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Asymmetric bands in solids due to interplay of topological and substitutional defects
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We have studied the combined effect of topological and substitutional impurities on the band structure
of solids. An interplay of the two types of impurities can make the band asymmetric around the band
center with uneven distribution of eigenenergies on either side of it. This signifies a complete breakdown
of particle-hole symmetry.

In recent years, advances in microtechnology have
made it possible to fabricate artificial structures as small
as a few hundred angstroms, such as high-mobility metal-
lic wires, quantum dots, point contacts, etc., grossly
known as mesoscopic systems. ' The transport proper-
ties across such various geometrical structures have been
extensively studied. One commonly studied structure is
the T-shaped structure. It consists of a main wire
that extends from —~ to + ~, and there is a finite chain
(or stub) attached to it. The system is often taken to be
one dimensional (1D) and it represents the real situation
of such quantum wires and quasi-1D systems at low tem-
peratures when the Fermi energy is so adjusted that only
the first subband propagates. ' ' Such 2D systems
have also been studied using continuum models. ' The
basic feature that has attracted such wide-scale attention
is that these systems can produce transmission zeros (or
antiresonances) and sharp changes in the transmission
coefticient with changes in length of the stub, which nev-
er appears in the case of scattering by potentials. Study
has been extended to a serial arrangement of stubs ' and
the effect of a single defect in a serial arrangement of
stubs. Such artificially fabricated structures are very
promising as ballistic transistors and switches.

A solid in general consists of a periodic arrangement of
lattices. The tight-binding model is very appropriate for
describing solids, where the electron "feels" the periodici-
ty of the underlying lattice and has a band structure due
to it. However, . a realistic solid consists of departures
from perfect periodicity. Such departures have been
studied in the form of substitutional impurities and disor-
der in hopping parameters in the tight-binding mod-
el. ' '" The study of intrinsic topological defects associat-
ed with randomness in geometries has also recently at-
tracted attention. Some materials in which one en-
counters such defects are percolation clusters, fractals,
and branched polymers. They may also explain the
transport properties of dirty quantum wires. Here one
intends to study a T shaped structure as a defect rather
than an artificially fabricated device. Again, the fact that
such defects can produce transmission zeros drastically
affects the transport properties of these systems. In this
paper we have focused our attention on the aspect of T-

shaped structures as defects. We show that an interplay
between topological and substitutional defects can pro-
duce other nontrivial changes in addition to producing
transmission zeros. To this end we have considered sub-
stitutional defects located inside a topological defect
(which is a T-shaped structure), and a real solid may well
consist of such structures. Our study is restricted to the
effect of one such defect only (the single-impurity prob-
lem). We consider the system 1D because it is sufficient
to help us to draw our conclusions. Thus the system con-
sists of a perfect periodic system with a geometrical de-
fect made up of a few sites. There are some substitutional
impurities in this finite chain. We intend to study the
effect of this type of impurity on the infinite periodic sys-
tem. Our study shows that such a defect can make the
band of the periodic system asymmetric, with an uneven
distribution of the eigenenergies on either side of the
band center. This does not happen in the case of a finite
amount of substitutional defects or disorder in hopping
parameters or simple geometrical defects. Earlier
works ' ' considered potential impurities inside the
stub, but, as they considered free-electron propagation as
plane waves, they missed the effect that such defects can
produce on the band of an infinite lattice.

When the side chain consists of a single site as in Fig. 1

the impurity can lie at either B or C or at both the sites.
The perfect sites are taken to be of zero site energy ac-
cording to the usual practice, and the hopping parameter
V is taken as 1 everywhere. The site energies at B and C
are ez and e&, respectively. We solve this problem
analytically using the same procedure as in Ref. 3. That
is, the effects of sites C and B can be replaced by an
energy-dependent self-energy acting only on the site B,
i.e., Xa(E). So we have a single impurity in an infinite
chain whose effective site energy is X~(E).

