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Master equation for a particle coupled to a two-level reservoir
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We study the quantum dissipative dynamics of a particle coupled linearly to a set of two-level
systems (the heat bath) via the master equation method, which we extract from the path integral
formalism independently from the form of the bath spectral density. We compare our results with
the standard models based on bosonic heat baths, showing their main differences and similarities.
In particular, we study special forms for the spectral density of the bath which give results quite
difFerent from the standard models.

The study of quantum open systems is one of the most
important issues of statistical quantum mechanics, be-
cause of its application to many different subjects such as
thermalization (tendency to thermal equilibrium), lost of
quantum coherence and quantum Brownian motion. This
kind of theoretical approach has been used with success
in order to study macroscopic quantum tunneling, ' evo-
lution of the early universe, and measurement theory,
among others.

The field of quantum Brownian motion had a major
revival after the work of Caldeira and Leggett on the
study of a particle coupled to a set of harmonic oscilla-
tors via the method devised by Feynman and Vernon
using path integrals. The path integral method allows
the tracing over the oscillators variables (the heat bath)
and the studying of the coordinate of interest. As it is
already well known, the dissipation and diffusion of a par-
ticle coupled linearly to a heat bath depend essentially
on the spectral density, J(cu), of the heat bath (which is
related to the response function of the reservoir at some
frequency ur). In the Caldeira-Leggett model, i the dis-
sipation is supposed to be Ohmic, that is, the spectral
density of the bath has the form

Jp(M) = 'gp (d 0(Cdc —(d),

where w is a suitable cutoff &equency. With this spe-
cial choice for the spectral density, Caldeira and Leggett
showed that the semiclassical dynamics of the system is
described by the Langevin equation with a dissipation
coefEcient go.

However, the study of open quantum systems has a
long history with many branches. One of the main
streams of research is based on the study of master equa-
tions (such as the Fokker-Planck equation) for the dy-
namical evolution of quantum systems, which is used in
quantum optics. ' In the seventies, Lindblad gave a gen-
eral mathematical criteria for the classification and exis-
tence of such master equations. More recently, the meth-
ods of master equations has been used extensively in the

literature. ' ' Actually, Caldeira and Leggett obtained
the equation for the evolution of the reduced density ma-
trix, p, (the density matrix after the trace over the oscil-
lators bath), with the Ohmic spectral density (I) and in
the high temperature limit (k~T )) Iuo, ) which, in the
position representation [p, (x, y, t) = (x~p, (t)iy)j, reads,

dp, (x, y, t)
dt

a' ( B'
2m (Bx By2 )

f'B Bi—ill (x —y) ~(Bx By)
+ V1t(x) —VR(y)

(*—y)' p. (* y t) (2)

where m is the mass of the particle, V~ is the renor-
malized external potential, and D„„=2rlok~T/h, I' =
rlo/m, are the difFusion coefficient in momentum space
and the effective dissipation coeFicient, respectively.

In this paper, we address the problem of the master
equation for a different kind of bath which was proposed
recently in the literature by Caldeira et al. and has dis-
tinct features from the models described above. In the
model proposed in Ref. 13, the particle interacts with a
heat bath composed of two-level systems. The Hamilto-
nian of interest can be written as a sum of three terms,
H = H, +H, +Hb, where H, is the Hamiltonian for a par-
ticle in an external potential V(x), H, = p /2m+ V(x),
H; gives the interaction between the particle and the
bath, H; = —P J x cr, and the bath Hamiltonian is
Hb = P (Ru /2) o, where o and o, are the usual
Pauli matrices and J is the coupling constant for the
particle with the nth two-level system.

As it was shown in Ref. 13, the dynamics of the par-
ticle can be evaluated in the path integral formalism via
the Q. Assuming that initially, at some time t = 0 the
particle and the bath are decoupled, the time evolution
of the system can be written as
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p. (. Ty, t) = f dxo dyo j(x, y, t
i xo, yo, 0)

OC) Ru
g(s) = — dat J(~) tanh sin &us.

p 2 g

xp. (xo, yo, 0),

where the superpropagator is given by

y

g(t, 0) = 17x(s) Dy(s)
~VP yo

xexp
Z

(S[x(8)]—S[y( )]) Z [*( ),y(.)].
(4)

In the last equation, E [x(s), y(8)] is the inHuence
functional, and S[x(s)] is the free action for the par-
ticle,

t
S [x(s)] = ds

p

In this paper, we will be interested in the case where
the external potential is harmoinc, that is, V [x(s)]
—,
' m. Oo2 x'(8).

