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Self-consistent tight-binding method
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A self-consistent tight-binding formalism is described. The self-consistency is achieved by the intro-
duction of a chemical hardness matrix and a generalization of the Hiickel model to make the tight-
binding Hamiltonian an implicit functional of the charge density. Studies of the band structures of dia-
mond and face-centered cubic Si demonstrate that the method has very good transferability and shows
promise for applications to systems involving large charge transfer. Also, the method can easily be im-
plemented to study spin-polarized systems.

The tight-binding (TB) method is one of the most wide-
ly used methods in theoretical solid-state physics and ma-
terials science. It has been applied, for example, to study
the band structures of semiconductors' and the mag-
netic properties of transition metals. Besides its compu-
tational efficiency, the TB method is a very useful tool to
study electronic structure because first-principles tech-
niques based on the local-density approximation (LDA)
usually underestimate the band gaps of semiconduc-
tors. ' Another important application of the TB method
is tight-binding total-energy (TBTE) calculations.
The recent development of the order-X density-matrix al-
gorithm' ' makes the TBTE approach even more
promising for the future. So far, most TB studies have
been focused on monatomic systems It is quite difficult
to extend TB studies to binary systems, especially to
those polar systems involving large charge transfer, be-
cause the parameter fitting involved is much more com-
plex and ambiguous. Drawbacks of the TB approach
that have been noted in the literature include transfera-
bility and self-consistency. Both of these questions are
addressed in this paper.

We propose a self-consistent tight-binding (STB)
scheme to circumvent some of the difficulties related to
non-self-consistency. In this approach, with the intro-
duction of a chemical hardness matrix and a generaliza-
tion of the Hiickel model, the one-electron TB Hamil-
tonian is self-consistently determined according to the
charge distribution so that the effect of charge transfer is
explicitly taken into account. The method is expressed in
terms of nonorthogonal bases. Most input parameters,
such as atomic eigenvalues, chemical hardness matrices,
and atomic basis functions can be obtained directly from
ab initio atomic calculations. The scaling functions used
in the generalized Hiickel model can be fitted to the first-
principles band structure; this is the only fitting involved.
The method has been applied to calculate the band struc-
tures of silicon in the diamond and face-centered cubic
(fcc) structures. The scaling function was first adjusted
for the diamond structure. Not only the valence bands
but also the two lowest conduction bands obtained are in
excellent agreement with the first-principles results, after
adjusting the latter to give the correct band gap. Using
the same scaling function, the bands of fc silicon were
then calculated. The results are again in rather good

agreement with the first-principles calculations, showing
the good transferability of the method.

We begin the discussion with the definition of the
chemical hardness matrix. The total electronic energy of
an atom can be expressed as a functional of the occupa-
tion numbers of the electronic states,

E, =EIn, } .

Assuming the occupation numbers n; to be continuous
variables, E, can be expanded in a Taylor series,

E, =ED+ g b, n, + —g b, n, An
9E 1 BE

1 BE+ —g b,n;An hn&+. . . .

The eigenvalue of an electronic state is defined as
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Then we can show that
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where we have defined
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as the first- and second-order chemical hardness matrices.
Higher-order terms are neglected in Eq. (4).

The concept of the chemical hardness matrix was in-
troduced by Parr and Pearson. ' Physically, it describes
how the chemical potential of an isolated system will
change in response to a change in the number of elec-
trons. More recently, Teter has used the chemical hard-
ness matrix as an additional condition to generate norm-
conserving pseudopotentials. ' He showed that the

0163-1829/95/52(15)/10677(4)/$06. 00 52 10 677 1995 The American Physical Society



10 678 BRIEF REPORTS 52

transferability of the pseudopotential could be improved
substantially with this additional condition, which im-
plies that the chemical hardness matrix is an intrinsic
atomic property that represents the change of the eigen-
value in response to the change in the electronic
configuration. In the following, we will show that thy
chemical hardness matrix can readily be incorporated
into the TB formalism to determine the diagonal ele-
ments of the Hamiltonian. In combination with a gen-
eralized Hiickel theory, the whole Hamiltonian can then
be determined self-consistently.

