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Exact determination of the phase in neutron reflectometry
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We show that by using a known reference layer having three tunable values of scattering density,
an exact determination of the complex amplitude R =ReR+i ImR for neutron specular refiection can
be made for any unknown real potential (i.e., no absorption). This straightforward yet remarkable
general result is valid even in the dynamical regime (where the conventional Born approximation
fails) and makes it feasible to consider direct inversion methods for obtaining the scattering-length-
density profile normal to the reBecting surface.

By measuring the number of neutrons elastically and
specularly reHected &om a Hat surface as a function of
glancing angle of incidence, information about the profile
of the in-plane average of the scattering length density p
along a direction z normal to the surface can be deduced.
Neutron and x-ray reHectivity studies of various materi-
als have increased dramatically in recent years with the
growing interest in physical and chemical phenomena oc-
curring at surfaces and interfaces. However, extracting
the profile &om measured refiectivity ~R~ as a function
of wave vector transfer Q is difficult, s and no direct in-
version scheme is possible in the absence of the phase
of the complex reHection amplitude R =ReR + i ImR.
Because of the difficulties in fitting measured ~R~ to ob-
tain p(z), a variety of mathematical and experimental
techniques have been advanced to provide knowledge of
the phase. For example, techniques using references, as
in interferometry, have been employed in both x-ray
and neutron ' reHectometry to utilize implicit phase
information in the process of reconstructing p(z), but
always in the Born and distorted-wave Born approxima-
tions. X-ray references can be structured, e.g. , known
multilayer sequence, or tunable, i.e., using a tunable
x-ray synchrotron source to change the imaginary part
of the scattering length density of the substrate with
x-ray wavelength. Neutron reference layers have been
fabricated &om ferromagnetic substances having difer-
ent scattering lengths for spin-up and spin-down neu-
trons. Alternatively, schemes for obtaining the phase of
R have been proposed using logarithmic dispersion rela-
tions (within the Born approximation)i and based on
measurements of absorption rates or dwell time. Here
we demonstrate a powerful yet simple means of obtaining
the phase of R exactly for neutrons over the entire range
of wave-vector transfer, from the kinematical limit to the
dynamic scattering regime. We take advantage of the
fact that the scattering length of neutrons almost always
can be taken as real valued; the imaginary part accounts
for absorption, which is negligible for neutrons, and for
incoherent scattering, which generally can be ignored for
thin films, even when incoherent scatterers such as wa-
ter are involved. Given the accessibility of the phase,
fundamentally di8'erent approaches to determi. ning the

scattering-length-density profile, still a formidable prob-
lem, can be advanced.

In specular reHection from a film, the incident, re-
Hected, and transmitted beams are plane waves, and the
solution of the Schrodinger equation reduces to a one-
dimensional problem within the film. For a scattering-
length-density profile modeled by a sequence of layers of
constant p, the amplitudes R of the reHected wave and
T of the transmitted wave (for unit amplitude of the in-
cident wave) can be calculated exactly &om the matrix
formula:

i 1( T 5 cos0s —sin0y C ] + R
(tnsT) .-.. . 0 0 (any (1 —R))—n~ sin ~ cos

with 0y = 2Qnyd~ and ns =-Ql —16m'/Q; nb
and ny correspond to the "backing" (transmission) and
"&onting" (incident) media, respectively; Q = 2ko, [ko, is
the wave vector normal to the surface in &ee space (trans-
verse components of the wave vector are constants of the
motion)j and dy is the thickness of a layer over which the
scattering density has the constant value p~. The matrix
product is ordered with the sense of increasing distance
into the film running to the left. The d~ can be made
as small as necessary to represent an arbitrary profile,
resulting in a transfer matrix, relating R and T, that
in this representation is a product of N transfer matrices
each representing a single layer. This way ~R(Q) ~

can be
calculated over a finite Q range to arbitrary accuracy for
all realistic profiles. More importantly for us, the rectan-
gular representation is rigorously correct in the contin-
uum limit, where the d~ become infinitesimals. Indeed,
the transfer matrix and its intrinsic properties —those not
depending on particular scattering potentials —are deriv-
able directly from the continuum Schrodinger equation
without the artifice of a discrete representation, which
then may emerge only when needed as a computational
device. Thus results derived &om the transfer-matrix for-
mulation of the problem, including those here, are valid
in general.

