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Hydrogen rebonding and defect formation in a-Si:H
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The e8ect of short-range hydrogen rebonding in creating metastable defects in a-Si:H is studied
with a tight-binding molecular-dynamics model that takes into account both electronic and struc-
tural energies. The formation energy of defects created by transferring hydrogen from Si-H sites
to weak Si-Si bond sites is found to scale linearly with the Si-Si bond length. This H rebonding
mechanism can account for several features of thermally generated and light-induced defects. This
suggests that the bond-length disorder may be the dominant factor in controlling the defect density
in a-Si:H.

Si-H+ Si-Si -: :- Si* + Si-H-Si,

has been proposed by Smith and Wagner and Street
and Winer as the underlying mechanism of defect equi-
libration in a-Si:H networks. This process has also been
invoked as a possible microscopic model for the light-
induced degradation (i.e., Staebler-Wronski eff'ect ) in
a-Si:H. The hydrogen insertion reaction occurs during
film growth where excess H from the growth fIux anneals
weaker Si-Si bonds at the growth surface. H difFusion in
a-Si:H involves the motion of H in a transport state, &om
where it may be trapped in a weak Si-Si bond such as

Defect formation in amorphous semiconductors, and
in hydrogenated amorphous silicon (a-Si:H) in particu-
lar, has been of intense interest for fundamental stud-
ies and for consequences for device performance. It is
now well recognized that both the thermally generated
(equilibrium) and light-induced defects in a-Si:H are sil-
icon dangling bonds that reduce the eKciency of solar
cells. Hydrogen does passivate dangling bonds, but it
may play a complex role in also creating metastable de-
fects. Among all the microscopic mechanisms proposed
for defect creation, the idea of bond breaking and weak-
bond to dangling-bond conversion 5 provides the ba-
sis for much of our current understanding of the defect
creation and metastability in a-Si:H. However, further
progress in understanding what controls the defect den-
sity or the quality of the material requires reliable infor-
mation on the energetics of the defect creation processes.

In this paper, we present tight-binding molecular-
dynamics simulations of dangling-bond formation energy
over several defect sites in a computer-generated a-Si:H
model and demonstrate the importance of the bond-
length disorder in controlling the total defect density of
the material. We 6nd the H-induced process can account
for both thermal and light-induced defect creation. How-
ever, this H-induced process does not preclude the occur-
rence of other defect creation mechanisms that may be
operating simultaneously.

The fundamental H-induced defect creation process we
study involves transferring the hydrogen &om a Si-H
bond site to a weak Si-Si bond, leaving behind a dan-
gling bond (Si*) and producing a H defect complex at
the weak Si-Si bond. This process, represented by

in reaction (1). Hence a quantitative knowledge of the
energetics of this H-rebonding process is fundamental to
an understanding of hydrogen in the amorphous network,
and applicable to several diverse processes in a-Si:H.

Our calculations are based on the tight-binding
molecular-dynamics approach, which has emerged as a
versatile tool for the study of complicated processes and
simulates cells of several hundreds of atoms for which first
principles calculations may not be feasible. The reliabil-
ity of this approach has been demonstrated through ex-
tensive simulations of the structural and dynamical prop-
erties for silicon and carbon, including bulk crystalline
structures, point defects, amorphous and liquid states,
and C clusters. In this approach, the electronic states
are approximated by a superposition of atomic orbitals.
By fitting the parameters of the Si-Si and Si-H model
to both ab initio calculations and experimental data, we
have been able to successfully model ' a wide range of
properties of crystalline silicon, Si-H vibrational prop-
erties in good agreement with experiment, and the en-
ergy surface of H in c-Si, including the stability of bond-
centered H for positive and neutral charge states and
tetrahedral-interstitial H for the negative charge state.
Most importantly, the tight-binding model describes well
the electronic and structural properties of a-Si:H mod-
els. H dift'usion in c-Si has also recently been successfully
modeled with tight-binding molecular dynamics.