In the weak coupling limit, the inHuence functional
reads,

Sl

O'K„(s) + 2 dsi 77(s —By) K~(si) + Qo K~(s) = 0,
d8 p

with the boundary conditions Ki(s = 0) = K2(s = t) =
1, Ki(s = t) = K2(s = 0) = 0. Then the unknown
functions in (9) are defined as

61(t) = m (dK1/ds) l.=~

bs(t) = m (dK1/ds) ~, o,

b, (t) =m(dK, /d. ) ~. „
64(t) = m (dK2/ds) ~8

—o,

For this particular model, the spectral density is written
as J(od):—Q (J2/h) h(ur —(u ).

Since the double path integral in (4) is quadratic, it
can be evaluated completely in terms of the initial and
final coordinates given by the transformation (6),

Q(t, 0) = Z(t) exp(i/5)[ (61 Qo+ 62 Q) q
—(bs Qo + 64 Q) qo]

exp (1/ti)[ail q + a12 qo q + a22 qo]~

(9)
where the coefficients 6 (n = 1, . . . , 4) and a„(n,m =
1, 2) are given by the solution of the following equations:

I'[q(s), Q(s)] = exp —— dsi
p

x Q(82) g(81 —82)

1
xexp day

p

Xq(S2) V(81 —82)

Sl

ds2 2 q(81)

ds2 q(si)

(5)

a-(t) = 1 t

1+b„p dsy

t
X d82Kn(81) V(81 —S2) Krn(82).

p

Z(t) = 64/2vrh.

Also the normalization factor in (9) is given by

where

q(8) = x(s) —y(s), Q(8) =
2 [x(s) + y(s)], (6)

and the kernels in (5) are given in terms of the spectral
density as

rd(s) = du J(tu) cos ws
p

Using the above equations, we can derive a set of iden-
tities,

b3

b4 bg

b3 +i2 b4
G22 =—

bg
'

b2 b4 m

(the dot over the functions denotes a derivative with re-
spect to t), which we shall use later.

The master equation is obtained using the simpli6ed
method proposed by Paz. Taking the derivative of (3),
with respect to t,, it is straightforward to show that

Op. (q, Q, t) Z i . 1 . , i
Ot Z + 62qQ all q p (q Q t)+ biq clap d p p t 0 P gp, p, 0

+OO
—64 Q+ —a12 q

dljo f
d,. f'

dQo qo Qo Q(t, 0) p, (qo Qo, 0)

dQo qo &(t, o) p. (qo, Qo, o)

+OO

dqo dQo qo J(t 0) p. (qo Qo 0)

Although (ll) seems quite complicated, we can simplify it by taking derivatives of (9) with respect to the end
points, q and Q, which lead to the following relations:
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&(t o) = [(b /b ) + h (1/b ) (&/&Q)] &(t 0)

Qp Z(t, 0) = [—(b2/bi) Q —i (a12 b2/bi b4) q + h (a12/bi b4) (8/OQ) —i (2 aii/bi) q —ih (1/bi) (0/Bq)] Z(t, 0).

By substituting (12) in (ll) and using (10) and (3), we find after some straightforward algebra that

/0 Oi—i Dzz(t) (x —y) p, (x, y, t) + h D z(t) + Dz (t) (x —y)
~

+ —
~
p, (x, y, t) (13)

is the master equation for the reduced density matrix of
a particle coupled to a two-level reservoir. Observe that
the term that represents the diffusion in real space, D
is absent in this model, since the kernels in (7) and (8)
depend only on the time interval si —s2 [see Eq. (5)].
This is a general feature of stationary kernels.

The coefficients that appear in (13) are given by 0&
(bi b2/bi) —b2, which is the renormalized frequency for
the harmonic potential,

v(s) = —qp (1/s'), q(s) = (mph/kgyT) (1/s ),

and the dynamics is non-Markovian. It is interesting to
notice that in the loip temperature limit (k~T && he@,),
the use of this Ohmic spectral density gives

However, if we insist on using the Ohmic spectral den-
sity, Eq. (1), the kernels in (12) and (13) assume, at high
temperatures (k~T && Ru, ), a nonlocal form, namely,

I'(t) = —
2 [(b2/rn) + (bi/2 bi)], (14)

v(s) = —gp (1/s2), g(s) = gp [d8(s)/ds],

which is the dissipation coeKcient,

Dpp(t) = aii —4 aii b2 + a12 (b2/b4)

(bl/bi) [2 all + a12 (b2/b4)]1

which is the diffusion coefficient in momentum space (it
gives the fluctuation in x ), and

b~ a~2 —4 aug

is the diffusion coeKcient which mixes the real space and
the momentum space (it gives the fluctuation in xp+px).

