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Capacitive nature of atomic-sized structures
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The capacitance of an ¹lectron system is established by deriving the atomistic connection between
the capacitive energy, the ionization potential, and the electron aSnity of the charged system; it is shown
further that this connection leads to the linkage of the capacitive energy to the difference between the
lowest unoccupied and the highest occupied Kohn-Sham orbital energies of the system. An illustrative
example is used to show explicitly the microscopic behavior of the derived capacitance for a finite elec-
tron system, and to discuss the tendency of the derived capacitance to limit toward the classical electro-
static capacitance as the system becomes macroscopically large. Discussions relevant to atomic and
molecular systems are included.

As semiconductor technology continues to drive the
scaling of electronic device dimensions into the ultrasub-
micrometer, nanodimensional regime, many new physical
concepts and atomistic phenomena will continue to be
put forth for notional consideration and exploitation.
The stunning achievements of nanofabrication technolo-
gy in the past decade now allow for band engineering and
atomic-level structural tailoring not heretofore available
or explorable, except through naturally occurring atomic
and molecular processes. Nanofabrication tools make
possible experimental studies of nanosize electronic struc-
tures with capacitance levels in the attofarad region and
measurable currents resulting from the controllable pas-
sage of a single electron. Therefore, it is timely to consid-
er the capacitive nature of atomic-size structures.

In this paper, the capacitance of an ¹ lectron system
is established by deriving the atomistic connection be-
tween the capacitive energy, the ionization potential, and
electron af5nity of the charged system; this connection
leads to the further linkage of capacitive energy to the
difference between the lowest unoccupied and the highest
occupied Kohn-Sham orbital energies of the system. An
illustrative example is used to discuss the behavior of the
derived capacitance for a finite number of electrons, and
to discuss the tendency of the capacitance to approach
the classical electrostatic limit as the system becomes ma-
croscopically large, that is, as the number of electrons,
"X," gets large. Extended discussions relevant to atomic
and molecular systems are also included.

The differential capacitance, C, of a charged system
(hereafter referred to as simply capacitance) determines
the specific amount of work per unit charge, 6 V, required
to bring a fixed amount of charge, b, Q, from the vacuum

2

=p(N+1) —p(N) .

Here, it is noted that C is considered to be a function of
N, the total number of electrons in the system, because
p, (N) is not typically a linear function of "N" for all N.

The chemical potential for an ¹particle system ' is

p(N) =E (N) E(N —1), — (4)

level to the system in question. As such,

1 AV
C bQ

Macroscopically, capacitance is a system-specific quan-
tity,' it is dictated by the materiel characteristics of the
system. Conventionally, 6 V and AQ are established from
Maxwell's equations of classical electrostatics, and when
used in Eq. (1), lead to the familiar result that capacitance
is independent of the amount of charge added to the sys-
tem and depends only on the geometrical parameters of
the system as well as the static dielectric constant, if insu-
lators are present. For a conducting circular dot of ra-
dius R, filled with material having relative dielectric per-
mit tivity e„ the resulting classical capacitance is
C = 8E'OE&R ~

From an atomistic viewpoint, the capacitance of the
system is determined by using for 6V,

eb, V=p(N+bN) p(N)—:bp, —

where p(N) is the chemical potential of an N-particle sys-
tem; then, using b,Q = eh, N with b N = 1 for a single elec-
tron, the capacitance from Eq. (1) can be written' as
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0.1— 1 e
A (N) =y(N) —— (12)

0.01 .—

0.001 =

further indicating that the Coulomb-blockade energy is
the minimum capacitive energy required to remove or
add a single electron to an N-particle system.

