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We study the transport properties of a two-dimensional randomly disordered dielectric medium.
The medium consists of infinitely long dielectric cylinders with a real dielectric constant e, em-
bedded in a di8'erent dielectric medium with eb ——1. The transport velocity is calculated within
the low-density approximation of the Bethe-Salpeter equation and within the coated extension of
the well-known coherent-potential approximation for a random arrangement of dielectric cylinders.
Results for the long-wavelength effective dielectric constant, phase velocity, and transport velocity
are presented for both the 8 and p polarization of electromagnetic waves. In addition, it is found
that localization is achieved more easily for the s than for the p polarization.

I. INTRODUCTION

Recently, there has been a growing interest in the
propagation of electromagnetic (EM) waves in ran-
dom media, and in periodic (both in two and three
dimensions) structures, the so-called photonic band
structures. Although strong localization of classical
waves. has yet to be observed experimentally, weak lo-
calization or enhanced coherent backscattering has been
detected in light-scattering experiments. It was recently
reported that a very small energy transport velocity v~
enters the diffusion constant D = v~Et/3 The extre. mely
small experimental values of D were caused by the small
values of v~ and not by the small values of the transport
mean free path Eq, which signifies strong localization. It
is by now well understood that to "lowest order in
density" of the dielectric scatterers, the strong decrease
in the transport velocity is due to the single scatterer
Mie resonances. Near resonances, a lot of energy is tem-
porarily stored inside the dielectric scatterer or equiva-
lently the wave spends a lot of time (dwell time) inside
the dielectric scatterer. Experimental results for alu-
mina spheres have shown that as the volume fraction f
of the scatterers increases towards close packing, there
is no structure in D and therefore v~, versus &equency.
The low-density theory of van Albada et al. gives strong
structure in v~, even for high f, in disagreement with the
experiment. An extension of the well-known coherent
potential approximation (CPA) was developed recently

and obtained a CPA phase velocity for high f, which is
qualitatively consistent with experiment, in not showing
any structure as a function of &equency. Unfortunately,
the coated CPA for low f gives a CPA phase velocity that
reduces to the regular phase velocity and can, therefore,
be higher than the velocity of light near Mie resonances.
Thus, for small f, the theory of van Albada et al. seems
to give the correct transport velocity v~, while for large
f, it is the coated-CPA approach, ' which seems to give
transport velocities consistent with experiment. Souk-
oulis, Datta, and Economou have combined these two
approaches and have calculated the transport velocity for
general f, with qualitative agreement with experiment, in
the following way. The coated-CPA is used to calculate a
&equency-dependent effective dielectric function c; then
the energy velocity expression of van Albada et a/. was
used to calculate v~ with this e as the outside medium.
However, this is not a very clean theoretical approach,
since it combines the low-density theory of van Albada
et a/. with the coated-CPA approach. Recently, Busch
and Soukoulis presented a new approach for calculating
the transport properties of random media. It is based
on the principle that the wave energy density should be
uniform when averaged over length scales larger than the
size of the scatterers. It has been successfully applied to
both scalar and vector classical wave calculations, and
works for all frequencies and scatterer concentrations.

In this paper, we present results for the transport prop-
erties of two-dimensional (2D) random dielectric cylin-
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ders. First, we give a microscopic derivation of the en-

ergy transport velocity for both 8 and p polarization. The
transport theory developed by van Albada et alt. for 3D
is extended to the 2D case. The long-wavelength limit
of the effective dielectric constant is calculated and com-
pared with the coated-CPA results, as well as the pre-
dictions of the low-density approximation of the Bethe-
Salpeter equation. The dimensionless localization pa-
rameter kg where k is the wave vector and Z is the mean
free path, is calculated within the coated-CPA approach.
Localization is achieved more easily for the 8 than for the

p polarization.
For EM waves propagating in the x, y plane, the s- (E

field parallel to the z axis) and p- (E field perpendicu-
lar to the z axis) polarized waves can be described by
two decoupled wave equations. $5itebibl0 The equation
for the 8-polarized wave is

2
V' E+ —~E=O

c2

where E = E„e = e(r) is the dielectric constant, u
is the frequency, and c is the speed of light in vacuum.
Equation (1) is identical to the scalar wave equation. The
equation for the p-polarized wave has the form:

