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Photonic-band-structure calculation of material possessing Kerr nonlinearity
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A technique for calculating the photonic band structure of a photonic crystal possessing Kerr non-
linearity and a calculation for a two-dimensional system that shows shifting of the band gap due to the
nonlinearity are presented.

The free-photon dispersion can be greatly modified in
the presence of a periodic structure. The search for a
structure that possesses gaps in the photonic dispersion
has received a lot of attention because it is predicted that
many new physical phenomena can occur in such a struc-
ture, including inhibition of spontaneous emission,
strong localization of light, and a photon-atom bound
state. Quite a few theoretical techniques have been ap-
plied to calculate the photonic band structure. Many of
these were developed originally for electronic-band-
structure calculations. The plane-wave expansion, the
Korringa-Kohn-Rostoker (KKR) method, ' the on-shell
theory of electron diffraction, and the k.p method' are
a few examples. These methods, however, are not suit-
able for a photonic crystal that possesses nonlinearity. It
is of great interest to have a method for calculating the
photonic band structure of a periodic structure possess-
ing nonlinearity since many interesting and useful phe-
nomena such as second-harmonic generation and solitons
can occur with nonlinear interaction.

Winful, Marburger, and Garmire" have shown that
optical bistability can occur in nonlinear-distributed feed-
back structures. Later Chen and Mills' demonstrated,
through a numerical study, the existence of a gap soliton
in a one-dimensional superlattice, and that the gap soli-
ton plays a key role in the switch from a low- to a high-
transmissivity state of the superlattice. Mills and Trul-
linger' subsequently obtained an analytical description
of the nonlinear equation of the gap soliton. Recently,
John and Akozbek, ' through a variational technique,
predicted the existence of a gap soliton in a two-
dimensional (2D) periodic structure. Yablonovitch' has
discussed the many possible applications of photonic ma-
terials, with a gap mode, such as high-gain cavities. In
linear materials, a gap mode is introduced through de-
fects which can be hard to control, particularly for a
structure that operates in the optical regime and requires
a size of order 10 5ngstroms. The gap soliton may elimi-
nate the need for defects altogether.

In this paper we present a numerical technique based
on the finite-difference time-domain (FDTD) method' to
calculate the photonic band structure of a dielectric
structure possessing Kerr nonlinearity. The FDTD tech-
nique has been used extensively by the radar community
to calculate the radar scattering cross section of complex
objects. Chan et al. ' were the first, to our knowledge, to
use this technique for the purpose of photonic-band-
structure calculation, but only in the linear regime. The

idea of the FDTD technique for photonic-band-structure
calculation is very simple. We begin with a field distribu-
tion (B and E) that contains a spectrum of wave vectors k
and integrate the two coupled time-dependent Maxwell's
equations to get B(k, t ). We then Fourier transform it to
get B(k,co). For a given k, the Maxwell's equations,
when integrated, will select the frequency that is permis-
sible. The two coupled Maxwell's equations are

1 BB =V'XE,
c Bt

1 BD VXB,
c Bt

(2)

where c is the speed of light and D is related to E
through the constitutive relation. Given the initial field,
we use Eqs. (1) and (2) to get the field at the next time
step. After one time step we need to use the constitutive
relation to get the E field in order to start the time in-
tegration again. For the linear case, it is simply

D(r) =e(r)E(r), (3)

where y is the third-order nonlinearity. For this system
there is a simple analytical solution for E. First we take
the magnitude squared of Eq. (4) to get a cubic equation
for x —= IEI,

Ix I'x '+ 2 «(~*x)~'+
I ~
I'x —ID I'=0 .

The solution to a cubic equation is well known so we will
not give it here, but the ability to use an analytical formu-
la saves a lot of computation time. The only question is
which root to take. For the case we are considering,
where e and y have the same sign, there is only one real
and positive root, so the choice is obvious since x must be
real and positive. Once x is obtained the E field is then
given by

0
@+fax

The calculation is carried out by putting the system on
a three-dimensional (3D) grid of (N XN XN, ) points.
The curl is evaluated in k space. This is more accurate
than the finite-difference approximation to the curl that is

where e is the dielectric constant. In the nonlinear case
we will have a different constitutive relation. For a Kerr
medium Eq. (3) is replaced by

(4)
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normally used in the FDTD method. Furthermore, it
eliminates the need for a staggered spatial grid (which
adds more complexity to the programming), and the
periodic boundary condition is automatically satisfied.
For each time step, the calculation goes as follows, for
the linear case:

B(k, t+At ) =B(k, r ) —(cd r )ik XE(k, t+ ht/2),

D(k, t+bt/2)=D(k, t bt/—2)+(cht)ikXB(k, t), (8)
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E(r, t ) =D(r, t )/e(r) . (9)
M M

We save B(k, t+b, t) at each time step and repeat. For
the nonlinear case, Eq. (9) is replaced by the appropriate
equation as discussed above. The split time scheme not
only gives better accuracy but also saves memory (no
need to keep the field at both the present and the next
step). Finally, B(k, t) is Fourier analyzed to get B(k,co).
To ensure that we do not miss any mode due to our finite
resolution in co, we multiply B(k, t) with a Gaussian in
time, which has a width half that of 1/b, co where b,co is
our frequency resolution, to broaden the peaks.

