/ln(2/qRO). In d dimensions the
behavior for small wave number is 6(q —+0) ~q ' for
d) 1.

With decreasing density the LFC increases as shown in

Fig. 2 for r, =1, 4, and 10 for Ro=a*. This increase
rejects the increasing importance of correlation efFects:
within the HFA, one finds GHF&(q ~~ ) = 1/2g, .

Our results for the SSF S (q) versus q are shown in Fig.
3 for r, = 1, 4, and 10 for R o

=a . With increasing r, the
SSF increases due to the decrease of k~ (electron-hole ex-
citations) and the increasing importance of the plasmon
dynamic (correlation). From Fig. 3, we conclude that
1 —S(q) decreases with increasing r, and, with Eq. (6b);
this implies that C2& increases with increasing r, . This is
confirmed by the numerical results given in Table I.

The coefficients C» and C2, depend on the
confinement described by Ro. In Table II, we present
representative results versus r, for Ro (a* (RO=0. 2a'
and 0.5a*) and in Table III for Ro) a* (R0=2a* and
4a * ). Our results given in Tables I—III can be used to es-
timate the coefficients for 0.1 (Ro/a" (5.

B. The pair-correlation function

The SSF determines the pair-correlation function g (z).
One gets

]0 1

0.8
10"

I

0.6
0.8

0.4

0.2

]0 1 )00

l
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0.&

0.2

0
10-3

I

10 ' IO
"

&0

qa

101

FICx. 1. Local-field correction G(q) versus wave number q
for RPA parameter r, =1 and wire radius Rp =a*. The solid
line represents the two-sum-rule approach. The dotted line
represents the HFA of the two-sum-rule approach and the
dashed line the HFA of the STLS approach.

FICx. 2. Local-field correction G(q) versus wave number q
for wire radius Rp =a and different values of the RPA param-
eter: r, =1, 4, and 10. The solid lines represent the two-sum-
rule approach. The dashed lines represent the one-sum-rule ap-
proach for r, =4 and 10.
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FIG. 3. Static-structure factor S(q) in the two-sum-rule ap-
proach versus wave number q for wire radius Rp=a and
diferent values of the RPA parameter: r, = 1, 4, and 10.

FIG. 4. Pair-correlation function g(z =0) versus RPA pa-
rameter r, for wire radius Rp =a *. The solid line represents the
two-sum-rule approach. The dashed and dotted lines represent
g(z =0) calculated, respectively, with the SSF SMsA(q) and
Sp(q).

g (z) = 1 —r, I dx cos(xz/R p )[1—S (x)],'
PRO 0

(14)

with x =qRp. With S(q) =S«(q), we derive the analyt-
ical result"

g«(0) = 1 r 0 /vrR pC2i(r, Rp)

In the MSA with S(q) =SMs~(q), we get

g,„(0)=1—r, a */~R, C„,„(r„R,)

(15a)

(15b)

and in HFA with S(q)=Sp(q), one finds gH„A(0)= —,'.
g«(0) is given by Czi(r„Rp) and can be calculated with
the numerical results given in Tables I—III. Therefore,
we have not given the results for this quantity in a table.

The pair-correlation function g(0) versus r, is shown in.
Fig. 4 for Ro=a in different approximations. Within
the MSA for the SSF, we find a negative pair-correlation
function for r, & 1.3. This result corresponds to the large
negative values found for g(0) within the RPA for three-
dimensional systems the MSA and the RPA for the
SSF strongly overestimate correlation effects. In the gen-
eralized approximation, g«(0) approaches smoothly a

very small negative value for large r, .
g«(0) versus r, is shown in Fig. 5 for Rp=0. 2a*,

0.5a *, a *, 2a *, and 4a '. With decreasing wire radius,
the Coulomb interaction efFects increase and one expects
that the correlation efFects increase, too. With decreasing
R p the pair-correlation function decreases, due to the in-
creasing importance of correlation efFects. Most impor-
tant is the fact that even for large r, the pair-correlation
function is only slightly negative [g«(0) ) —0.056 for

p
=a *], see Fig. 5. For small r„we find

g«(0)=gHF~(0)=0. 5. From general arguments, it is
clear that g(0) must be positive. The negative value for
the pair-correlation function for large r, is a known de-
fect of the STI.S approach. However, in the two-sum-
rule version of the STLS approach, g«(0) is only slightly
negative and the negative value is very small even for
very large r„see Fig. 5.

The pair-correlation function g (z) versus z is shown in
Fig. 6 for r, =2 and Ro=a*. The dotted line represents
the HFA with S (q) =Sp(q) and is given by

TABLE II. Parameters for the local-field correction:
C»(Rp) and C2&(Rp) for Rp=a /5 and a*/2 and for various
values of r, .

TABLE III. Parameters for the local-field correction:
C»(Rp) and C2&(Rp) for Rp =2a* and 4a* and for various
values of r, .

C» (a */5) C, (a /5) C» (a */2) C, (a */2} C» (2a *) C2) (2a *) C» {4a*) C2& (4a *)

0.01
0.1

0.4
0.6
0.8
1

2
3
4
6
8

10

0.3056
0.6962
1.0059
1.0658
1.1165
1.1687
1.4687
1.7971
2.1289
2.7778
3.3992
3.9962

0.0318
0.3075
0.9615
1.2789
1.5690
1.8495
3.2570
4.7220
6.2279
9.3033

12.420
15.557

0.3473
0.7815
1.1986
1.2801
1.3236
1.3581
1.5579
1.8143
2.0971
2.6846
3.2685
3.8383

0.0127
0.1259
0.4305
0.5759
0.6992
0.8119
1.3434
1.8941
2.4711
3.6727
4.9059
6.1537

0.01
0.1

0.4
0.6
0.8
1

2
3
4
6
8

10

0.4059
0.9656
1.5318
1.7163
1.8276
1 ~ 8934
2.0021
2.0879
2.2165
2.5702
2.9982
3.4594

0.003 18
0.0318
0.1222
0.1739
0.2179
0.2554
0.3958
0.5146
0.6350
0.8955
1.1795
1.4779

0.4322
1.0660
1.7208
1.9516
2.1135
2.2276
2.4375
2.4779
2.5239
2.6994
2.9679
3.2999

0.001 59
0.0159
0.0627
0.0917
0.1183
0.1420
0.2288
0.2906
0.3465
0.4599
0.5837
0.7186
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I I I I I I ll
Q.J

TABLE IV. Parameter C»(r„Ro) for the local-6eld correc-
tion, calculated within the one-sum-rule approach, for various
values of r, and Ro, where GGA(q —+ ~ ) =1.