Using standard Green's-function technique, we find

If we set e~ =0 (ec =0), then we obtain the results for
the impurity being at site C (B). Setting both at zero we
obtain the same result as that of Ref. 3. We know the
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FIG. 1. A finite side chain attached to an infinite wire.

tight-binding Hamiltonian has particie-hole symmetry,
and as a result the distribution of its eigenenergies,
transmission coe%cient, etc. are all symmetric around
E =O. Because of the particle-hole symmetry of the
Hamiltonian, the particle and hole bands (the dispersion
curves) differ only by an overall sign apart from some
unimportant additive constants, that can always be set to
zero. The negative sign in front of the hole band can be
removed by a transformation k~k +sr/a, where a is a
lattice constant. So with the help of this (half a band)
translation (which is just a shift of origin) the hole band
can be made to coincide with the particle band complete-
ly. Even if a finite number of defect sites (substitutional
impurities) are present in the chain, the band remains un-
changed except at some isolated points. Hence the sym-
metry of the band is still maintained, and the particle and
hole bands are identical. ' Any amount of disorder in the
hopping parameter or topological defects alone also can-
not destroy the symmetry of the band. However, in our
case, the band becomes completely asymmetric even due
to a single impurity. It happens because of the special
form of the effective self-energy X~ (E)[W Xz (

—E) ]
which arises solely due to an interplay of geometrical and
substitutional impurities. As the effective site energy is
asymmetric about E =0, it will make the band of the
solid asymmetric as well. If one sets ez=ec=O, then
this asymmetry disappears. This band asymmetry im-
mediately manifests itself on the conductance of the sys-
tem, as our subsequent calculations will show. They will
also show the extent of the asymmetry of the band. There
are also a variety of other phenomenon that depend ex-
plicitly on the symmetry of the band. Important among
them are the nesting of the Fermi surface, charge-density
and spin-density wave formations, Bloch oscillations and
Wannier Stark localization, etc. In 1D, as the Fermi sur-
face consists of two points„nesting is not destroyed but
the band asymmetry can effect the commensurateness of
the density waves. However, the form of the effective
self-energy given in Eq. (1) suggests that a few such de-
fects can also make the band of an infinite 20 periodic
system (infinite or very large on all sides) asymmetric, and
there the effects on charge- and spin-density waves may
be more drastic. Simple substitutional defects cannot des-
troy the symmetry of the band, and they just result in a
pinning of the charge-density waves.

The conductance of a two-port sample is directly relat-
ed to the quantum-mechanical transmission by
Landauer's two-probe conduction formula. ' Using stan-
dard tight-binding techniques, one can analytically calcu-
late the transmission coeKcient across a single defect
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FIG. 2. Transmittance vs energy when all sites are perfect.
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FIG. 3. Transmittance vs energy when a single substitutional
impurity is at 8.

whose effective site energy is given in Eq. (1). In Fig. 2
we have plotted the transmission coeKcient versus energy
for a case a~=ac=0. This case exhibits a symmetric
band. We have calculated the transmission (or the dimen-
sionless conductance of a two-port sample) across the
sample for two cases (e~AO, ec =0; e~ =O, ecWO). They
are shown in Figs. 3 and 4. We observe a strong energy
dependence of the transport properties with the conduc-
tance vanishing at certain energies, as in Ref. 3. We ob-
serve that the conduction band becomes completely
asymmetric, with a definite line shape in Figs. 3 and 4.
The conduction band directly reAects the distribution of
eigenenergies in the band, and the asymmetry results
solely due to the asymmetry of this distribution of the
eigenenergies of the infinite periodic system with a single
defect. For any other type of defect the conduction band
is symmetric about the center of the band, because in
those cases the distribution of eigenenergies is also sym-
metric. It is also symmetric for geometric defects alone,
as evident from Fig. 1.

We now consider a situation wherein a side chain is
composed of several lattice points or atoms. This will
help us to understand the line shape of the transmission
bands and the origin of the asymmetry more physically.
Transport across such a long side chain, with substitu-
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dered side chain causes the Anderson localization of the
states inside it. Such localized states are weakly coupled
to the continuum states of the main chain, and give rise
to Fano-type resonances. In Fig. 6 we plot transmittance
versus energy for such a chain for three values of
W/V =0 (dotted line), 1 (dashed line), and 2 (solid line).
Again W/V=0 is the case for perfect sites. When this
chain is gradually made shorter then the zeros again
move out of the band, and in the shortest situation we
have the case of Fig. 1 with a substitutional impurity at C
which gives the asymmetric band as in Fig. 4.

We conclude by stating the main results of this work.
An interplay of substitutional impurity and geometrical
defect can drastically modify the band of the host solid,
making it asymmetric about the band center with an

uneven distribution of eigenenergies on either side of it.
This does not happen for any other type of defects or im-
purities. Our study of a single-impurity problem shows
the robustness of the effect. This signifies a complete
breakdown of particle-hole symmetry. We have explicitly
shown the effect this produces on the conductance of the
1D periodic system, but this effect will manifest itself on
all phenomena that depend on the symmetry of the band.
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