Second, density-function theory (DFT) reveals that

I I

12 17 22

Number of electrons

I(N) A(—N) =e (N) e—(N)+Bo, (13)

FIG. 1. Capacitive energy vs electron number for a CxaAs

quantum dot with a radius of 200 nm t,'empty squares), 100 nm
(solid circles), and 50 nm (empty circles).

where E(N) is the total energy of the N-particle system;
it is further noted that

I (N) =E (N —1 ) E(N)—
and

A (N)=E(N) E(N+1—)

are the ionization potential and the electron affinity of an
N-particle system. Therefore, the capacitance of Eq. (3)
can be written as

2

=I(N) —A (N) .
C N

(7)

The identification of the atomistic connection, as ex-
pressed in Eq. (7), between the capacitive energy of the
system and the quantum-mechanical ionization potential
and electron amenity is the central result of this communi-
cation.

There are some interesting points to be made concern-
ing the result of Eq. (7). First, the quantity I Ahas long-
been considered by the chemistry cornrnunity as "abso-
lute hardness" of electron transfer denoted by

rl= ,'(I —A ), —

and is used in conjunction with

y= —'(I+ A),

(8)

(9)

the electronegativity of the N-particle system, to address
chemical bonding and reaction processes. The quantity
"absolute hardness" as noted in Eq. (8) can be identified
through the use of Eq. (7), as

1 eq= —,'(I —A)=—
2 C(N)

(10)

thus, g is simply the Coulomb blockade threshold ener-
gy, the minimum capacitive energy to be overcome in
adding one electron to an X-particle system. In fact,
from Eqs. (9), (10), it follows that

1 eI (N) =y(N)+—
2 C(N)

and

where e (N) and e (N) are the lowest unoccupied and
the highest occupied Kohn-Sham orbital energies, respec-
tively, for an N-particle system, and Bo is nearly a con-
stant. Therefore, the capacitance defined from Eq. (7)
can be written in quantum-mechanical terms as

2

C(N)
=e" (N) e(N)—+Bo . (14)

From this expression, the atomistic features of the capac-
itance are easily understood. As noted in Fig. 1, recent
DFT calculations of e /C for individual CxaAs quantum
dots of various radii show a remarkable structure; the
dramatic jump in e /C occurs for values of N which be-
gin the filling of the next atomic shell of the quantum-
confined system. For the quantum dot system under con-
sideration, the energy levels of the subshell orbital states
are almost equally spaced so that the right-hand side of
Eq. (14) is nearly constant until the next lowest unoccu-
pied orbital state available for filling is in the next shell,
in which case a jump occurs in e /C upon filling. The
quantity I-A has also been calculated for jellium spheres
and clusters; indeed, the jump characteristics similar to
those shown in Fig. 1 are reported. In general, it is noted
that when the symmetry of the potential in question re-
sults in subshells with accidental degeneracy, then the
difference between the lowest unoccupied and highest oc-
cupied orbital energies within the subshells will be zero;
in this case, a structure similar to that of Fig. 1 will ap-
pear for the capacitance of the system.

Third, it is interesting to examine the behavior of e /C
as X gets very large. Figure 2 depicts the charge-density
profile variation with increasing "N" for the quantum-dot
system of radius 100 nrn described in Fig. 1; as X ap-
proaches thirty, the electron density begins to uniformly
conform to the geometry of the dot and the capacitance
tends to the classical electrostatic limit (for GaAs dots,
e„=12.9; with R =100 nm, C=8eoe„R =0.09fF and
e /C=0. 002 eV). In going to the limit of macroscopic
systems, i.e., as "N" gets very large, Ie . (N) —e (N)]
tends toward zero, so that Bo tends to e /C (classical) in
the large-N limit; this tendency is clearly evidenced in the
work of Perdew on jellium spheres.

The implications inherent in Eq. (7) are significant
from several interdisciplinary viewpoints. First, there are
many concepts and experiments being put forth today,
which utilize atomic-sized nanostructures; quantum-
wells, quantum-confining dots, tunneling tips formed
by clusters of atoms, are just a few examples of where a
microscopic view of quantum capacitance is not only
essential for understanding the charge-transfer dynamics,
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