C3
(I

N

Q.3

Q.2

Q. l

0— I I i i I ill i

6
8

10

C»(a */5)

3.4336
4.4606
5.4810

C»(a*)

3.0229
3.838
4.6659

C»(4a*)

2.8065
3.2973
3 ~ 8155

I I & I IIII I I I I I»1
Q.l I IQ

FIG. 5. Pair-correlation function g(z =0) in the two-sum-
rule approach versus RPA parameter r, for wire radius
RO=4a*, 2a*, a*, a*/2, and a /5.

S1il ( kFz )

(kFz)'

where gHF~(0) = 1 —1/2g„and gHF~(z*) = 1 for
kFz*=nrr (z*/a*=4ng, r, ) and n is an integer. The
solid line in Fig. 6 represents the calculation with the
analytical SSF, including the local-field correction within
the sum-rule approximation. The approximations where
G(q)=GHF~(q) and G(q)=0 are used in SSF are also
shown in Fig. 6. Within these approximations g(0) is neg-
ative at this density.

Go~(q~oo)=l. The one-sum-rule coeflicient Cii has

been given in Table IV.
By comparing C& &, calculated within the two-sum-rule

approach (Tables I—III and r, large), with C», calculated
within the one-sum-rule approach (Table IV), we notice a
difference of about 30% for r, = 10. This difference is due

to the fact that Cii enters in the LFC via f (qoRO/C» ),
which is given by a logarithmic behavior for small

qoRo/Cii. On the other hand, Czi enters the LFC as a
prefactor: C2& calculated for large r, within the two-
sum-rule approach is very near to the value calculated
with C2, = r, a */n. R o within the one-sum-rule approach
by fixing GG~(q~oo)=l. We think that the two-sum-

rule approach gives better estimates for the correlation
energy (and the compressibility) than the one-sum-rule

approach.
In Fig. 2, we have shown the results for the LFC

within the one-sum-rule approach for r, =4 and 1O. Note
that the diff'erence between the one-sum-rule approach
and the two-sum-rule approach is very small.

C. The one-sum-rule approach

Within the two-sum-rule approach, the efFective poten-
tial V(q ~ oo ) t 1 —G (q —+ oo )] becomes slightly negative
for r, &3.3 and E,o=a*. In order to obtain the large q
characteristics of the system without - this incorrect
behavior, we can use the one-sum-rule approach for C»,
where Cz, =r, a*/mRo is fixed by the condition that

04

0.2

Q

0.2 /
04

Z/a

FIG. 6. Pair-correlation function g(z) versus distance z for
r, =2 and Ro =a*. The solid line represents the two-sum-rule
approach. The dotted, dashed, and dashed-dotted lines
represent the HFA. [Eq. (16}], and the approximations with
G (q) =0 and G(q) =G»&(q) used for the SSF, respectively.

IV. GROUND-STATE ENERGY

The ground-state energy co per particle can be ex-
pressed as

Eo(r, ) =Eio„(r, )+Ec(r, )+e;„,(r, ) . (17)

The kinetic energy per particle of a one-dimensional elec-
tron gas is given as

si,;„(r,)/Ry* = sF /3Ry* =rr'/48g 2r,' .

&c(r, ) represents the direct Coulomb (C) term's related
to the fact that the subband energies change, due to
band-bending eItects and many-body e6'ects, when the
subbands are populated with carriers. The charge densi-
ty, due to the dopant atoms, also shifts the subband ener-
gies: in low-dimensional systems, only global neutrality is
realized, while local neutrality is violated. The direct
Coulomb term depends largely on the distribution of
dopants' and is not the issue of this paper: we use in the
following ec(r, )=0. However, we give some estimates
for this term in the Appendix A by taking into account
the band-bending efI'ects in lowest order perturbation
theory.

The interaction energy per particle is written as'

E;„,(r, )/Ry'= — f dA f dx f(x)[1—S(x,A)],
2mB O o o

(19)
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with A, as the coupling constant and x =qR~. We note
that the SSF in (19) is a function of A, and in our theory
given by

I I I IIIlll I I I l IIII

Sz(q, k, ) =
2 1/2

q
4rnN V (q) [1—Go~(q, A, ) ]

So~(q, A, ) =
[1/So(q) +A, /S (q, A, ) ]'~

with

(20a)
CL

X

4)

A. Exchange energy

The exchange energy per particle is obtained by using
I/S~(x, A. ) =0 in Eq. (20a). Integrating over A, gives

f dx f (x)[l—So(x)] . (21)
2mRQ 0

E,„(r,)/Ry* =—

Using the self-energy, the exchange energy of quasi-one-
dimensional systems was already calculated in Ref. 17.
The exchange energy can be expressed as an integral over
the self-energy. In that case, a double integral has to be
performed. ' In our present formulation, one of the in-
tegrations corresponds to the calculation of the SSF in
the HFA. It was found' that the absolute value of the
exchange energy decreases with increasing r, and increas-
ing Ro and that in quasi-one-dimensional systems the ex-
change energy depends on r, and Ro and cannot be ex-
pressed by a simple analytical form. In three and two di-

Go~(q, A, ) is given by Eq. (3) with C»(r„Ro) and
C2t(r„Ro) replaced by C»(r„RO, A, ) and C2t(r„Ro, A, ),
the coeKcients obtained by substituting S(q) by S(q, A, )

in Eq. (6). We mention that C;, ( r„Rz, A, =0)
C'1,HFA(r Ro) and C;&(r„Ro A, = 1)=C;,(r„R&)

for i=1,2.

IP
—

I I I I l I l l I

O. l I

I I l~&i,~

IO

mensions the exchange energy can be expressed in an
analytical form: ' c,,„(r, ) ~ —Ry'/r, .

In Fig. 7, we show the exchange energy c,„versus r, for
different wire radii. With decreasing wire radius, the ab-
solute value of the exchange energy increases and the ab-
solute value of the exchange energy decreases with de-
creasing density. Some numerical results for the ex-
change energy are given in Table V for R0=0.2a*,
0.5a*, a*, 2a*, and 4a*.

