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We address transport in one-dimensional organic conductors within the universal context of
the generalized Landauer-Buttiker equations. The conductance is viewed as the transmission of
charged excitations through the sample, with contributions from both elastic and inelastic processes
evaluated within a quantum-mechanical framework. Results on both charge transfer and conjugated
polymer compounds are in agreement with the main trends shown by experiments.

When one addresses the electric conductivity of quasi-
one-dimensional organic conductors, the important dif-
ferences in their electronic structure must be taken into
account. For the ionic group one has, for example, the
quasi-one-dimensional charge transfer compounds such
as tetrathiafulvalene-tetracyanoquinodimethane (TTF-
TCNQ). Its crystalline structure consists of a separated
stacking of donor and acceptor molecules, arranged in
a herring-backbone-like structure. Charge transfer be-
tween these stacks leads to a weak covalent sharing of
the extra charge along the one-dimensional chains. Be-
ing a one-dimensional metal of bandwidth 4to a distor-
tion with wave vector 2k~ produces a Peierls transition
becoming an insulator with a relatively small gap (A
10 meV). The new period in the electronic structure is
seen as a charge density wave (CDW), which can be in-
commensurable with the lattice if the charge transfer has
an irrational value. Besides, the low-energy excitation
of a CDW is a local distortion of its phase or soliton.
Since it has an associated charge and a defined velocity,
its displacement was thought to be responsible for the
electronic current. The same mechanism of transport
can explain the conductivity of the metallomacrocycjtic
polymers, of which the tetracyanoplatinates family is a
prototype. In these compounds, the extra electrons are
provided by the metal atoms.

On the other hand, there is a family of strongly cova-
lent polymers, of which trans-polyacetylene (t-PA) is the
best studied example. The backbone of carbon chains
is dimerized, which is also seen as a consequence of the
Peierls instability. The resulting electronic structure has

a wide gap (- 1.5 eV) as corresponds to the energy scale
of a covalent vr bonding. The polymer chains are bundled
in 6.hers with the eventual impurities arranged in the in-
terstices. Dopants intercalated between the chains pro-
vide the extra charge, which is accommodated as solitonic
excitations. ' Early magnetic resonance experiments of
spin diffusion have been interpreted as evidence of the
mobility of neutral solitons at high temperatures and al-
low us to distinguish the t-PA from its ci8 isomer.

A common feature in the description of both extreme
situations represented by TTF-TCNQ and t-PA is that
their basic electronic structure can be obtained from a
tight-binding Hamiltonian with a periodic modulation,
in the erst cases induced by a temperature-dependent
Peierls distortion, in the last case expected from the
chemical nature of the covalent chain. The excitations
represent departures from the ideal dimerized structure
of the pure material and in both, the early explanation
of their conductance was based on the difFusion of the
charged solitonic excitations. However appealing, this
picture does not give a universal explanation of transport
in all covalent polymers and needs the inclusion of further
ad hoc parameters. One early objection was that soli-
tons are closely associated and pinned to the positions of
the impurities because both are charged entities. Even
results of spin diffusion can be interpreted without the
need for mobile neutral solitons. More recently, it was
addressed that because quasi-one-dimensional conduc-
tors have a three-dimensional environment, phase dis-
tortions in a CDW (i.e. , the solitons) present a much
stronger pinning to individual impurities than was earlier
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proposed. Another problem is that there are many con-
ducting polymers in which the nature of solitonic distor-
tion is not obvious. This is particularly true for many of
the organic conductors that have been extensively stud-
ied over the recent years, such as the polyaniline family.
Although in some cases possible solitonic excitations have
been identified, the experimental results on dielectric
constant of both polyanilines and polypyrroles can
be fitted with a modified Drude model. Besides, other
authors studied the conductivity using a "tunneling ap-
proach" in which fragments of polymer are considered
embedded in metallic one-dimensional contacts. This
might be thought of as incompatible with the Drude
scheme. However, the tunneling approach can be justified
within the wider framework of the generalized Landauer-
Biittiker equations (GLBE). ' Within this theory, the
conductivity cr is governed by the transmittance Tl, at
the Fermi energy through a one-dimensional portion of
the material with dephasing length L@.This is the length
an electronic excitation would travel before either in-
teracts with phonons [L, ph (k~T) ], hops between
chains (L& ), or reaches the chain end (L). When this
length is shorter than the localization length A, a Drude
behavior (with localization corrections) is obtained. In
the GLBE, the transmission amplitudes must be evalu-
ated between dephasing channels determining incoherent
portions of the same chain and constitute the kernel of an
integral equation leading to a self-consistent calculation
of the chemical potential. We emphasize that within this
description, there is no need of metallic leads attached to
every polymer portion and that there is a temperature
dependence implicit in the dephasing length. An approxi-
mate solution of the GLBE at low temperatures provides
a conductance of the form

o(~~) = 2 (e /h) Tl, /Lc„(1)
in agreement with the tunneling approach. At Gnite tem-
perature, the conductivity becomes an integral over en-
ergies of the expression (1),