The defect formation energy of (1) is the difference
in total energy before and after the reaction, calculated
after full relaxation with a steepest-descent algorithm.
The total energy includes the electronic, lattice, and
Coulomb energies associated with charge-transfer efFects,
and, most importantly, includes the large structural re-
laxation energy that would not be accounted for by ap-
proximating energies &om difFerences in one-electron lev-
els. We have systematically studied insertion of H into
distinct Si-Si bonds with H from a Si-H site. We utilize
our computer generated a-Si:H model of 272 atoms with
periodic boundary conditions, containing both SiH and
SiH2 species.

Light-induced defects have a low probability (10 s, for
a saturated defect density N, t 10 ), implying that
such a defect site is highly improbable in a finite-size
model of a few hundred atoms. A manifestation of this
problem is the occurrence of weak bonds with extensions
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FIG. 3. The formation energy of the metastable defects

formed through Eq. (1), as a function of twice the difference
in one-electron energies of the dangling bond (Zqb) and de-

pleted valence-band tail state (E ), for the two cells with 5'
(triangles) and 2.5%%uo (circles) dilation. The procedure for ex-
tracting (E„) is described in the text.

extension of AR is N(AR) = ' e ++ ~2 . Here/2~a.
No is the density of Si-Si bonds. The standard devia-
tion of bond lengths ~ has been measured to be 0.062
—0.065 A. at room temperature. ~s Our a-Si:H models
indicate the spread of bond lengths for longer bonds
(AB ) 0) exceeds that for short bonds (AB ( 0). Hence
a somewhat larger o = o+ = 0.065 —0.075 A. can describe
elongated bonds that have LB) 0.

Since the H concentration in device quality samples is
substantial, there are always hydrogen atoms available
on Si-H sites located within 3—4 neighbor shells around
a weak Si-Si bond (unless the H content is lower than
1—2%). Creation of this dangling-bond defect &om (1)
involves very short-range H motion and not long-range
H diffusion. Hence such a defect can be annealed out by
only local atomic rearrangements. The relocation of H
&om a Si-H site to the Si-Si involves the H surmounting
local energy barriers to attain a transport state with en-

ergy Et„ followed by trapping at the weak-bond site —a
complex process which needs to be studied with further
dynamical simulations.

Previous defect equilibria models ' of thermally in-
duced defects are based on conversion of band tail states
of weak Si-Si bonds into midgap dangling bonds. The for-
mation energy was estimated by the difrerence in the one-
electron energies, together with an additional entropy
gain on dangling-bond formation. The density of ther-
mal defects correlated with the slope of the valence-band
tail in agreement with experiment. We examine this ap-
proach by extracting an approximate valence-band tail
state energy (E„) of the Si-Si bond that is removed by
reaction (1) by subtracting the sum of one-electron ener-
gies of valence-band tail states before and after reaction
(1). More precisely, E„represents a region &om which
the valence-band tail states are most strongly depleted.
The calculated defect formation energy differs substan-
tially &om the difference (Egg —E„) of one-electron en-

ergy levels (dotted line in Fig. 3), since there is large
lattice relaxation and lattice strain energy accompanying
the H insertion. Notwithstanding the absence of correla-

FIG. 4. Thermal-equilibrium (solid line) and light-induced
(broken line) densities as a function of temperature, predicted
from a rate equation [Eq. (4)]. The measured equilibrium
defect densities (squares) for two samples are from Ref. 4,
whereas the measured defect density (triangles) is from Ref.
17. The values of cr (300 K) = 0.075 and 0.07 A. are used for
the upper and lower curve, respectively, together with values
of other parameters in the text. Light-induced defect densities
are predicted from the H-relocation mechanism.

tion with the actual formation energy, the difFerence in
one-electron energy levels nevertheless falls in the same
range. This may partially explain why the previous de-
fect equilibration approaches ' were successful. To cal-
culate the defect density, we need (i) to take the calcu-
lated formation energies from tight-binding simulations
and (ii) to use the distribution of weak bond lengths
in a-Si:H, rather than the valence-band tail state ener-
gies. The valence-band tail or the Urbach energy may be
more closely coupled to the bond angle disorder, rather
than the distribution of bond lengths, appearing in the
H-induced reaction here.