) c

where H = H . Using plane-wave expansion methods,
one can solve the previous two equations for a periodic
lattice and, therefore, find the band structure. The
2D structures were made of parallel dielectric rods in air
or cylindrical air holes in a dielectric material. The objec-
tive was to find the geometry that would yield the largest
gap for the smallest index contrast. Finding structures
that have overlapping band gaps for both polarizations
is possible, but such structures are rare. The triangular
lattice of air cylinders and the honeycomb lattice of di-
electric cylinders are the only ones ' known until now.
It is now well understood that another parameter
for obtaining a complete band gap is the connectivity
of the dielectric components of the structure. In the
case of s-polarized waves (scalar waves) high dielectric
cylinders in a low dielectric medium are more effective
in giving a photonic band gap. On the other hand, for
p-polarized waves (vector waves) low dielectric cylinders
in a high dielectric medium are more effective in giving
a photonic band gap. Experimental investigations ' of
the 2D photonic band gaps with or without defects have
been mostly done at microwave &equencies. Little or
no work has been done for the transport properties such
as the transport velocity, mean &ee path, and the lo-
calization parameter kE of EM waves propagating in 2D
disordered dielectric systems.

The quantity b is given by

b= dr Ar er —1 (4)

where n is the number density of scatterers and @&+(r) is
the one-scatterer eigenfunction with incident wave vector
k for a single dielectric scatterer. A more elegant, and
most convenient for numerical purposes, representation
of h' for scalar and vector waves, was given by van Tigge-
len and Lagendijk for 3D. There b and, therefore, v~
were written with respect to the van de Hulst scattering
coefIicients of the scalar or vector dielectric sphere. We
have obtained a general expression for b, which is correct
for both the 2D and 3D cases. The quantity b is given
by

where the differential cross section is defined as

d~(~) "lt'~' l'/4(2~)' (6a)

and

t(~) 2-~ t(~)
PP ~ PP (6b)

Here P, denotes the phase of the d-dimensional t
matrix element according to t» = lt» lexp(iP» ), Og
is the surface of the unit sphere in d dimensions, and
u = pc. The t matrix for the 3D case is given ' by

, (a=pc) = —4vril 2 S, 8
. l, (7)

. & S2(8) cosP 0
0 Si 8 Sill )

where

S,(8) = ) [a„vr„(8)+ b„~„(8)],n(n+ 1)
(8a)

dom 2D and 3D random media. We will follow closely
the formalism of van Tiggelen and Lagendijk developed
for the 3D case, in the low-density approximation. We
will not repeat all the steps here, but we will present the
final result, which is applicable to both two and three
dimensions. By correctly handling the Ward identities,
the Amsterdam group reported that in the low-density
limit the difFusion coefficient D = vali/3, where the en-

ergy transport velocity v~ is given by

C2

v„(l + nh)

II. ENERGY TRANSPORT VELOCITY IN 2D
AND 3D

In this section we will give a microscopic derivation of
the transport velocity for EM waves propagating in ran-

S,(8) = ) 2n+ 1

n(n+1) - " "a„~„(8)+ b„vr„(8),

where
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P (cos 0)z.„8
sin 0

d P (cos 0)

(9a)

(9b)

the 2D case is given by

2 @+0~ ~ de+2
(d de) d(dn=l

here P (cos 0) are associated Legendre polynomials. It is
convenient to introduce the phase of the the van de Hulst
scattering coeKcients ' a and b

where j = 1 and 2 are the 8- and p-polarized cases. By
determining the 2D fflling ratio f = nB n one can use
Eq. (1) to obtain the energy transport velocity v@ for
propagation of EM waves in 2D random media. In fact,
we have that

a = [1 —exp( —2in )]/2,

b„= [1 —exp( —2iP„)]/2.

(10a)

(10b)
Q2

Vg& =-
Vp

1+ —— +22 f dfpq
dh dx

Substituting the above expression for the t matrix in
Eq. (3), and by difFerentiation of the first term of the
right-hand side of Eq. (5) and direct integration of the
second term one obtains that the quantity b for the 3D
case is given by

b = ——) (2n + 1) Im[a„+ b„]
n=l

+—,) (2n+1) "+dn„dP„,
n=l

where the index j again defines the two polarizations.
The phase velocity v„can be calculated &om the disorder
averaged Green's function and is given by

v„i = c 1 —Re Zz/p2

where E is the self-energy and in the weak scattering
approximation Zi = 27rnf~(0).—fi(0) is the forward
scattering amplitude from an infinite dielectric cylinder,
and is given by

The t matrix for the 2D case is given '1 by
OO

fi(0) = — cp,. + 2) c„ (19)

t„„,((u = pc) = —4i T~(0) (12)

where

T, (0) = cp~ + 2 ) c„,cos(ng)
n=1

(13)

The index j refers to the two polarizations of the incident
EM wave.

