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Excitonic lifetime for double-barrier heterostructures in the presence of phonons
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In this work, we have numerically integrated in space and time the efFective-mass Schrodinger equa-
tion for an electron-hole pair in a GaAs/A1As double-barrier heterostructure. Considering the
electron-phonon interaction and an external electric field, we have studied the excitonic tunneling escape
process from the double-barrier quantum well. In this way, electronic lifetimes have been obtained at
difFerent well widths and applied electric fields.

Since its discovery, ' resonant tunneling through semi-
conductor heterostructures has been the object of great
attention due to its possible applications to ultra-high-
speed electronic devices. With the development of such
devices, it has become important to carry out theoretical
and experimental studies on the tunneling process of car-
riers. One of the most important time-domain experi-
ments in double-barrier heterostructures was realized by
Tsuchiya, Matsusue, and Sakaki. They studied the de-
cay of an exciton localized between two barriers in a sin-
gle quantum well using a technique of picosecond time-
resolved photoluminescence. The experiment is schemat-
ically illustrated in Fig. 1. The incoming laser creates an
electron-hole pair that is localized in the quantum-well
region, and then its decay rate is determined by analyzing
the time-resolved photoluminescence. They used a
single-particle model to describe electron tunneling
neglecting the existence of hole tunneling and excitonic
effects. They found that the experimental data matched
the calculated tunneling time in the case of sufficiently
thin barriers.

In the case of such a double-barrier system, it has been

recently shown that if the applied electric field is large
enough, the hole tunneling process becomes important.
In this way, an excitonic wave function for the electron-
hole pair will be needed to explain the carrier wave-
packet dynamics. With the use of an excitonic model for
tunneling, it was possible to explain in part the
differences between theoretical and experimental results.
In addition to this, the electron-optical phonon coupling
has been recently studied in the case of double barriers.
It is found that the different phonon modes in the quan-
tum well contribute significantly to the electronic tunnel-
ing escape process. Taking this into account, in this
work we will propose a calculation method to study the
time-dependent evolution of excitonic electron-hole pairs
considering an electron-optical phonon interaction. The
calculation method will be based on the discretization of
space and time for both carrier wave packets.

In order to study the dynamics of excitonic tunneling,
we need to solve the time-dependent Schrodinger equa-
tion associated with the Hamiltonian for a spinless exci-
ton in the heterostructure region. The excitonic Hamil-
tonian is given by

$2 Q2
H(r„rt, )= — V'„+ g — + V;(z;)+H,

2

E+p +(z zt, )

where the subscripts e, h refer to electrons or holes, respectively, and V, (z, ), Vt, (zt, ) are the potentials due to the quan-

tum wells. The term H,. h represents the carrier-phonon interaction. The m,* and mh* values are the effective masses,

p y
is the reduced x-y plane electron-hole mass, and p =p, —

p& is the relative motion within the quantum-wel 1 plane.
The second term represents the Coulomb electron-hole potential.

In our model, the electron-phonon interaction can be described using second-order perturbation theory. In such a
case, 5E, 5m, and 5p are the corrections to energy and effective masses, respectively. Taking this into account, we can
write Eq. (l) as

H(r„r„)=— V y+ g2M

2

+ V;(z;)+5E;

where M* =p +6p is the new excitonic reduced mass and M;*=m,. +5m * is the new carrier effective mass. Now we

separate the total excitonic wave function @(r„ri,) into the motion along z and the in-plane motion of the exciton P(p),
4(r„rh ) ='Il(z„zh )P(p), persisting Coulomb effects in the growth direction with the Hamiltonian

0163-1829/95/52(15)/10729(4)/$06. 00 52 10 729 1995 The American Physical Society



10 730 BRIEF REPORTS

H(z„zi, ) = g
i =e, h

+V;(z;)+6E; +f dpp
iii[B P(p)]

2M* eQp +(z, —
zi, )

This two-variable Hamiltonian can be simplified introducing the factorization 0'(z„zI, ) =P(z, )f(zi, ), and thus, obtain-
ing two Schrodinger equations,

+ V, /(z;~)+ W/;(z; J. )+5E;~ g, J(z; J)=iiti g;)(z; J ),
l, J l~J

where i =e,j=h for the first equation and j=e, i =h in the second equation case. Both equations have to be solved to-
gether since the term

Wk(z)= f dz'Pk(z') f dpp [B~P(p)]— , P'(p)
eVp +(z —z')

g()[Mi I q((

2m / „o ~co~ qli)+iii qll 2m

and the contribution to the efFective mass as

(6)

couples g, and P&. To simplify our calculation we have
used for the in-plane motion of the exciton the ansatz
P(p)=(1/a )exp( —p/a ) where a is the two-dimensional
excitonic radius.