~(T) - ~(s)l ~&(s)/«]« (2)

weighted by the derivative of the Fermi distribution.
These equations allow the study of transport proper-
ties of both types of systems by calculating the general-
ized (that is including dephasing and inelastic processes)
transmission coeKcient through the relevant portions of
the chain. Therefore in highly doped samples, solitonic
states act as an impurity band and not as moving entities.
Then the GLBE leads quite naturally to a temperature
activated conductivity similar to what is observed in the
covalent polymers. Without even attempting to explain
the vast range of phenomena present in one-dimensional
conductors, we are going to show that the GLBE is
roughly consistent with the observed tendencies in the
situations which until now were only described with soli-
tonic transport. Since in this picture transport proceeds
through tunneling between regions with high density of
states around the Fermi energy [Np(ey) ) 0] which repre-
sent charged centers, it is reasonable that once the nature
of the barrier is 6xed, the conductivity is limited by the
longest distances between those centers and hence their

We consider a charge transfer of e, which, according to
the Peierls criteria for a spin degenerate system, leads to
exact dimerization. The temperature is considered to cre-
ate an additional random displacement around the equi-
librium position compatible with the harmonic approxi-
mation znku2 = (z) k~T: This justifies a functional de-

pendence on temperature of the form 8u = p r gT/T„
where p (( jI. is a Btting constant and r is a distribu-
tion of random distances in the range [

—a/2, a/2]. This
results in positions of molecules given by

x = na+ (—1) (A/2tp)o, +p/T/T r (4)

where the first term gives the normal spacing, the sec-
ond the contribution toward dimerization, and the last
one the temperature induced distortions. In a linear ap-
proximation, the hopping is proportional to the distance
between molecular orbitals according to

(5)
that is, for T = 0, the hopping alternates between the
values ti ——to + Ao and t2 ——to —Lo. The Hamiltonian
is a tridiagonal matrix with a constant in the diagonal.
Therefore, in this model the maximum length limiting
the conductance is produced by the random distribution
of these distances.

We consider a L@ determined by geometrical condi-
tions (interchain hopping tz « tp) and then essentially
temperature independent. We evaluate a representa-
tive transmission coeKcient by attaching perfect semi-
in6nite linear chains on the left and right of the finite
length (Lc,/a = 500) sample. After all intermediate sites
are removed (decimated), matching of the plane waves
on the boundaries yields the transmission probability
Tl.~(s, k~T) as a function of temperature. The results
of conductance, according to Eq. (1), for different frag-
ments are shown as a function of temperature in Fig. 1,
where T is taken as 60 K. The mean value of the average
conductivity is in agreement with the measured behav-
ior. We observe that since the length L of the fragments
are larger than the localization length, there is a sharp
metal insulator transition. For shorter chains (LC, & A

—2aln I(4tp + Ap)/(4tp —Ap) = 100a), the transition
would appear less abrupt. Above the critical tempera-
ture, the random components, which increase with tem-
perature, are responsible for the subsequent drop o8' of
Tl, (s~, k~T), once the metallic phase is achieved. The
noise in the data is eliminated by the energy average

statistics determine the conductivity.
Charge transfer compounds

In order to describe the one-dimensional stack of
molecules with lattice constant a, we use a tight-binding
model for the relevant molecular orbitals describing a
band of width W = 4to. The hopping between molecules
to ——0.1 eV has a periodic modulation due to the dis-
tortion of the lattice. This molecular displacement bu
produces a gap L oc bu. For temperatures T lower than
the critical temperature T„ the gap L is taken to depend
on temperature as
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x„=na+ (—I)"b2: tanh[(na —x ) /(],
h

where the displacement bx = aAO/to is proportional
to the intrinsic gap, and x 's are the position of the
dopants, which are chosen randomly to satisfy a given
mean distance but with an exclusion length of 3a. As
usual ( = 8a is the correlation length of the solitons.
The hopping is found again &om Eq. (5) but using Eq.
(6). The efFect of the dopants is then to act as disorder
and to decrease the effective dimerization, creating the
well known soliton peak at E = 0. This manifests in the
light absorption curve as a peak at Lu = 2Aq. For low
concentration of impurities (c ( 0.05), the peaks of the
transmittance are rather narrow and hence they are not
very efFective for transport. This is true even if the Fermi
energy lies in a region of high density of states [see Fig.
2(a)]. For high concentration. of impurities (c & 0.05),
the peaks in the transmittance are much wider allowing
a more effective transport, because at finite temperature
one must use Eq. (2), which gives a total conductance
which averages those within a window in energy of width
k~T around e~. However, this does not give any sub-
stantial temperature dependence additional to that in-
troduced by Lc,(T).