We denote the transfer-matrix: product appearing in
Eq. (1) as
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( A(Q) B(Q) i"'Q' =
I c(Q) D(Q) I

(2)

where, &om Eq. (1), the matrix elements are seen to
be real quantities for all values of Q, so long as p is
real, which henceforth we take to be the case. Since
the layer transfer matrices in Eq. (1) are unimodular,
i.e. , have unit determinant, this is also true of the prod-
uct: det M = AD —BC = 1 (the unimodularity of M
is an intrinsic property that can be established without
the discrete representation. ) As the last preliminary,
we take ny ——ng ——1, corresponding to vaccum fronting
and backing media. This is a mild restriction, which we
repair later. By solving Eq. (1) and making use of these
properties, one now finds

B+C+ i(D —A)
B —C+ i(D+ A)

(3)

for the refIection amplitude. The directly measurable
reQectivity then can be expressed as

2
1+ R = A'+ B'+ C'+ O' = Z.
1 —IRI'

(4)

(B' + D') —(A' + C') —2i(AB + CD)
2+ (B' + D') + (A' + C')

which indicates that the determination of B needs only
the three real quantities,

This result requires real-valued M. Since 0 ( IRI ( 1,
K ) 2. We also note that K = tr M M. (Thus M is not
unitary, in general; otherwise IRI—:0.) From a cursory
comparison of Eqs. (3) and (4), it seems evident why
measureinents of IR(Q) I2, which determines only the sum
of squares of transfer-matrix elements, do not provide
enough information to determine the individual matrix
elements, even though they are real-valued quantities.
The unrationalized form of Eq. (3) may lead one to an
overly pessimistic view of the situation, however. When
rationalized, Eq. (3) can also be expressed as
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FIG. 1. Arbitrary scattering density profile separated into
known reference layer (z = 0—25 A) and "unknown" segment
(z = 25—95 A). The reference layer can take on three different
values of p (3.33, 6.67, and 10.0xl0 A. ) as described in
the text. The inset in the upper right-hand corner of the
figure indicates the scattering geometry.

A; =a ur, +b y, +2abu), y;,

C; =c m;+d y;+2cdm, y, ,

B2 = a x- + b2z + 2abx;z;,

D2 = c2x2 + d2z2 + 2cdx, z;

&A B) fn ~) (~ ~)
D)i =

i, , „)I I, y, ri

where the matrix (a, ti, c, d) describes the contribution
from the unknown part of p and (to, z, y, z) gives the
known part, which we call the reference. Now com-
pose three films consisting of the unknown film and dif-
ferent reference films we describe a practical means of
carrying this out below —and make three corresponding
measurements of the reflectivity, IR(Q)I = IRi(Q)I
IR2(Q)I, and IRs(Q)I . We thus measure three func-
tions Z(Q) = Zi(Q), Z2(Q), and Zs(Q) as indicated in
Eq. (4). However, using Eq. (7) we can write

and

a=A +C
P B2 +D2 (6)

for i = 1, 2, 3. Then from Eq. (4) [alternatively, write
Eq. (7) as M = UK and use Z = tr M M
tr (KK+) (U+U) j, we have

Z, = (tU; +z;)n+ (y, +z;)p+2(to;y;+x, z;)p (9)

rather than A, B, C, and D. It remains true that mea-
surements of IRI only yield A +B +C +D = n+P,
but we now derive a simple means of extracting n, P,
and p &om reflectivity measurements of compound films
containing the one of interest as a common constituent.
Then reconstruction of the complex-valued R(Q) for the
isolated constituent follows from Eq. (5).

Suppose that a given scattering density profile is sep-
arated into two distinct regions representing known and
unknown parts, as depicted in Fig. 1. The total transfer
matrix can be expressed as a product of corresponding
transfer matrices:

for each case, where n, P, and p are defined as in Eq.
(6)—but with A, B, C, and D replaced by a, b, c, and
d—and are the same in each measurement. Because m, ,
x;, y;, and z; are known for each reference, Eq. (9) de-
fines a system of three linear equations for the unknown
part. The matrix of known coefIicients generally is non-
singular for nondegenerate reference values, and Eq. (9)
can be solved for n(Q), P(Q), and p(Q) for Q ) 0. Thus,
&om Eq. (5) now using a, b, c, and d we obtain the
complex refiectivity amplitude, R(Q), for the unknown
film alone, translated to z = 0. We note that in Eq. (2),
A( —Q) = A(Q) B(-Q) = —B(Q) C(-Q) = -C(Q)
and D(—Q) = D(Q) (i.e. , the diagonal elements of M
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FIG. 2. ReQectivities corresponding to the scattering den-
sity profile of Fig. 1 for the three di8'erent reference layer
densities (p = 3.33 x 10, 6.67 x 10, and 10.0 x 10 A.