With analytical expansions for f (x) (Ref. 14) one can
derive, with Eq. (21), analytical expressions for the ex-
change energy for large and small carrier density. We
find for small R„

"s

FIG. 7. Exchange energy per particle c,„versus RPA pararn-
eter r, for R0=0.2a*, 0.5a, a*, 2a, and 4a*. The dashed
and dotted lines represent the asymptotical results for
e,„(R,~O) [according to Eq. (22a)] and for e,„(R,~ 00 ) [ac-
cording to Eq. (221)], respectively, for Ro =0.2a *,a*, and 4a
The arrows indicate R, = 1, see Eq. (23).

TABLE V. Exchange energies per particle c,„(RO) (in units of the eC'ective Rydberg Ry*) for
Ro=a*/5, a*/2, a*,2a, and 4a* and for various values of r, .

rs

0.001
0.01
0.1

0.2
0.4
0.6
0.8
1

2
3

6
8

10
15
20
30
40

11.819
10.664
6.362
4.624
3.117
2.405
1.980
1.694
1.019
0.747
0.596
0.431
0.341
0.284
0.203
0.1595
0.1131
0.0884

—c,„(a*/2)

4.776
4.543
3.414
2.770
2.068
1.679
1.426
1.247
0.792
0.595
0.482
0.355
0.284
0.238
0.172
0.1365
0.0978
0.0769

—c,„(a )

2.397
2.330
1.958
1.707
1.385
1.179
1.034
0.925
0.623
0.481
0.396
0.297
0.241
0.204
0.149
0.1192
0.0862
0.0683

—c,„(2a*)

1.201
1.182
1.066
0.979
0.853
0.763
0.692
0.636
0.462
0.370
0.312
0.240
0.198
0.169
0.126
0.1019
0.0747
0.0596

—c,„(4a*)

0.601
0.596
0.561
0.533
0.490
0.455
0.427
0.402
0.318
0.267
0.231
0.185
0.156
0.135
0.103
0.0847
0.0632
0.0510
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a
e,„(R, ~0) /Ry' = — — 2.4082

0
—Q.i

and for large R„

+ R, [ln(R, /2) —1/2]18
5m

(22a)

—0.2

0
03

E,„(R,~ «)/Qy*

[ln(R, ) +C+ 3/2 —73/120
mR() R,

+ [ln(R, )+ 1949/1680

—C+7/12]/12R, ] . (22b)

-05
Q.i 10 20

The parameter R, is defined as

R, =4g, a*r, /~Ro (23)

and C=0.577 is Euler's constant. The leading term—1n(r, )/2g, r, in Eq. (22b) is in agreement with the result
given in Ref. 17 for g, = 1. We find that our analytical re-
sults in Eq. (22) have a quite large validity range and can
be used by experimenters. In fact, we find that
e,„(R,~0) is a very good approximation to our numeri-
cal results for R, (1 and s,„(R,~ «) is a good approxi-
mation for R, )0.8, see Fig. 7.

We mention that a universal scaling exists for the ex-
change energy,

s,„(R,)Ro/a *=F(R, ) (24)

and I' (R, ) is a function of R„but not of Ro and g, . A
similar scaling was already described in Ref. 17 for the
self-energy. Note, that in Table V the parameter R,
changes by a factor 10: R, =255 for r, =40 and
R0=0.2a* and R, =0.003 for r, =0.001 and R0=4a*.

B. Correlation energy

The correlation energy per particle is defined as
s„,(r, )=e;„,(r, )

—E,„(r,). With Eqs. (19), (21), we find

s„(r)/, R,y'

J dA, J dx f(x)[SO(x)—S(x,A, )] .
2m'R 0 0 0

(25)

In Fig. 8, we show the correlation energy c.„,versus r,
(0.1(r, (20) for different wire radii. With decreasing
wire radius, the absolute value of the correlation energy
increases, and we find a minimum at intermediate density
r,*. r,* increases with increasing Rp/a*. The general
behavior of the correlation energy versus r, (with a
minimum at r,') is similar to the correlation energy of
two-dimensional systems with a finite width as realized in
quantum wells. ' Note that the RPA-like MSA (the
dotted line in Fig. 8) overestimates the correlation ener-
gy. The dashed line in Fig. 8 was calculated with the
HFA for the LFC and is in very good agreement with the
sum-rule approach for R, & 1. Numerical results for the

FIG. 8. Correlation energy per particle c,„,versus RPA pa-
rameter r, for R0=0.2a*, 0.5a*, a*, 2a*, and 4a . The solid
lines represent the two-sum-rule approach. The dashed lines
represent the Hubbard-like results calculated with GHFA(q) in
the SSF. The dotted lines represent the RPA-like results calcu-
lated with SMsA(q).

with B„,given by

g 42

"'m4 R,' ' ' (26a)

8„,=I dx xf (x) =36.616 . (26b)

The factor B„, depends on the detailed form of the
confinement via f (x), see the Appendix B for a different
model of the confinement. Note that the correlation en-

correlation energy are given in Table VI for Rp =0.2a*,
0.5a ', a *, 2a, and R 0

=4a * and 0.1 & r, & 20. These re-
sults can be compared with Monte Carlo calculations
when available in the literature.

In two dimensions and three dimensions, it was found
that the correlation energy at low density behaves as
E«,(r, ~«, d =2)=E„,(r, ~ «, d =3) o- 1/r, . ' From
Fig. 8, we conclude that for quasi-one-dimensional sys-
tems, the correlation energy decreases for small density
(r, ) r,'), however, it appears that the confinement effects
are still very strong for r, ~20, see Table VII. Conse-
quently, we argue that for r, ~20, the correlation energy
is not only determined by r„but also by R p.

From Fig. 8, we conclude that in the high-density lim-
it, the correlation energy decreases to zero. It is well
known that in three dimensions, the correlation energy
behaves as e«, /Ry =0.06221n(r, )+O(ro) (Ref. 1) and
diverges for small r, . In two dimensions the correlation
energy becomes constant for large densities:
E„,/Ry*= —0.38+0(r lnr ). '

With Go~(q)=0 in Eq. (20), we obtain SMs~(q) and
the correlation energy within the RPA-like MSA. In the
high-density regime, the correlation energy within the
MSA can be calculated analytically and we find the
analytical result
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TABLE VI. Correlation energies per particle c„,(Rp) (in units of the efFective Rydberg Ry ) for
Rp =a /5, a /2, a, 2a*, and 4a* and for various values of r, .