The results of Figs. 2 and 3 show that the effective gap
in polyacetylene increases slightly with impurity concen-
tration. As found. previously by Mele and Rice, the
soliton bandwidth increases rapidly with concentration.
A striking result is that as shown in Fig. 4, for high con-
centration of impurities the density of states in the soliton
band does not show the effect of the random position of
the impurities. This also manifests in wide resonances in

FIG. 1. Conductivity (arb. units) as a function of temperature
for TTF-TCNQ using the model described in the text.

produced by Eq. (2) and the ensemble average. How-
ever, a better Gtting would require a further reduction
of the conductivity at high temperatures. This effect
would appear if a pseudogap modifying Eq. (3) is al-
lowed as in the case of Quoranthene radical cation salts.
This could be generated by fluctuations in the correlation
length present above the critical temperature.

Covalent compounds
In this case we performed the calculation using a tight-

binding model with hopping parameters, which alternate
between the values tz and t~. Since we are mainly con-
sidering the case of polyacetylene, close to an impurity
the position of the carbons on the lattice is distorted ac-
cording to a law of the form
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FIG. 2. (a) Density of states as a function of energy for a slightly
doped polyacetylene chain. The average distance between centers
is 30 units of C-C bonds; (b) transmittance through a portion
I@, = 1000a as a function of energy with same parameters.

the transmission coeFicients with maxima close to unity,
which in turn, by application of Eq. (2), gives an impor-
tant conductivity. This suggests that we can characterize
the soliton (impurity) band through the effective hopping
parameter V~ between soliton states at distance d. Af-
ter a convenient decimation of the atomic orbitals and
leaving the soliton states as the relevant ones, we arrive
at a simple one-dimensional tight-binding Hamiltonian
for this band.

To Bnd Vg we performed a calculation with just two
solitons and found V,tf(d) for ( = 8a. We find (Fig. 4)
that V,g is a decreasing function of d. Starting with
a weak dependence on d for very short distances, it
crosses over to an exponential regime for longer distances.
Therefore, for high concentration of impurities (1 soliton
every 15 carbons), the relative fluctuation of the hop-
ping is small and the localization length within the band
is larger than the chain. Conductivity is then high. This
corresponds to a critical concentration of x = 0.06, in
agreement with the experiment. The transport is dom-
inated again by the distances between solitons (charged
centers). For low concentrations, large distances between
impurities give values of V g exponentially small and the
band is narrow and so the transmission peaks.

We have shown that an approximate application of the
generalized Landauer-Buttiker equations reproduces the
main trends in a wide variety of one-dimensional conduc-
tors. Using a simple model Hamiltonian for TTF-TCNQ,
we reproduced the temperature dependence of the con-
ductivity on undoped material. Since the gap is small,
this dependence is very important above the tempera-
ture at which the metal insulator transition takes place.
In the opposite situation, transport properties in high-
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FIG. 3. (a) Density of states as a function of energy for a

strongly doped polyacetylene. The average distance between soli-
tonic centers is 10 C-C bonds length units; (b) transmittance as a
function of energy with same parameters.

gap trans-polyacetylene can be explained with a model of
partially filled frozen soliton band (more properly defect
band), with a conventional (noncollective) model of low-
temperature transport. The present results suggest that
even when the commonly accepted &ee solitonic view can
explain certain features of high-temperature transport, a
low-temperature description in terms of a theory of quan-
tum transport in which solitonic properties enters only in
the spectrum and in the localized nature of the states, is
consistent with the measured tendencies. Besides, within
this view it appears that there are characteristic lengths
in the basic structure of the conductor that limit the
transport in agreement to what is observed in several
conducting polymers complexes. Furthermore, the same

noncollective model works well for quite difFerent com-
pounds. As a common feature, we found the statistics
of distances between charged centers to be important.
Since these centers are surrounded by gaps in the local
density of states, the exponential transmission coefficient
between them is limited by the largest separations. Since
our picture is also consistent with the picture of electrons
hopping in a soliton band, it deserves further study to
see how these tunneling ideas can be exploited to produce
a microscopic theory of thermally activated hopping.

In summary, we have shown that the main tendencies
of transport in one-dimensional conductors, which until
now were only attributed to solitonic transport, can also
be obtained within the generalized Landauer-Buttiker
formulation. These results combined with a more com-
plete evaluation of three-dimensional eKects and discus-
sion of other covalent polymers within the tunneling ap-
proach (which is included in the GLBE) suggest that fur-
ther efForts should be done to describe transport within
the GLBE framework; particularly interesting would be
the study of ac response and the description of the ther-
mally activated regime in three-dimensional models.
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