indicated by circles, triangles, and squares, respectively).

are even in Q, while the off-diagonal elements are odd in
Q). This also is an intrinsic property. Using it in Eq. (3)
or (5), it follows that R(—Q) = R(Q)*, so that R(Q) is
known over the entire Q domain if it is known for Q ) 0.

In this method it is not required that the three refer-
ence portions have the same thicknesses or even that they
be layers of constant p; it is only necessary that they be
"known" in the sense of Eq. (9). In practice, however, the
method likely will entail the use of simple reference layers
of constant p values and common thickness, as illustrated
in Fig. 1. As an example, Fig. 2 shows three reflectivity
curves, corresponding to the three different reference p
values for the model density profile shown in Fig. 1. In
Fig. 3 are shown the real and imaginary parts of R(Q)
for the "unknown" part of the model, as obtained from
the three sets of reflectivity plotted in Fig. 2 and Eqs.
(9) and (5). Figure 3 also shows R(Q) as directly cal-
culated for the "unknown" part of the model actually
known to us, of course —using Eq. (1). Agreement is
excellent even near Q = 0, where Z would diverge,
and near points where the different reflectivities cross—

and no incipient mathematical or computational insta-
bilities are evident. The introductions of known nonva-
cuum wonting and backing media result in straightfor-
ward, if tedious, modifications of some of the formulas
given above, but the only practical consequence is that
with a material backing, the method is unusable below
the critical edge, ~Q~ ( Q„where ~R(Q) ~

= 1 and where
Q, = 16vrpi, . However, experiments can be arranged so
that the beam is incident within a single-crystal medium
such as Si, corresponding to real-valued nf (Q) ) 1. This
wonting medium also acts as the mechanical substrate
for the film with a backing medium that can be vacuum,
ng ——1. Thus the method described can be considered
to be quite general. On the other hand, we see no easy
relief for the restriction to real-valued p (real M).

We note in passing that the use of two known refer-
ence layers, one preceding and the other following the
unknown region, make it possible with nine, rather than
three measurements to determine the individual matrix
elements (a, 6, c, d) to within an overall sign, which is the
best that can be done since, from Eq. (3), R itself is
independent of the sign of M.

Finally, we describe a relatively easy way of realizing
reference contrasts in actual experiments. With ferro-
magnetic Fe or Co as the reference layer, two scattering
length densities can be obtained if the incident beam is
polarized and the magnetic layer is saturated in the plane
of the film. For spin-up and spin-down neutrons, the scat-
tering densities of the reference layer are p = A (6 + p),
respectively, where 6 is the nuclear scattering length and
p is the magnetic scattering length of the reference layer
and JV is the number density of scatterers. A third value,
p = JVb, can be obtained from a demagnetized layer or
with the magnetization perpendicular to the plane of the
film. The use of magnetic reference layers has the advan-
tage that the state of the layer can be changed without
a chemical or structural effect on the sample. Of course,
other contrast methods can be considered, including iso-
topic substitutions. Given such a relatively simple pro-
cedure to determine R(Q) =ReR(Q) + i ImR(Q), direct
inversion methods can be revisited for practical appli-
cation to neutron reflectometry.
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FIG. 3. Real (open circles) and imaginary
(filled triangles) parts of the reflection ampli-
tude R =ReR + i ImR corresponding to the
"unknown" segment of the scattering den-
sity pro6le of Fig. 1 as obtained from the
three reBectivity curves of Fig. 2 via Eqs.
(3)—(9). The solid curves through the sym-
bols were generated directly (given the "un-
known" part of the scattering density distri-
bution) using Eq. (1). Note that the ranges
of the vertical scale change by an order of
magnitude from one region of Q to the next.
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