0.1

0.2
0.4
0.6
0.8
1

2
3
4
6
8

10
12
14
16
20

—~, ,(a */s)

0.057 24
0.1499
0.3009
0.3908
0.4403
0.4658
0.4622
0.4129
0.3671
0.2984
0.2519
0.2187
0.1938
0.1744
0.1589
0.1354

—c„,(a /2)

0.011 80
0.037 32
0.098 09
0.1519
0.1932
0.2234
0.2800
0.2770
0.2605
0.2248
0.1959
0.1735
0.1559
0.1418
0.1302
0.1124

—c,„,(a *)

0.003 24
0.011 11
0.033 70
0.058 88
0.082 60
0.1033
0.1634
0.1813
0.1825
0.1696
0.1536
0.1393
0.1272
0.1171
0.1085
0.0949

—c, ,(2a )

0.000 85
0.003 05
0.O1OO7

0.01907
0.028 86
0.038 71
0.078 53
0.1006
0.1112
0.1156
0.1115
0.1051
0.098 45
0.092 28
0.086 73
0.077 37

—c„,(4a )

0.000 216
0.000 799
0.002 766
0.005 4SO
0.008 675
0.012 17
0.030 28
O.O45OS
0.055 55
0.066 94
0.070 85
0.071 07
0.069 55
0.067 27
0.064 72
0.059 64

ergy increases strongly with increasing valley degeneracy
E„,(R, « 1)~ g„. Equation (26) can be written as

E„,(R, « 1) ~ —g, R, , which supports our claim that the
relevant parameter for interaction effects is R, .

In Fig. 9, we show numerical results for the correlation
energy (divided by r, ) versus r, for 0.005 &r, &0.2 and
Ro=a*. For r, &0.01, the numerical results are well
fitted by Eq. (26), the dotted line in Fig. 9. For r, =0.01
the exact result is c„,= —0.372X10 Ry and the
analytical result according to Eq. (26) is
c„,= —0.376X 10 Ry*. The effect of a finite LFC in-
creases with decreasing density; compare in Fig. 9 the
solid line with the dashed line, which describes the MSA.
The difference between the correlation energies calculat-
ed with GHF~(q) and with Gz~(q) is negligible for small

r, (less than 2% for Ra=a' and r, &0.5, see Table I).
This difference becomes, however, important for large r„
see Fig. 8.

C. Comparison: d=1, 2, 3

In two-dimensional and three-dimensional systems the
exchange energy is given by E,„(r, ) 0- —1/r, . We
conclude that for the d-dimensional electron
gas, ~s,„(r„d=1)~ &&

~
e(r„d =2)~ &

~
E(r„d =3)~ for

r, ~ ~, while )c,,„(r„d= I)) &&( E(r„d =3))
&

~ E,„(r„d =2)
~

for r, ~0. This means that exchange
effects are very important in the low-density range
of the interacting one-dimensional electron gas:
E,„(r,~~,d =I)/c, „(r,~~,d =3) ~ln(r, ). For large
density, we get E,„(r,~O, d = I )/E, „(r,~O, d =3)
~a'r, /Ro and the exchange energy is strongly reduced
if compared with the three-dimensional electron gas.

In Fig. 10, we show the interaction energy in units of
the exchange energy versus r, for Ro=a*/5, a*/2, a
2a, and 4a*. Deviations of c;„,/c, „ from 1 indicate the
importance of correlation effects. We conclude from
Fig. 10 that correlation effects are stronger compared to
exchange effects for thinner wires and that E;„,/E, „ in-

TABLE VII. Inverse compressibility 1/v(Rp ) {in units of the
inverse compressibility of the free-electron gas 1/~p) for
Rp=a*/5, a*/2, a*, 2a*, and 4a and for various values of r, .

r Kp/K( a */5 ) Kp/K{ 8 */2 ) Kp/K( a *
) Kp/K(2Q

*
) Kp/K(4a *

)

0.5
1

1.5
2
3

4
5
6
7
8
9

10

0.5474
—0.2666
—1.3S1
—2.830
—6.612
—11.34
—16.69
—22.61
—28.87
—35.42
—42.38
—49.55

0.7804
0.2931

—0.3247
—1.110
—3.321
—6.385

—10.14
—14.44
—19.16
—24.24
—29.61
—35.22

0.9015
0.5968
0.2079

—0.2455
—1.476
—3.271
—5.689
—8.671

—12.11
—15.94
—20.13
—24.58

0.9661
0.8120
0.5751
0.2983

—0.3503
—1.214
—2.402
—3.966
—5.990
—8.391

—11.19
—14.31

0.9904
0.9325
0.8161
0.6555
0.2745

—0.1586
—0.6677
—1.296
—2.098
—3.116
—4.409
—5.965

creases with decreasing density. Similar results have
been found for three and two dimensions. ' For d=3
and 2, the ratio at r, = 10 was s;„,/e, „=1.403 and

E;„,/E, „=1.505, respectively. For one-dimensional sys-
tems with Ro =a *, we hand for r, = 10 the ratio
E;„,/E, „=1.74. From Fig. 10, we conclude that E;„,/c, ,„
tends to saturate for large r, and we anticipate that
E„,(r, ~~ ) ~ —ln(r, )/r, and E;„,(r, ~ oo )/E, „(r,~ oo )

becomes constant in the low-density region as found for
d=2 and 3. '

In order to show that the Coulomb interaction is very
important for quasi-one-dimensional systems, we show in
Fig. 11 the ratio c,;„,(r, )/Ek;„(r, ) versus r, for Ro=a'/5,
a /2, a*, 2a*, and 4a*. Note, that already for r, &0.5,
the interaction energy is larger than the kinetic energy.
A similar figure has been published recently for two-
dimensional systems and three-dimensional systems in or-
der to show that with increasing valley degeneracy
Coulomb effects increase.
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FIG. 9. Correlation energy c.„,/r, versus RPA parameter r,
for Ro =a * in the two-sum-rule approach as the solid line. The
dashed line represents the RPA-like results calculated using

SMsA(q). The dotted line corresponds to Eq. (26).

FIG. 10. Interaction energy c,;„, (in units of the exchange en-

ergy c,„) versus RPA parameter r, for RO=0. 2a*, 0.5a*, a*,
2a*, and 4a * calculated within the two-sum-rule approach.