For the s polarization (j = 1) we have that c ~. = b

while for the p polarization (j = 2) c i = a . The coeffi-
cient a for the p polarization and b for the 8 polariza-
tion are given ' by

J„'(y)J„(x)—m J„(y)J„'(x)
J„'(y)H„(x) —m J„(y)H„'(x) ' (14a)

and

mJ„'(y)J„(x) —J„(y)J„'(x)
m J„' (y) H„(x) —J„(y)H„' (x)

' (14b}

c„, = [1 —exp( —2ip„, )]/2 . (15)

Substituting the above expressions for the 2D t matrix
in Eq. (5) one can easily obtain that the quantity b~ for

where the primes denote derivatives, x = kB, and y =
mx. J and H are the Bessel and Hankel functions of
integer order, B is the radius of the cylinders, m is the
relative index of re&action of the cylinder, and k is the
magnitude of t;he EM wave vector in &ee space. For the
2D case, too, one can define the corresponding phases
p ~ of the van de Hulst coefBcients for both polarizations

We have numerically calculated the energy transport ve-
locity v~, given by Eq. (17) and the phase velocity v„
given by Eq. (18) for both polarizations in 2D random
arrangement of dielectric cylinders. The dielectric con-
stant of the cylinder is e = 9 and that of the background
is equal to 1. In Fig. 1(a), we present the results for the
phase velocity v~ and the energy transport velocity v~
for the s polarization. The filling ratio f = 0.20 and the
dielectric constant of the cylinder is equal to 9.0. Notice
that v~ is always less than vz for all &equencies. We
have chosen to present our results versus d/A, , which is
proportional to frequency, since A; = 2mc/w~e is the
wavelength inside the cylinder and d is the diameter of
the cylinder. We choose to present our results this way,
since strong Mie resonances appear in the total scatter-
ing cross section &om the isolated cylinder in the limit
of e /eb ~ oo when d/A; = (n+ 1)/2 with n = 0, 1, 2, 3.
Notice that both the phase velocity and the energy trans-
port velocity give a lot of structure, especially close to the
Mie resonances. This is expected because both of these
quantities were calculated within a theory valid for the
low concentration limit, i.e., for just one isolated scat-
terer. Similar results are observed for the p polarization
shown in Fig. 1(b). The phase velocity can give unphysi-
cal values, i.e. , v„/c can be larger than 1, especially close
to the isolated Mie resonances. The energy transport ve-
locity v~ divers considerably from v„and is always lower
than v„, but has a lot of spurious structure due to its cal-
culation procedures which are based on scattering &om
a single isolated scatterer. As in the 3D case, v~ for
the 2D case can be considerably lower than vz. It will be
very interesting to perform experiments on 2D to check
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the predictions obtained for v@. In the long-wavelength
limit, both v~ and n„give the same value. For the 8
polarization, the long-wavelength limit of the efFective
dielectric constant e is equal to

&~ = f&~ + (1 —f)&b (20a)

e, =ebi1+2f
&a + &b)

(20b)

1.4

1.2
s Polarization Energy Transport Velocity

Phase Velocity

1.0

0.8

with e = 9 and eb ——1 for our case of dielectric cylin-
ders with e = 9 in a background with eg ——1. This
was expected, since for the 8 polarized case, the wave
equation is given by Eq. (1), which is identical to the
scalar wave equation. The long-wavelength limit of the
scalar wave equation is indeed given by Eq. (20a). The
p-polarized case is described by Eq. (2), which is like a
vector equation. In the low-density approximation, the
long-wavelength limit of e, is new given by

Equation (20b) can be obtained by taking the long-
wavelength limit of Eq. (17). It can also be derived
&om the electric dipole contribution. The correct long-
wavelength limit of t „which is correct not only in the
low-density approximation as is Eq. (20b), but for all
concentrations f, is the following expression:

2fn
!e~ = eb

i
1 +

1 —fn) (20c)