The TB method is generally formulated within the
linear-combination-of-atomic-orbitals (LCAO) approxi-
mation. The total charge density of a molecular or solid
is decomposed into one-center contributions of effective
atomic density. The renormalized atomic density will
redefine the effective atomic eigenvalues in the new chem-
ical environment. In the STB scheme, instead of treating
the diagonal elements of the TB Hamiltonian as adjust-
able parameters in the conventional way, we set the diag-
onal elements equal to the effective atomic eigenvalues,
namely,

which can be calculated directly from Eq. (4). As a re-
sult, this part of the Hamiltonian becomes an implicit
functional of charge density since the effective atomic oc-
cupation number n; in a molecule or solid represents the
integrated charge density in the subspace of orbital i. For
the off-diagonal elements, we adopt a generalized Huckel
model to scale them in accordance with the diagonal
terms as the following:

H,J =K;i(H;; +H )S;.
where S," is the overlap matrix element and E," is a scal-
ing function that will be discussed in detail later. In this
way, the Hamiltonian has to be found self-consistently
because it depends on the integrals of the charge densities
of the orbitals, i.e., the occupation numbers n, In each
step, n; can be obtained either from Mulliken analysis if
the Hamiltonian is solved by direct diagonalization or
from the diagonal terms of the density matrix if the Ham-
iltonian is solved by the density-matrix algorithm. ' '
For large systems, the latter approach is highly recom-
mended because of its superior linear-scaling property.

We use Si as an example to demonstrate the validity of
the method by calculating the band structures of the dia-
mond and fcc structures. First, to obtain the reference
atomic eigenvalues [e, in Eq. (4)], we carried out LDA
atomic calculations at the ground-state electronic
configuration with n, =2 and n =2, where n, and n
denote the occupation numbers of the s and p levels, re-
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FIG. 1. Slater-Koster overlap integrals as a function of in-
teratomic distance. Symbols are data from the dimer calcula-
tions and smooth lines are least-square fits to the data using Eq.
(11).
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—1.314 —3.360 —1.440 (10)

Next, we did a number of Si-dimer calculations, using
the discrete variational LCAO —molecular-orbital
method. ' ' The overlap matrix elements were decom-
posed into Slater-Koster overlap integrals
(S„,S,~,S~,S~~ ) within the two-center approxima-
tion. In Fig. 1 we plot the resultant overlap integrals
as a function of interatomic distance r. As one can see,
all of the overlap integrals decrease monotonically in
magnitude as the interatomic distance increases, except

0S,which turns up at a separation of 2.3 A. Also, all of

spectively. To obtain the atomic eigenvalues as a func-
tional of occupation number, we did a series of atomic
calculations with n, and n varying from 0 to 4. The re-
sults were fitted to Eq. (4) to extract the first- and
second-order chemical hardness matrices as the follow-
ing, in units of eV/electron and eV/electron, respective-
ly:

8.343 7.423(&)—
7.550 6.808

TABLE I. Coefficients used in Eq. (11)for calculating Slater-Koster overlap integrals.

SSCT

sp 0'

pp~
pp&

ao

1.9021
2.6300
2.4340
2.1277

87.821
1465.8
2082.4

117.48

—132.90
—2637.0
—3631.7
—178.20

a3

76.515
1756.3
2352.2

101.91

a4

—16.518
—510.22
—656.86
—21.479

1.1826
48.720
60.977

1.4831
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0
the overlap integrals die out at about 5 A, so we used a
cutoff of 5 A for the matrix elements in the solid-state
STB calculations; this corresponds to the inclusion of up
to the third-nearest neighbors in both the diamond and
fcc structures. The smooth curves in Fig. 1 are least-
square fits to the calculated data with the functional form

—aor
S~ =e ' (a&+a2r+a3r +a4r +a5r ) .
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These fits were used in the solid-state STB calculations.
The fitting coeKcients are tabulated in Table I.

From the dimer calculations, using Eq. (8), we also cal-
culated the scaling factors K; in the Huckel model from
the elements of the Hamiltonian and the overlap matrix.
In general, these scaling factors were found to increase
with increasing separation rather than remaining con-
stant. We therefore chose to use a generalized Huckel
model with distance-dependent scaling functions of the
form

aor
K; =e ' (a&+azr+a3r ) .

We first calculated the band structure of diamond-cubic
Si with all of the input parameters obtained from atomic
and diatomic calculations with no further fitting. The re-
sults, however, were not satisfactory. For example, in-
stead of an indirect band gap of 1.1 eV, we obtained a
direct gap of 1.2 eV at the I point. We therefore repeat-
ed the calculations, adjusting the scaling functions E, .

until the best bands were achieved. The optimized
coeKcients are listed in Table II.