Using second-order perturbation theory for the
electron-phonon interaction, the contribution to the ener-
gy can be written as

f qII
"

[A'co„q~~ +iii
q~~ /2m~~]

where the carrier-phonon matrix element is given by

i f(qll)

The matrix element is calculated for the di6'erent phonon
modes and for the set of intermediate electronic states as
the same manner as in Ref. 8. The carrier-phonon in-
teraction is given by
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where a„(q~~) [a„(q~~)] is the creation (annihilation) opera-
tor of an optical phonon with wave vector

q~~
and energy

iiico„(q~~) in the nth mode and I „(q~~,z) is the coupling
function that describes the coupling between an electron
(or hole) and the nth optical-phonon mode with frequen-
cy co„(q~~). In a semiconductor quantum well, the phonon
modes are modified due to the presence of interfaces. For
a single GaAs/A1As quantum-well structure, there are
three significative types of optical-phonon modes that
couple to electrons: (a) symmetric-interface-optical-
phonon modes with frequencies cos(q~~ ), (b) antisym-
metric-interface-optical-phonon modes with frequencies
co&(q~~), and (c) the confined phonon modes in the quan-
tum we11 with frequencies m&. The momentum of the
confined phonon modes is quantized in the z direction
with q, = l~/d, l =1,2, 3, . . . , I,„being I
=int(d/ao). The lattice constant of GaAs is ao=5. 65 X.
and d is the quantum-well width.

The Frolich Hamiltonian for confined modes in a layer
of thickness d can be written as

hole
tunneling
escape
process

FIG. 1. A schematic illustration of the photoluminescence
experiment performed on a double-barrier structure (a) in the
absence of an external electric field and (b) with an applied bias.

1 y

Qq +(n~/d)
sin z, (10)

nm.

where z is growth direction and y is a coupling constant
for CiaAs layers.

In the case of interface models, the longitudinal-optical
phonon modes consist of one set of antisymmetric modes
and one set of symmetric modes. The coupling constant
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for the electron-phonon Hamiltonian can be approximat-
ed as

0.6

1/2
Icos( g)8 P

I „(qll,z ) =
2eoA

1 f,(„)(ql,,z), (11)

where A'co& is the energy per phonon -0.0501 eV. The
functions fs and f„are proportional to the electrostatic
potential generated by the phonons and, when z is mea-
sured from the center of the GaAs well, is given by

qll(z+d/2)
e

d/2
—

qll(z
—d/ )

(12)

in the case of symmetric interface modes. With antisym-
metric interface modes, the function f„ is given by

qll(z+d/2)—e z d 2

f~(qll z)= »n"(qllz)/»n"(qll" /2) (13)

Let us discretize time by a superscript n and spatial po-
sition by a subscript c and U for the conduction and
valence band, respectively Thu. s, g, ~)(," and f), ~)(„".
The various z, & values become c6z and v6z in the con-
duction and valence bands. To treat the time develop-
ment we have used a unitary propagation scheme for the
evolution operator in both conduction and valence bands
obtaining a tridiagonal linear system that is solved by
standard numerical method.

Then, Eq. (4) is numerically solved using a spatial mesh
size of 0.5 A and a time mesh size of 1 fs and a finite box
(2000 A) large enough as to neglect border effects. The
numerical integration in time allows us to obtain the car-
rier charge density Q' in a defined semiconductor re-
gion [a,b ] at any time t,

Qgi (t)= J dz, ~ ~g'"(z, h, t)~ (14)
a

The decay of the integrated electron charge density, ini-
tially trapped in the quantum well, follows essentially the
exponential law,

„L
0 GO 700 750 200 250

E(@ctree I"ie M (k V/en+)
0

FIG. 2. Electron lifetime vs applied electric field in a 100-A-
wide GaAs/AlAs double-barrier structure. Stars: in the ab-
sence of both carrier-phonon and electron-hole interactions.
Circles: including Coulomb interaction. Squares: including in-
terface modes and Coulomb interaction in the calculation. Tri-
angles: including confined modes and Coulomb interaction the
calculation. Diamonds: including Coulomb interaction and
both confined and interface modes in the calculation.

left electrode due to its positive sign in the electric
charge. Our numerical results plotted in Figs. 2 and 3
may be understood using a semiclassical model. The
field-induced tunneling time of a bound carrier through a
barrier of height Vo and do thickness can be written as