The first observation is that the kernels in (7) and (8)
do not have the same form as for the case of the oscillator
bath, unless we choose a temperature dependent spectral
density of the form

and the only time independent coeKcient in the master
equation is the dissipation one, that is, I'(t) = —"'. This
shows that the two-level system and the oscillator bath
cannot be naively mapped into each other with this spec-
tral density.

Another interesting possibility is a Pat spectral density
of the form

J2 ((u) = 112 0((u, —(u),

which is very common in applications in quantum
opticss (it should be noticed that 112 is dimension-
ally difFerent from gp, gi). In this case, the difFusion is
purely Markovian (without memory) at any temperature,
while the dissipation coeKcient presents a transition &om
Markovian to non-Markovian depending on the temper-
ature scale, that is, substituting (19) in (7) and (8) and
taking the high temperature limit, we find

Ji(~) = gi ~ coth (fur/2k~T)0(u, —(u), (17) v(s) = 1l2 h(s), q(s) = (g2h/2k&T) [d8(s)/ d]s,

v(s) = (2', k~T/h) b(s), q(s) = qi [d6(s)/ds].

Moreover, the coefficients that appear in (14) —(16) are
given by

I'(t) = —,D „(t) = D„(t) = 0, D„„(t)=

(18)

as expected.

as it was first realized in Ref. 13 [it reduces to the spectral
density (1) when T ~ 0]. With this choice, the bath
of oscillators is indistinguishable from the bath of two-
level systems. For example, in the high temperature limit
(k~T && Ru, ), using (17), we find (in what follows, we
will look for time scales such that s » u, )

and the coefBcients in the master equation are given by
I'(t) = g2h/2mkgyT, D (t) = D„(t) = 0, D„„(t)= g2.
Observe that in this case, the dissipation coeKcient has
temperature dependence (it decreases with the temper-
ature) and the difFusion coeKcient is temperature inde-
pendent. This result must be compared with (18), where
the dissipation does not depend on the temperature, but
the diffusion increases with the temperature.

As a last comment, we would like to stress that mas-
ter equation (13) has been derived with the only as-
sumption of weak coupling (although the transport coef-
ficients have been obtained in the asymptotic long time
limit). These approximations will generally lead to vi-
olations of positivity of the density matrix and, there-
fore, Eq. (13) may not be a master equation in the strict
sense for the model studied in this paper. For a parti-
cle coupled linearly to a set of harmonic oscillators (the
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Caldeira-Leggett model), Eq. (13) is exact, because the
problem becomes quadratic. However, Eq. (2), which is
a weak coupling approximation for Eq. (13), cannot be
written in Lindblad s form and actually violates positiv-
ity of the density matrix. This is just an effect of the
rough approximations used to simplify it. This prob-
lem has been discussed in great detail in the literature
of master equations. However, Eq. (13) does not vio-
late positivity for the Caldeira-Leggett model and it is
an exact master equation due to the explicit time depen-
dence of the transport coeKcients. As it was shown in
Refs. 10 and ll, positivity is strictly preserved for the
Caldeira-Leggett model when it is solved exactly.

In conclusion, in this paper we obtained a master equa-
tion for a harmonic oscillator coupled to a reservoir con-
sisting on two-level systems in the weak coupling limit.
We show that the kernels, which generate the diffusion
and dissipation coeKcients in the master equation, have a

different form from the standard cases of heat baths com-
posed of harmonic oscillators. We confirm the results of
Caldeira et aL that the results obtained with an oscil-
lator bath can be recovered from a two-level system bath
by a temperature dependent spectral density (which re-
duces to the Ohmic one when T -+ 0). We showed that
the usual Ohmic spectral density produces a different
kind of behavior from the usual oscillator model. We
also studied the case of a flat spectral density (usually
used in quantum optics), which produces a different kind
of diffusion and dissipation for the quantum dynamics of
the particle.
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