V. APPLICATION
with

2 (q)=exp[2vrqa" l[g,f (qRo)[1 —G(q)]]] (27b)

In this section, we apply our results to calculate the
plasmon dispersion, the compressibility, and the chemical
potential in quasi-one-dimensional systems.

A. Plasmon dispersion

and B+(q)=~/2g„r, +qa*. (27) was originally derived
for a short-range potential with f (q)=const. B+(q)
describes the electron-hole (eh) spectrum via

~~(q)
R )fc

B+(q)'& (q) —B (q)'
A (q) —1

(27a)

The collective modes co (q) are determined by
1+V(q)[1 —G(q)]Xo(co (q), q)=0 with Xo(co, q) as the
Lindhard function of the free-electron gas in one dimen-
sion. The plasmon dispersion ~ (q) in one-dimensional
systems is given by an analytical formula, as described al-
ready before, and given by

ro~,„/Ry' =qa *lB+(q)
l

~ o (28)

The electron-hole spectrum co,h is characterized by
co,h~co,h~co+, h. For small wave numbers one finds

co+,h/Ry* =a.qa*/2g, r, ~ q. For large wave numbers,
the asymptotic law is given by co+,h/Ry* = (qa *

) .
For small wave numbers, a more transparent result for

the plasmon dispersion is given by

co (q)

Ry*
fG(q) n/g„r, +4r,.(qa ')

(29a)

with

~~(q)
,&

qa'CF(q),
Ry r,

m2
CF(q)= f(qRo)[1 —G(q)]+

4g, r,

1/2

fG(q) =f (qRO)[1 G(q))—
For small wave numbers, we can rewrite (29) as

(29b)

(30a)

(30b)

Note, that in Eq. (30b) the dominant term is f (qRo) and
a finite LFC reduces the plasmon energy. The recent
measurements of the plasmon dispersion were done for
doped semiconductor quantum wires with r, =0.58 and
Ho=2. 6a* and O.05 &qa* &0.15. ' ' Many-body effects
are not yet important in such structures, as discussed in
Ref. 24. However, the importance of the LFC for the
plasmon dispersion increases for decreasing wire radius
and decreasing density.

Numerical results for co&(q) versus wave number q in
diFerent approximations are shown in Fig. 12 for (i) r, =4
and Ro=a* and (ii) r, =10 and Ro=a*. Our results
confirm quantitatively that many-body effects reduce the
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FIG. 11. Interaction energy c;„, (in units of the kinetic energy
cz;„) versus RPA parameter r, for Ho=0. 2a*, 0.5a*, a*, 2a*,
and 4a * calculated within the two-sum-rule approach.

FIG. 13. Plasmon energy u~ (in units of the Fermi energy zz
of the free electron gas) versus wave number q for r, =1, 4, 10,
and 20 for Ho=a . The shaded area represents the particle-
hole spectrum.

plasmon energy. We note that for r, =4, many-body
effects reduce the plasrnon energy by about 30% for
0.05 &qa*&0.15. We claim that the many-body effects
can be measured by available techniques for quantum
wires with Rp &a' and r, & 1. For r, =10, we find that
many-body effects strongly reduce the plasmon energy
(100%) compared with the RPA calculation. The analyt-
ical result according to Eq. (30) is a very good approxi-
mation to the numerical result, see the dotted lines in Fig.
12.

In Fig. 13, we present numerical results for co~(q)
versus wave number q for R p

=a * and different values of
r, : r, =1, 4, 10, and 20. Note that the wave-number

range in Fig. 13 is much larger than in Fig. 12. The
plasmon energy is given in terms of the Fermi energy
Ez o- 1/r, of the free-electron gas. The regime of
electron-hole excitations is also shown as the shaded area.
With increasing r, the energy difference between the col-
lective modes and the one-particle excitations increases.
This effect might help to discriminate in experiments the
collective modes from the electron-hole excitations.

B. Compressibility

The compressibility K is given as

Sg, r, d (Ec+e;„,)=1+
m Ry* dr,

04
I I

Kp Kp Kp=1+ + +
KC Kex Kcor

(31)

0.2

Q.2— R =a"
0

with Kp=16g„r, a*/m Ry* as the compressibility of the
free-electron gas. In the following, we use c.c=0 and
Kp/Kc=0: some comments concerning Kc are given in
the Appendix A.

With our analytical results for E,„(r,), we can calculate
~o/~, „. For R, && 1, we find

Q.l

r =10 Kp

KHFA

9Rp
R

5+a*
(32)

and for R, »1, we get

0
0 0.05 Q.~ 0.~5 0.2 0.2S

Kp

KHFA

2Rp
R, [1n(R, )[1+1/2R, ]+C—73/120

KQ

+ [1949/1680—C]/2R, ] . (33)

FIG. 12. Plasmon energy co~ (in units of the effective Ryd-
berg) versus wave number q for (i) r, =4, R o

=a * and (ii) r, = 10,
HO=a* as solid lines according to Eq. (27). The dashed and
dashed-dotted lines represent 6 (q) =0 and G (q) =GHFA(q), re-

spectively. The dotted line represents the analytical result ac-
cording to Eq. (30). The shaded area represents the particle-
hole spectrum.

In the same way, Eq. (26) leads for R, « 1 to

Kp

Kcor

416g &

+cor 6 2 ~s
Rp

(34)

Kp/K versus r, is shown in Fig. 14 for Rp =a *, together
with results within the HFA. The fact that
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We conclude that X(kF) describes interaction efFects for
the chemical potential.

We can write X(kF ) =Xc(kF )+X,„(k~)+X„,(k~).
For the direct Coulomb term Xc(k~ ), see the Appendix
A. Numerical results for X(kF ) and X,„(k~) versus r, are
shown in Fig. 15 for R o

=a *: the nonmonotonous
behavior of the correlation energy versus r, gives rise to
X,„(kF)(X(kF) for large density and X,„(k~))X(kF) for
small density. Analytical results for the exchange contri-
bution are given as

-20 ——
0 7.5

a*
X,„(R,—&0)/Ry" =—

0
2.4082 — R,

18
5~

(37)

FIG. 14. Inverse compressibility 1/K (in units of the inverse

compressibility of the free-electron gas 1/vo) versus RPA pa-
rameter r, for 80=a*. The solid line represents the two-sum-

rule approach. The dashed line represents the HFA. The dot-

ted lines represent the analytical results for r, «1 and r, &) 1,
according to Eq. (32) and Eq. (33), respectively. In the inset, we

show the correlation contribution to the inverse compressibility

~o/~„, at large density and the Gashed-dotted line represents

Eq. (34). The direct Coulomb term is neglected.