Since we are looking for a source-free solution, our
solution must satisfy the two divergence conditions.
This, however, does not preclude us from choosing an ar-
bitrary initial condition. The fields at a later time will au-
tomatically satisfy the divergence conditions as can be
seen by taking the divegence of Eqs. (1) and (2). Those of
the initial fields that have nonzero divergence can be
thought of as fields due to static charges and will show up
in the spectrum only at co=0. The resolution (b,k and
b,co) of the calculation is limited by the size of the 3D grid
and the integration time. Both of these are computer
dependent. However, it should be noted that because of
the periodic nature of the system we do not have to wor-
ry about edge efFects and can integate as long as needed
to get the desired resolution in co.

We first show the result in the linear regime for a
dielectric medium (a=5.0) with circular holes drilled
through. The holes have a radius of 0.5a with a being
the lattice constant and form a square lattice. The size of
the grid that was used in the calculation is (L„=10a,
L = 10a, L, = la). Since the hole is infinitely long we can
choose the length along the cylinder axis (z axis) to our
convenience. The grid has 150X 150X5 points. For the
initial conditions we set the electric and displacement
fields to zero and chose a random number between 0 and
1 for the magnetic field at each grid point r. We integrat-
ed using a time step of c dt =0.02a. We also used a time
step of 0.01a to check that the result has converged and
found no change in the result. The total integration time
is cT =400a for a frequency resolution of cuba /2m. c
=0.0025. In Fig. 1 we compare the band structure for
modes with E along z that was obtained with the FDTD
against that of the plane-wave method. ' We only show
the four lowest bands from the FDTD method. A disad-
vantage of the present method is that the initial wave
field must have nonzero overlap with the eigenmodes of
the system in order for us to identify the eigenmodes.
This problem is clearly seen in Fig. 1 where in the I X
and I M directions the third band is not seen by the
FDTD method. Robertson et al. ' also did not see this

band in their microwave transmission experiment. This
is because this band has special symmetry' which is not
present in the initial wave field. In Fig. 2 we show the
spectral plot ~B (co)~ +~B (co)~ as a function of co for
fixed K, along the I M and I X directions from which we
identified the modes shown in Fig. 1. The number beside
each peak identifies the point along each direction start-
ing from the I point. For example, the number 1 means
that it is the first dot on either the left or right of the I
point in Fig. 1. The relative position of the numbers is
meant to indicate the relative position of the peaks since
some peaks are not quite visible on the plot. We note
that the spectrum is very clean (almost no noise) in the
linear regime such that extremely weak peaks can still be
identified if the scale is magnified. We get the same band
structure using a sum of plane waves [see Eq. (10)j as the
initial conditions.

Next we show the result for the same system but with
y=0.005. The following initial conditions were used:

B(r)=D(r)= g e' ' (x+y+z),
ULLyL, r rc

(10)

where R=(x,y), s is a scaling factor, and
K,„=2mN„/8L . The initial E field is obtained from
the D field through Eq. (4). Note that we assign the D
field and then obtain the E field rather than the other
way. If the order were reversed the D field would have
components with wave vector larger than E,„because
of the nonlinear operation to get D from E. The quantity
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FIG. 2. The spectra, from which the band structure of Fig. I
is obtained, along the I M (a) and 1 M (b) directions.

FIG. 1. The photonic band structure of a square lattice of
circular holes within a dielectric medium with @=5.0 and y=0.
The radius of the hole is 0.5a where a is the lattice constant.
The solid line is the plane-wave result. The dots are the FDTD
results.
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FIG. 3. Same as Fig. 1 but with y=0.005. For comparison
purposes, the plane-wave result for g=0 is also shown (solid
lines).

2rIN /L„ is just the largest wave vector that the fast
Fourier transform can resolve in the x direction; there-
fore the restriction on the sum over K is to prevent any
possible aliasing effect. Another reason for using the sum
of plane waves is that the nonlinearity is a function of
y!E!,as can be seen from Eq. (4), so we want an initial
field with known characteristics. The scaling factor s is a
parameter to control the field intensity at fixed y. The in-
tegration time is cT=2000a for a resolution of
boa/2vrc=0. 005. In Fig. 3 we show the band structure
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FIG. 5. Same as Fig. 4 but along the I M direction starting
from the M point (a).
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for s =5.0. For reference we also show the result ob-
tained by plane-wave expansion in the linear case. The
band structure has shifted to lower energy compared to
the linear case. This system has an indirect band gap,
and the shifting of the band gap as a function of non-
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FIG. 4. The spectra corresponding to Fig. 3 along the I X
direction starting from X point (a) moving toward the I point
(e).
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FIG. 6. Same as Fig. 4 but along the XM direction.
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linearity may be useful as an optical switching device. In
Figs. 4—6 we show the spectra in the I X, I M, and XM
directions, respectively. The spectrum in this case is
noisier compared to the linear case. The band structure
presented in Fig. 3 is obtained by identifying the modes
that exist in the linear case. These are marked by arrows
in the spectral plots. In addition to these modes there are
other peaks in the spectral plot that we have not been
able to identify as different modes or just noise; see, for
example, the small peak at co=0.24 in Fig. 4(a). We also
do not know the cause for noise in the case.

In conclusion we have presented a method for calculat-
ing the photonic band structure of a nonlinear Kerr pho-

tonic crystal. This method does not use the slowly vary-
ing envelope approximation. The calculation for a 2D
system shows a shifting of the band structure. The shift-
ing of the band gap as a function of the field intensity
may be useful as an optical switching mechanism. Fur-
ther investigation is needed to look for the gap soliton
predicted by John and Akozbek. '
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