III. COATED CPA FOR 2D RANDOM MEDIA

with n = (e —E'b)/(e +eb). This is the Maxwell-Garnett
result for the 2D case. Of course, Eq. (20c) goes to Eq.
(20b) as f ~ 0, i.e., in the low-density approximation. In
Fig. 2, the Maxwell-Garnett theory results of Eq. (20c)
(solid line) are shown for the case with e = 9 and eb = 1,
and f is the concentration of the e dielectric cylinder.
In the same figure, the long-wavelength limit for the s-
polarized case [Eq. (20a)j is also presented (solid line).
The circles and squares are the predictions of the coated
CPA for 8 and p polarization, respectively. Notice that
the predictions of the coated CPA, for dielectric cylin-
ders, for the long-wavelength limit agree remarkably well
with the theory of the scalar (s-polarized) and vector (p-
polarized) cases.
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The CPA calculates the wave propagation characteris-
tics of a random system by replacing it by a uniform
efFective one of dielectric constant e, . The efFective

is calculated by demanding that the scattering pro-
duced when the efFective medium is locally replaced by
configurations ' ' '2 of the actual system is on the av-
erage equal to zero. Therefore, the quantity e is self-
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FIG. 1. The phase velocity and the energy transport veloc-
ity vs d/A; for e = 9.0 dielectric cylinders with filling ratio
f = 20%, for (a) 8 and (b) p polarization. d is the diameter
of the sphere and A, = 27rc/u~e is the wavelength inside the
cylinder.

FIG. 2. The long-wavelength dielectric constant e,g for a
cylinder with dielectric constant e = 9 in a background of
eb = 1 as a function of the cylinder filling ratio f. The CPA re-
sults for s polarization (open circles) and p polarization (open
squares) are presented. The solid lines represent the analyt-
ical scalar [Eq. (20a)] and Maxwell-Garnett [Eq. (20c)] re-
sults.
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consistently determined by demanding that the average
forward-scattering amplitude f (0) is equal to 0. Once
the complex &equency-dependent effective dielectric con-
stant e, is determined by an effective propagation con-
stant q is defined as

( 2 ) i/2
q=

]
c

i
=k+i/2E

where k is the wave vector and E is the scattering mean
free path. In the present case where each cylindrical scat-
terer has a finite size, the differential cross section re-
quires an infinite number of coeKcients for its complete
determination, while the effective medium is character-
ized by only two parameters, namely, k and E. Thus, the
question arises as to which averaged scattering quantity
should be set equal to 0. We have decided to set the so-
called average forward-scattering amplitude {f(0))= 0.
We have recently considered as basic scattering units a
coated sphere of the high dielectric material and a sphere
of the host, low dielectric material. We have extended the
coated-CPA formalism to treat the transport properties
of a random arrangement of dielectric cylinders. Within
the coated CPA, one has to satisfy the following con-
dition: rifi(0) + Ji2fz(0) = 0, where pi and fi(0) are
the probability and the forward-scattering amplitude of
a coated solid cylinder embedded in the effective medium
with dielectric constant e, ; pz and f2(0) are correspond-
ing quantities of a host cylinder embedded in the effective
medium. The forward-scattering amplitudes, as well as
the total scattering cross section o. of either a coated
cylinder or a host cylinder for both polarizations are
given in Appendix A. To solve the equation (f(0)) = 0
or equivalently (Z) =0, we have transformed it into an it-
erative equation of the form q;+i ——q;+ A{K), where i is
the order of the iteration and A is chosen using the weak
scattering limit and demanding as good a convergence as
possible. For the 2D case, we have a lot of problems with
the convergence, much more than the 3D case. How-
ever, after a successful convergence of q, which implies
{f(0)) = 0 or (2) = 0, the mean free path I. = 0.5/Im(q),
the renormalization wave vector k = Re(q), the dimen-
sionless localization parameter kZ, and the effective CPA
phase velocity vcp~ = (a)/k are determined. The only
free parameter in the coated-CPA approach is the quan-
tity z, which was fixed to be equal to z = 3 in the 2D
case. This choice gives an excellent agreement between
the coated-CPA results and the Maxwell-Garnett theory
for the long-wavelength effective dielectric constant e for
all values of f This is clearl.y shown in Fig. 2, where we
plot e, vs f. The circles and squares give our coated-CPA
results for 8 and p polarization, respectively, and agree
extremely well with the analytical results (solid lines).