~o/~H„~) ~o/~ for r, (0.5 (see the inset) and for r, )7 is
due to the nonmonotonous behavior of the correlation
energy versus r„see Fig. 8. For small density, we find
that vo/~ (0. In the literature, a negative xo/Ir for large
r, has been interpreted as an instability. ' However, ex-
perimentally there are no indications of such an instabili-
ty: the positive background charge for global neutrality

abil~zes thesystem. For Ro =a*, we 6nd numerically
that ~0/~=0 for r, =—1.75, while ~o/IrH„A=O for r, =1.45.
A negative compressibility in a two-dimensional electron
system has been recently found in experiments in the
low-density regime. It has been shown that the Hartree
term and the 6nite extension effects strongly modify
the compressibility. We note that our results for the
compressibility in two dimensions' were in very good
agreement with Monte Carlo calculations. Numerical
results for the compressibility are given in Table VII for
R o

=0.2a, 0.5a *, a *, 2a *, and 4a *.

X„(R,~ ca )/Ry*

[ln(R, )[1+1/6R, ]+C+ 1 —73/120
~R oR,

+ I 1949/1680 —C+ 1/3]/6R, ] .

(38)

Numerical results for the chemical potential p versus

r, are shown in Fig. 16 for Ro =a*. The chemical poten-
tial is strongly renormalized by many-body efFects when
the carrier density becomes small. Within the HFA, we

get the analytical results

Ro 18 Ro
pHF~(R, ~0)/EF =1—2.4082 R, + R,a* 5~ a*

(40)

—0.3 I I I I IT+

.P

We note that X,„(R,)Ro/a * is only a function of R, . For
the contribution of the correlation, we obtain

g3a 42

X„,(r, «1)/Ry' =8...
m R

C. Chemical potential

X(k~)=Ec+c;„, r, B(Ec+e,;„,)—/Br, . (36)

The chemical potential LM at zero temperature is given
in terms of the ground-state energy (theorem of Seitz) as
p=3Ek;„+B(XE;„,)/BX. The factor with the kinetic ener-

gy corresponds to c~=k~/2m'=3m. k;„with the Fermi
energy c~ of the noninteracting electron gas. Seitz's
theorem implies that

p, =8~+X(k~),

I I I I I I II I

.] l

I I I I I I]li
]0

FIG. 15. X(kF ) versus RPA parameter r, for Ro =a * accord-
ing to Eq. (36). The arrow indicates X(kF) =X„(kF)For r, =0,
see Eq. (37). The solid line represents the two-sum-rule ap-
proach. The dashed line represents the HFA. The dotted lines
represent the analytical results for r, «1 and r, &) 1 according
to Eq. (37) and Eq. (38), respectively.



52 EXCHANCrE AND CORRELATION IN THE QUASI-ONE-. . . 10 853

t

Q

4)

-iQ—

—l5—

-20
0
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FIG. 16. Chemical potential p (in units of the Fermi energy
of the free electron gas c,F ) versus r, for Ro =a *. The solid line
represents the two-sum-rule approach. The dashed line
represents the HFA. The dotted lines represent the analytical
results for r, «1 and r, »1 according to Eq. (40) and Eq. (41),
respectively.

PHFA(Rs ) /EF

4Ro=1— R, [ln(R, )[1+1/6R, ]+C+1—73/120~a'
+ [1949/1680—C+ 1/3]/6R, ) .

(41)

These analytical results for the exchange contribution to
the chemical potential can be used by experimenters to
estimate the importance of many-body effects in a given
structure with known r, and Ro. Note that for Ro =a ',
we obtain p/Ez =0 for r, =0.6.

VI. DISCUSSION

A. Comparison with other work

In this paper, we used a sum-rule version of the STLS
approach to calculate the LFC of the quasi-one-
dimensional electron gas. A cylindrical symmetry has
been used for the confinement. It is well known that the
STLS approach is not exact, because the pair-correlation
function g(z=0) is negative for large values of r, We.
found in the two-sum-rule version of the STLS approach
a slightly negative value of g (z =0), even for very large
r, . In Ref. 28, we studied this sum-rule approximation of
the STLS approach for the quasi-one-dimensional elec-
tron gas, where the Coulomb interaction potential is
given by V(q)=2e Ko(qb)/sl and with b as the exten-
sion parameter. Some analytical results for this model
are given in the Appendix B.

Earlier numerical results for the STLS approach con-
cern one-dimensional systems with an oscillator
confinement. In Ref. 5, the LFC and the plasmon
dispersion have been calculated and given in numerical
form: the general trend for the LFC in this model is in
agreement with the results presented in this paper and we

Xo(q)
X(q) =

1+ V(q)[1 —G(q)]XO(q)

The dielectric function e(q) is expressed as

(42)

1/E(q)=1 —V(q)X(q) . (43)

have checked that the LFC given in Ref. 5 is in agree-
ment with our generalized approximating expression for
large and small wave numbers. Our detailed results for
the oscillator confinement will be presented elsewhere.
A square-well confinement was studied in Refs. 6 and 30
within the STLS approach for r, =1.5: the results ob-
tained for the plasm on dispersion and the pair-
correlation functions are in qualitative agreement with
our results. Our intention was to supply an analytical ex-
pression for the LFC and we suggest checking some of
our results by more accurate calculations as, for instance,
Monte Carlo calculations.

The calculation of the correlation energy in interacting
systems is a topic of considerable interest (for a recent re-
view, see Ref. 31). In this paper, we calculated the corre-
lation energy in quasi-one-dimensional systems. The cal-
culations of the exchange energy, using the self-
energy, ' ' are in agreement with our results. In two
and three dimensions, we found' that the sum-rule ap-
proach is in good agreement with quasiexact results from
Monte Carlo calculations. However, Monte Carlo calcu-
lations have not yet been published for quasi-one-
dimensional systems. A Monte Carlo calculation would
be extremely useful in order to test the validity range of
our approach. Due to the small negative pair-correlation
function at large r„we expect that our approach is quan-
titatively correct for r, &10.' For r, ) 10, we expect at
least a qualitative correct result.