The temperature-dependent defect density resulting
from the equilibration between Si-H bonds and the Si-
bonding network is determined by applying thermal-
equilibrium defect expressions to our defect formation
energies, and found to be of the order of 10 around
400 K (Fig. 4) for values of 0. (300 K) &om 0.07 to
0.075 A.. The annealed-state defect density is, in fact, a
measure of the bond-length standard deviation o.. The
predicted defect density agrees well with previous work '

and measured thermal-equilibrium values, ' including
small calculated activation energies (of 0.15—0.25 eV from
a linear approximation to the measurement region in Fig.
4).

The saturated light-induced defect density results kom
a balance between light-induced creation and light-
induced and thermal annealing of the defects xs, xo Light-
induced processes are beyond the scope of the present
calculations. A qualitative estimate of light-induced de-
fects may, however, be obtained by using the rate equa-
tion approach with (a) both light-induced creation (A)
and light-induced annealing (B) terms dependent on &ee-
carrier densities, s and (b) thermal generation to the H-

transport energy E&„ involving a thermal annealing en-

ergy barrier (Eq, —E), where E is the defect formation
energy. The saturated defect density requires solving
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2[, + v exp( —&&)j~(E)
A B AE

~2 + ~g + vo exp( — '&7 ) + vo exp( —
kT )

(4)

where vo is the phonon frequency ( 1.4 x 10 Hz)
and Et, ——1.5 eV, obtained &om hydrogen difFusion
measurements. In evaluating K(E) with Eq. (2), we use
an Einstein model for the temperature dependence of o,
o.2(T) = oo2 + M&z coth( &eT), where 8@ = 700 K is the
Einstein temperature calculated &om the optical phonon
&equency and oo is &om structural disorder. The equi-
librium defect density (Fig. 4) can be simply extracted
from (4) by setting A = B = 0.

Values of A and B of (6.3 x 10~ ) for AM1. 5 illumi-
nation were derived &om previous rate equations. The
calculated N, q shows a minimum at 450—500 K, above
which the thermal term dominates. At low temperature
the defect density gradually rises above 10 . A signifi-
cant difFerence &om previous approaches is that the
present pool of defects is not limited to a single total
value, but has an energy and density distribution. The
approach in Fig. 4 and (4) is valid only at higher tem-
perature (above approximately room temperature), oth-
erwise the decrease of the nonradiative eKciency at lower
temperature would have to be incorporated. Other rate
equations may need to be developed for more accurate
comparisons with experiment, ' as well as more quan-
titative evaluation of the light-induced processes. Al-

though results in Fig. 4 illustrate trends rather than

quantitatively accurate densities, this model does allow
a direct estimate of the saturated defect density. Anneal-
ing barriers are in the range of 1.1—1.3 eV (assuming Et,
to be 1.5 eV), in agreement with measurements. s'

In summary, our calculations show the energy of H-
insertion reaction into a weak Si-Si bond scales linearly
with the bond length of the weak Si-Si bond. We have de-
veloped a procedure to systematically generate low prob-
ability configurations with our tight-binding calculations
and Gnite-size models. Short-range H motion and re-
bonding creates dangling-bond defects with single un-
paired electron spins, and a low thermal activation en-
ergy. These defects can account for several aspects of
temperature-induced and light-induced defect densities.
The defect density is controlled by the standard deviation
of the bond-length distribution a quantity that char-
acterizes the "quality" of the sample, and which should
be probed with further measurement techniques.
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