To further check the coated CPA, we have calculated
the CPA phase velocity defined as cu/k [see Eq. (21)j.
In Fig. 3(a), we present the frequency dependence of
the CPA phase velocity for two filling ratios f of alu-
mina rods, with e = 9, for the 8 polarization. Notice
there is structure in the CPA phase velocity v~p~ for
f = 0.20, but not as much as the energy transport ve-
locity in Fig. 1(a). The CPA phase velocity for f = 0.60

1.0

»oiarizafion

f = 0.20
f = 0.60

0.6

0.0
0.0

I
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FIG. 3. The efFective phase velocity, calculated within the
coated CPA vs d/A, for alunnna cylinders with dielectric con-
stant s = 9 for different values of filling ratios for (a) s and
(b) p polarization.

has little or no structure as d/A, varies and vcpA stays
below c. In Fig. 3(b), we present the frequency depen-
dence of vcpA for f = 0.20 and 0.60 of the alumina rods
with e = 9 for the p polarization. In this case, notice
that there is a strong structure in the vcpA for f = 0.20
and takes values higher than t", as the phase velocity in
the Fig. 1(b). However, in the p-polarized case too, as
f increases (f = 0.60) little or no structure is shown as
d/A; varies. It is extremely important to experimentally
measure the transport velocity of EM waves propagat-
ing in an arrangement of random dielectric cylinders, for
both polarizations. We have also calculated the energy
transport velocity derived from Eq. (17) for f = 0.60
for both polarizations and we find that, as in the 3D
case, ~ v~ shows strong structure as d/A; varies. It would
be, therefore, interesting to have additional careful ex-
periments of the frequency dependence of the transport
velocity for the 60% case of alumina rods to see if there
is any structure in the transport velocity.

As a final check of our 2D coated CPA, we calculated
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25.0

20.0

15.0

10.0

the low-density approximation of the Bethe-Salpeter
equation. Our approach followed closely the derivation
of the Amsterdam group, which has been done for a
3D random system. The recently developed coated
CPA was extended to a random arrangement of dielec-
tric cylinders. Results for the long-wavelength effective
dielectric constant phase velocity, transport velocity, and
the localization parameter kS are presented for both po-
larizations.
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FIG. 4. The localization parameter kE vs the 6lling ratio
f for alumina cylinders with e = 9 for frequency d/A, = 0.7
for both 8 and p polarization.

the localization parameter kE vs f, for low frequencies,
i.e. , when d/A; = 0.7. If kg is large the states are ex-
tended or weakly localized, i.e. , the localization length
might be extremely large. However, as kE decreases the
states become more localized. In Fig. 4, we present the
results for k/ vs f for d/A; = 0.7 and e = 9 and eb = 1.
Notice that for the s-polarized case (dotted line) kE has
a minimum value of kI. 3 when f 0.10. For the @-
polarized case (solid line) kI is always larger than the s-
polarized case and has a broad minimum value of kS 10
when f 0.30. These results clearly suggest that lo-
calization for the 8-polarization case is inherently easier
than the p polarization. These results are in qualitative
agreement with recent numerical results of the prop-
agation of EM waves in 2D disordered systems, which
clearly demonstrated that localization is achieved more
easily for the 8-polarized case than the p-polarized case.

APPENDIX

In this appendix we want to present the scattering co-
eKcients for a coated cylinder consisting of two dielectric
materials (inner cylinder dielectric constant e;, coating
material dielectric constant e, ) embedded in a homege-
nous outer medium with dielectric constant e. Let B,
and B be the inner and outer radii of the cylinder, re-
spectively. It is now very convenient to introduce the
wave vectors of the different materials by kp = (d/c,
ky = ~e' kp, kg = ~e kp, k = +E kp. Furthermore,
we define the size parameters according to x = kB;,

= k&B;, » = k2B;, y = kR, y&
——k~R, and

y2 ——k2B . Finally, we introduce the following abbre-
viations: J„=J„(y), J„=J„(yz), H„= H„(y), and

H„=H„(y ). zIn this notation the van de Hulst scatter-(2)
IV. CONCLUSIONS

+n +1 [Yn (2'2) Jn(+1) (kl/kz) Jn(2'1) Yn(&2)] I
2

B = —xq [J (zz) J„'(x&) —(k&/k2) J„(x&)J„'(x2)],
2

+n — +1 [Jn(&l)Yn(+2) (kl/k2)Y (&2n) Jn(&1)]&
2

Dn = —~~ [(k~/k2) Jn(~2) Jn(~~) Jn(») Jn(»)].
2

As usual, J, Y, and II denote the Bessel, von Neumann, and Hankel functions of integer order, respectively.

In this paper, we have presented the calculation of the ing coe%cients for the coated cylinder can be calculated
energy-transport velocity in 2D random media, within by standard methods. ' We obtain

I

(m2H„J„—H„' J„)C„+(m2H„Y ' —H„'Y )D„
where the prime denotes the difFerentiation with respect to the argument and mq ——kq/k, m2 ——k2/k Furthermore, .
we used
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