We started the STB calculations of the band structures
of diamond and fcc Si by setting up the initial Hamiltoni-
an with the ground-state atomic eigen values
(H„=e, = —10.86 eV and H~~

=e~ = —4.2 eV) and oc-
cupation numbers (n, =2, n =2). In both cases, it only
took a few cycles (-4) for the Hamiltonian to converge.
The converged effective atomic electronic configurations
are n, =1.416 and n =2.584 for the diamond structure
and n, =1.767 and n =2.233 for the fcc structure. In
Fig. 2, the STB band structure of diamond-cubic Si at the
experimental lattice constant of 5.4 A is plotted in com-
parison to the LDA band structure obtained from the
pseudopotential plane-wave calculation. The top of the
valence bands at the I point has been aligned for the two
calculations. The LDA conduction bands have been
shifted upward rigidly by 0.60 eV relative to the valence
bands to match the experimental band gap. Also, we
have intentionally made the STB valence-band width
slightly larger than the LDA bandwidth to agree with the
experimental value. The dispersion of all of the STB
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FIG. 2. Band structure of diamond-cubic Si at the equilibri-
um lattice constant. Solid lines are STB results and dashed lines
are LDA results. The top of the valence bands has been aligned
for the two calculations. The LDA conduction bands have been
rigidly shifted up by 0.60 eV.

valence bands as well as the two lowest conduction bands
agrees very well with the LDA results. The rms devia-
tion of these bands is 0.11 eV, which is about the same as
the best that has previously been achieved. ' The agree-
ment for the two topmost conduction bands is not as
good, possibly because these two high-energy bands in-
volve contributions from 3d and 4s states. Using the
same set of input parameters, we then applied the STB
method to calculate the band structure of fcc Si at the lat-
tice constant of 3.8 A, which is theoretically predicted
from LDA pseudopotential total-energy calculations.
The results are shown in Fig. 3. Again, the agreement
between the STB and LDA bands in the energy region up
to a few eV above the Fermi energy is fairly good, with a
rms error of 0.46 eV up to the Fermi energy. Allen
et al. showed that reasonably transferable nonorthogo-
nal Slater-Koster parameters could be obtained within a
group of hypothetical structures of Si at the constant
density of the diamond structure by fitting them simul-
taneously to the first-principles band structures of the
various members. Here we are able to show that the STB
parameters adjusted for the diamond structure can pro-
duce fairly good results for the fcc structure. The fact
that the two systems studied here have very different

TABLE II. Coe%cients used in Eq. (12) for calculating scaling functions of the generalized Huckel
model.

SS0
spg
pp~
pp 7T

ao

0.468 84
0.595 60
0.578 09
0.619 51

a&

0.641 76
0.481 50
0.499 66
0.630 20

ap

—0.230 55
—0.173 16
—0.185 36
—0.232 98

a3

0.026 428
0.020 419
0.024 962
0.027 049
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coordination numbers (4 vs 12) and quite difFerent atomic
densities (0.051 vs 0.073 atoms/A ) demonstrates the
good transferability of the STB method.

%'e would like to point out that the chemical hardness
matrix introduced here can be easily implemented in any
existing tight-binding scheme as a way to readjust the
on-site diagonal elements to improve the transferability.
It can be applied not only to the band-structure calcula-
tions but also to the TBTE calculations. Tomanek and
Schliiter and Goodwin et al. ' have shown that to use
the TBTE scheme designed for the bulk phase to study
clusters one has to add an additional term to the total en-
ergy to treat the intra-atomic Coulomb interactions. The
Coulomb repulsion parameter used in the term can be
considered, in a way, as a simplified first-order chemical
hardness matrix with all diagonal elements equal to the
Coulomb repulsion energy and all off-diagonal elements
equal to zero. It treats the effect of net charge transfer
between atoms in an approximate way but ignores the
effect of charge promotion among the electronic levels
within the atom. More recently, Mercer and Chou'" in-
troduced an intra-atomic matrix to change the on-site en-
ergies according to the local coordination and geometry
in order to eliminate the structure-dependent function in
the total-energy expression. Cohen et al. ' devised a TB
approach with on-site terms varying as a function of local
"density" to improve the transferability for metallic sys-
tems.

In conclusion, we have described the formalism of a
self-consistent tight-binding method. Two key in-
gredients of this method are the introduction of the
chemical hardness matrix and the generalization of the
Huckel model. The method has several advantages over
the conventional non-self-consistent approach. First, as
demonstrated by the studies of the band structures of
diamond-cubic and fcc Si, the self-consistency leads to
good transferability. Second, the method should be espe-
cially useful for systems involving large charge transfer,
because the Hamiltonian is a functional of the charge dis-
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FIG. 3. Band structures of fcc Si at the equilibrium lattice
constant. Solid lines are STB results and dashed lines are LDA
results. The horizontal line at 1.1 eV marks the position of the
Fermi energy, which is aligned for the STB and LDA bands.

tribution and the effect of charge transfer is included in a
self-consistent manner. Third, many input parameters
can be directly obtained from atomic, diatomic, and
molecular calculations, so the amount of fitting work is
reduced. Finally, the method can easily be extended to
study magnetic problems by employing a spin-dependent
chemical hardness matrix which can be obtained from
spin-polarized atomic calculations.
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