Many-body effects using the self-energy have been cal-
culated in Ref. 33. However, within this approach, no in-
formation about the dielectric function is available and
the ground-state energy was not discussed. At this point
it should be noted that even Monte Carlo calculations for
the ground-state energy do not immediately supply infor-
mation on the dielectric function. Only recently some
progress in this direction was reported for the three-
dimensional electron gas.

It is known ' that the STLS approach gives a correct
description of the ground-state energy of the three-
dimensional and two-dimensional electron gas" for
r, & 15. %'e expect for quasi-one-dimensional systems re-
liable numerical results concerning the correlation ener-

gy, the chemical potential and the compressibility. We
note, however, that the local-field correction, when calcu-
lated using the STLS approximation, does not fulfill the
compressibility sum rule: G(q) is overestimated for
q —+0 and for long wavelengths and we expect that our
results for the dielectric function and the plasmon disper-
sion are only qualitatively correct. The Vashishta-Singwi
approach offers the possibility of fulfilling the compres-
sibility sum rule using a modified STLS approach.

The LFC determines the susceptibility X(q), given in
terms of the Lindhard function Xo(q) of the free-electron
gas, by
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FIG. 17. Inverse dielectric function 1/c(q) versus wave num-

ber q for r, =0.5, 1, 4, and 10 and for Ro =a* according to Eq.
(43).

Equation (43) represents the fundamental relation be-
tween E(q) and X(q). ' The inverse dielectric function
I/E(q) is represented in Fig. 17 for r, =0.5, 1, 4, 10, and
for Ro =a*. Note that 1/E(q) has a singular behavior for

q =2kF, due to the logarithmic divergence of Xo(q):
1/E(2kF)= —6(2kF)/[1 —6(2k~)j. We see that the in-

verse dielectric function goes to zero for a small wave
number and that 1/E(q) is negative for small q and low
density, due to the finite LFC. Such a behavior has been
found in three-dimensional systems within a Monte Carlo
calculation. Within the RPA with 6(q)=0, one finds
0 & 1/E(q) & 1.

It was shown before that the mobility at zero tempera-
ture is determined by the susceptibility X(q) of the in-
teracting electron gas. Our analytical results for the
LFC have been used for the calculation of the mobility
and of the screened potential in the real space, which is
determined by the dielectric function. It was shown that
Friedel oscillations are strongly enhanced by the LFC in
the low-density range. We hope that our analytical
form for the LFC can be used in more complex calcula-
tions as an input function.

B. Model, experiments, and real systems

We used in our calculation a one-subband model. In
this model, the Fermi energy must be smaller than the in-
tersubband energy distance between the first and the
second subband. One gets as condition R, & 0.3
(r, )0.25Ro/g„a ). ' Clearly, in the low-density regime,
where many-body effects are most important, this condi-
tion can always be fulfilled.

It was predicted by theory that the interacting one-
dimensional electron gas is not a normal Fermi liquid
with a well-defined Fermi surface. However, experi-
ments' clearly point to a Fermi liquid description and it
was recently' ' shown that electron-hole excitations are
seen in inelastic light-scattering experiments made with
artificial quantum wires based on doped GaAs. The ex-
istence of electron-hole excitations shows that a Fermi-

liquid description is applicable, at least at the finite tern-
peratures used in experiments.

We believe that the results presented in this paper are
not only important for artificial quasi-one-dimensional
systems (as realized with semiconductor heterostruc-
tures' ' ' ' '), but also for natural quasi-one-
dirnensional systems (as realized with organic materials
or polymers ). In the presently studied systems of semi-
conductor quantum wires, ' ' the many-body effects are
still small because of r, &1 (and Ro&2a*). However,
we expect that the predictions made in this paper can be
checked in the near future when existing technology is
used to produce semiconductor wire structures with a
gate, where the electron density can be varied. '

In Eq. (23), we have introduced the parameter
R, =4g„a*r, /mR 0 as the relevant parameter for the ex-
change energy. The correlation energy in Eq. (26) is also
given by E„,(R, «1)~ —R, . This indicates that the pa-
rameter for weak coupling in quasi-one-dimensional sys-
tems is R, & 1 (and not r, & 1). R, depends on the
confinement. Strongly correlated systems in quasi-one-
dimensional systems are characterized by R, ) 1. We be-
lieve that the importance of this parameter was not yet
identified in previous work. In this paper, we presented
numerically results for g, =1. Our analytical results in-

clude the valley degeneracy. In fact, it was shown recent-
ly that this parameter is quite important. With increas-
ing valley degeneracy, the many-body effects increase in
the two-dimensional and three-dimensional electron
gas. Note that r, ~g, .

VII. CONCLUSION

In this paper, we calculated the local-field correction of
quasi-one-dimensional systems confined in cylindrical
wires. The local-field correction is given in an analytical
form and characterized by two coefficients, which are cal-
culated numerically and which depend on the carrier
density and the wire radius. We found that for decreas-
ing density and decreasing wire radius, many-body effects
increase. The ground-state energy has been calculated as
function of the wire radius and the electron density. Pre-
dictions have been made for experimentally measurable
quantities as to the dispersion of the collective modes and
the compressibility. A parameter R, characterizing in-
teraction effects in one-dimensional systems has been
identified.

The results for many-body effects in the quasi-one-
dimensional electron gas presented in this paper complete
text-book discussions for the three-dimensional' and the
two-dimensional electron gas. Our numerical and
analytical results are important from a theoretical and
practical point of view and should be of help to experi-
menters for the design and the analysis of experimental
results. Our theory has predictive power, which was
demonstrated by analytical results in the relevant param-
eter space (r„Ro) of quasi-one-dimensional systems. In
recent work, the results of the present paper have been
used in order to study transport properties and screen-
ing effects modified by many-body effects.
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APPENDIX

1. Direct Coulomb energy
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Van(r)/Ry =6Na* r2 r4 r6
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In this section, we give some arguments concerning the
efFect of the Hartree contribution. Let us assume that the
donors are distributed uniformly in the volume (and do
not contribute to the charge density in Poisson's equa-
tion). The electrons confined in the wire give rise via
Poisson's equation to a band-bending potential Viin(r) of
the form'

Na

FIG. 18. Inverse compressibility 1/K (in units of the inverse
compressibility 1/&co of the free-electron gas) versus electron
density N for Ro=a" when the Hartree term [Eq. (A4)] is in-
cluded as the solid line. For the dashed line, the Hartree term
was neglected. The dotted line Kp/~=1 represents the inverse
compressibility of the free-electron gas.