Q, b(t) =Qo exp( t/r), — (15)

where r is the electron lifetime and Qo is a constant. In
our case, the [a,b ] interval corresponds to the quantum-
well limits. So, through numerical integration of Eq. (4)
and using Eq. (15), we can obtain the electron and hole
lifetimes. In Figs. 2 and 3, we have plotted lifetime
versus applied electric field for the different carrier-
phonon Hamiltonians. We have used a 100-A quantum-
well width and a barrier thickness of 15 A in our
CxaAs/A1As double-barrier structure. It is clearly shown
that the lifetimes are exponentially decreased as we in-
crease the electric field. This effect is due to the field-
induced tunneling escape process of the electron-hole
pair confined in the quantum-well region. The electron
will escape to the right electrode due to its negative
charge and, simultaneously, the hole will escape to the
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FIG. 3. Hole lifetime vs applied electric field in a 100-A-wide
GaAs/AlAs double-barrier structure. Stars: in the absence of
both carrier-phonon and electron-hole interactions. Circles: in-

cluding Coulomb interaction. Squares: including interface
modes and Coulomb interaction in the calculation. Triangles:
including confined modes and Coulomb interaction in the calcu-
lation. Diamonds: including Coulomb interaction and both
confined and interface modes in the calculation.
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25/2
r-exp [( Vo —E)+m *(Vo E—)

3FA

+(doF V—o+E)+m *(Vo E——doF)] ',

(16)
where E is the carrier bound energy. In Eq. (16), it is
found that the term in the exponential is affected by an
F coefficient. If we increase F, the electron lifetime is
exponentially decreased. In this way, the exponential
behavior of the curves plotted in Figs. 2 and 3 is ex-
plained. In general, the hole lifetime is higher than the
electron lifetime as shown in Figs. 2 and 3. This can be
easily explained if we notice that the field-induced tunnel-
ing in the valence band is difBcult due to the higher hole
effective mass. We can clearly notice this effect in Ep.
(16) where the exponential factor is affected by a +m*.
Increasing the effective mass, the lifetime is also in-
creased.

In Figs. 2 and 3, we have obtained a 20% higher elec-
tron and hole lifetime values if the Coulomb potential is
included in our calculations. Such an effect is given by
the electron-hole interaction. By contrast, the existence
of phonon modes in the quantum well increases the car-
rier lifetime values several times. Such a result can ex-
plain in part differences between theory and experi-
ments. In Figs. 2 and 3 we have found that the calcula-
tion for both confined and interface modes is important
in both cases. Such a numerical result can be easily ex-
plained as follows. It is known that the interface modes
are important for not too wide and not narrow quantum
wells. This is the 100-A-wide quantum-well case. In ad-
dition, we know that the total effective mass can be writ-
ten as 6m *=5m c +6ms +5m „* where, &m c', 5ms, an
6m& are the contributions from the confined, symmetric,
and antisymmetric carrier-phonon Hamiltonians, respec-
tively. The importance of each phonon mode will in-
crease the corresponding effective-mass value, i.e., 6mc,
5ms', or 5m „*. Taking into account Eq. (4), we can notice

that the total effective-mass value will determine the dy-
namics of the carrier wave packet, and thus, the lifetime.
From a semiclassical point of view, and using Eq. (16),
we can notice that if we increase the effective mass, the
obtained tunneling time is also increased. In this way, we
will have the corresponding effective-mass contribution in
each case obtaining the different electronic lifetimes.
Taking this into account, we know that for d ~ 100 A the
confined contribution is larger than that of the interface
modes. In this way, we can control the role of each pho-
non mode in the tunneling process varying the quantum-
well width.

In summary, in this work we have numerically in-
tegrated in space and time the effective-mass Schrodinger
equation for an electron-hole pair in a double-barrier
structure considering the carrier-phonon interaction.
The carrier lifetimes have been obtained at different ap-
plied electric fields. Using a semiclassical equation for
the tunneling time, the exponential dependence of life-
time with I has been analyzed. The field effect on the lo-
calized wave packets has been used to explain the ob-
served lifetimes. Using not too wide and not narrow
quantum wells (i.e., d = 100 A), both interface and
confined phonon modes are important to study the
electron-hole wave-packet dynamics in the double-barrier
structure. By contrast, in the wide quantum-well case
(i.e., d ) 100 A), the confined contribution is larger than
that of the interface modes. In such a case, only the con-
tribution of the confined modes will affect the obtained
lifetime values. In this way, the carrier-phonon interac-
tion can explain in part the differences between experi-
ments and theoretical models. In addition, varying the
quantum-well width, it is possible to control the role of
each phonon mode in the obtained carrier lifetime. This
effect should be taken into account from a practical point
of view in the different Stark-effect-based quantum-well
devices.
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