This band-bending potential increases with increasing
density and shifts the subband energy E,p for N=O to a
larger energy E&. In the lowest order perturbation
theory (N ~0), one finds'

Ei =Eip+6Ei

with

(A2a)

5E, =2.4Ry Na*=1.2Ry'/r, . (A2b)

Ec/Ry'=1. 2Na' =0.6/r, , (A3)

and the contribution to the compressibility is expressed
as

Kp 8g,=1.2
2 r, .

Kg
(A4)

It was recently shown for quantum wells that in the low-
density limit (with only one subband occupied), the
lowest order approximation is already a very good ap-
proximation of the full Hartree solution.

The shift of the subband energy induces a shift of the
chemical potential p = c.F + 5E& even if many-body efFects
(described by the LFC) are neglected. Ei can be written
as Ei =Eio(1+g) and g is the small parameter, which is
expected to be proportional to g 0- Ne ~ N/a *. In order
to get a parameter without dimensions, we conclude that
il ~ NR o /a ". With E,&&

~ 1/Ro, we derive 5E&
'gE ip

~ N and 5E
&

is independent of R p, the length
scale of the confinement, in agreement with Eq. (A2b).
In quantum wells of width L, one gets 6E& ~NL with
rl=NL /a* and 5E, depends on the length scale of the
confinement. We note that our calculation of 5E& does
not take into account the exchange contribution, which
also modifies the subband energy.

With Eq. (A2b), the Coulomb energy c,c =5E, /2 in the
lowest order perturbation theory is given by

tion decrease the inverse compressibility. In Fig. 18, we
show the inverse compressibility versus the electron den-
sity when the Hartree term according to Eq. (A4) is taken
into account. For large densities, the Hartree term dom-
inates and Iro/~) 1. At small densities, the interaction
efFects described by the LFC are larger than the Hartree
contribution and the inverse compressibility is negative:
Iro/lr (0. For the contribution to X(kF), we find with Eq.
(A3) in the lowest order perturbation theory,

Xc(kF )/Ry* = 1.2

S

(A5)

In Ref. 27, the compressibility of quantum wells has
been measured and it was argued that the direct Coulomb
energy gives rise to a negative contribution to the inverse
compressibility. This negative sign is the consequence of
the experimental setup, where an electric field is applied
and which reduces, apparently, the subband energy
5Ei &0.

2. Simpli6ed models

Within a simplified model, the Coulomb interaction
potential V(q)=2e Ko(qb)/EI is described by the form
factor f (x)=4Ko(x) with x =qb and this is the Fourier
transform of V(z) =e /EL (z +b ) We note that th. is in-
teraction potential has the wrong limit for large wave
numbers, Ko(x —+De)=(m/2x)' exp( —x), however, the
small wave number behavior is correct: Ko(x —+0)
=ln(2/x). Some numerical results of the sum-rule ap-
proach for the simplified model can be found in Ref. 28.

In the HFA, we find that C» H„A is given by the fol-
lowing transcendental equation:

We conclude that the direct Coulomb energy increases
the inverse compressibility, while exchange and correla-

Ko(qob/Cti HF~) =2Ko(2k~b)+Ki(2kFb)/k~b
—2K2(2k~b) +2/(2kF b) (A6)
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The coeKcients C;) HF~ are given by

exp[ 2—blr, '~ a*Cii HF~(r, 0)]

=rr(2lrr)'~'(g, r, a "Ib)'

X [2b/r, '~ a *C„„(r, 0)]'~

C» „„„(r,~ ~ ) =4g„exp[ —3/2]r, '"/~,

and

(A7b)

difFerence (the factor 2.4) is due to the fact that for large
wave numbers, the real potential in a cylindrical wire is
larger than in the simplified model. We mention that an
universal scaling exists for the exchange energy
c,,„(R,)bla*=H(R, ) and H(R, ) is a function of R,
only. This is easily seen from Eq. (A9), where
2kFb ~ b Ig„r, ~ 1/R, .

For the correlation energy in the high-density range,
we find

C2 i, HFA 2g (A8)

+2Ko(2kFb)+K, (2k~b) IkFb

—2/(2kFb) ]/2g„r, . (A9)

L„(x) is the modified Struve function. With Eq. (A9),
we conclude that in the simplified model, the exchange
energy can be calculated analytically; however, only in

terms of Bessel and modi6ed Struve functions. The limit-

ing behavior of the exchange energy is given by

Equation (21) determines the exchange energy and we

get

E,„(r,)/Ry* = —[rrKo(2k~b)L, (2k„b)

+mK, (2kFb)Lo(2k~b)

g

b
(A 1 1)

with 8„,=8 and we conclude that E„,(R, «1)~g, R, .
We want to mention that the simplified model and the cy-
lindrical wire model give similar results for the ground-
state energy at large density [E„,(r, « 1)~ r2 and

E,„(r, «1)~ r, ], due to the fact that f (x —+ oo ) in both
models decreases more rapidly than 1/x.

A different behavior is found in the model used in Ref.
46, where f (x)=2exp(x /4)Ko(x /4), with x =qc and c
is the confinement parameter: f (x ~ oo ) ~ 1/x. For this
model, we derive for the exchange energy

E,„(r, «1)/Ry* = a'[( 2/~)'"1 n( 2g, a*r, I~c)—0.262]/c,

(A12)

e,„(R,~0)/Ry* =—

for small R, =4g„a *r, /n b and by

e,„(R,~ ao ) /Ry = — ln( R, )
2a

~bR,

(A10a)

E„(r,»1)/Ry*= —[ln(2' 4g, a*r, /~c)

+(3—C)/2]/2g, r, ,

and for the correlation energy,

(A13)

for large R, . We note that e,„(R,~O) for the simplified
model is smaller than for a cylindrical wire, where

e,„(R,~0)/Ry' = —2.4a '/Ro, if b is identified with Ro,
which is suggested by the comparison of the behavior of
the interaction potentials for small wave numbers. This

E, ,(r, «1)/Ry*=8g„a* r, ln(2g, a*r, lrrc)/rr c

(A 14)

Note that this model is less realistic: it corresponds to a
wire which has a zero confinement width in one direction
and the confinement area vanishes.
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