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Effect of proximity coupling of chains and planes
on the penetration-depth anisotropy in YBa2Cu&O&
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We calculate the penetration depth A in the a, b, and c directions for a simple model of
YBa&Cu307. In this model there are two layers —representing a Cu02 plane and a CuO chain —per
unit cell. There is a BCS-like pairing (both s-wave and d-wave are considered) interaction local-
ized in the Cu02 planes. The CuO chains become superconducting at temperatures lower than
T because of their proximity to the planes and there is an induced gap in the chains. Since the
temperature dependence of the penetration depth in the b direction (along the chains) is sensitive to
the size of the induced gap, the difFerence between the shapes of the penetration depth curves in the
a and b directions reveals a great deal about the nature of the condensate in the chains. We 6nd that
in our proximity model there are always regions of the chain Permi surface on which the induced

gap is much smaller than T, so that the temperature dependence of Ab is always difFerent than
that of A . Experimental observations of the of the ab anisotropy show nearly identical temperature
dependences. The main result of our paper, then, is that a simple proximity model in which the
pairing interaction is localized to the planes, and the planes are coherently coupled to the chains
cannot account for the superfluid on the chains.

I. INTRODUCTION

It is widely believed that the source of the pairing inter-
action which is responsible for the superconducting tran-
sition in the high-T cuprates lies in the Cu02 planes,
which are common to all of the cuprates. Many mod-
els which attempt to explain high-T superconductivity
are two dimensional, which is a reflection of the assump-
tion that the only active pieces of the crystal are the
Cu02 planes and that the remaining ions act as place-
holders or as charge reservoirs. In some materials, how-

ever, there are additional layers whose behavior is not
clear. In Bi2Sr2CaCu208, for example, it has been sug-
gested that the BiO layer plays the role of a normal metal
in close proximity to a superconducting material.

The only materials in which there is clear evidence
that the Cu02 planes are not the only active portion of
the unit cell are YBa2Cus07 (Y-123), YBaqCu40s (Y-
124) and their close relatives. In these materials there
are quasi-one-dimensional CuO chain structures. Ex-
periments measuring the dc resistivity, the in&ared
and optical conductivity, 4 and the penetration depth
in untwinned crystals and ceramics have found large
anisotropies between the a direction (in-plane, perpendic-
ular to the chains) and the b direction (in-plane, parallel
to the chains) which suggest that substantial currents are
carried along the chains in both the normal and super-
conducting state.

In the superconducting state, the source of the conden-
sate on the chains in unclear. One possibility is that the
pairing interaction is localized to the Cu02 planes, but
that the chains become superconducting by a proximity
efFect. In the proximity efFect, an intrinsically normal
metal which is in close contact with a superconductor

becomes superconducting near the junction as a result of
pair tunneling through the junction. The size of the in-
duced gap in the normal metal depends on the strength
of the coupling across the junction. Y-123 and Y-124 are
good candidates for proximity efFect models because they
have the least anisotropy between the in-plane and t" axis
transport properties of the cuprate superconductors, and
should therefore have a relatively large coupling between
the chains and planes.

Proximity efFect models have been studied in the con-
text of high-T materials for a number of years. The
most common point of view is that the unusual prop-
erties of the cuprates can be explained by an isotropic
BCS pairing interaction which is contained in one of
the planes. ' The idea behind most of the work is
that although the pairing interaction may be inherently
isotropic, the strongly anisotropic band structure leads
to a gap structure which may account for the unusual
superconducting properties of the cuprates. The current
authors have taken a difFerent point of view in recent
work on proximity effect models. We have assumed
that the pairing interaction in the planes is intrinsically
d-wave and then attempted to assess the influence of cou-
pling to the chains. Closely related to the proximity
models are the Si8' multilayer models in which there are
two (or more) different superconducting layers in the unit
cell. There have been detailed examinations of the roles
played by interplane and intraplane pairing and a
few quantitative calculations of physical properties, '

but these models have been less thoroughly explored than
the proximity model because of their relative complexity.

In this work we address the issue of whether a proxim-
ity model can account for the condensate on the chains
in the YBaCuO compounds. We do this by calculating
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IX. HAMILTONIAN

The goal of this section is to introduce our model for
YBCO, and to find the single-particle Green's functions
necessary for the calculation of the penetration depth in
Sec. III. We begin with a Hamiltonian which describes
a system with two layers per unit cell. Adjacent layers
are separated by a distance d/2. The first layer repre-
sents a Cu02 plane and it contains a BCS-like pairing
interaction. The second layer represents a CuO chain. It
has a one-dimensional dispersion and is intrinsically nor-
mal. The chains are superconducting, however, because
of their coupling to the planes through single-electron
tunneling. The Hamiltonian, expressed in the Nambu
formalism, is

H —Np, = ) Ct(k)Q(k)C(k) + const,

where

C(k) = C1—k$

2—k$ i

(2)

and

Q (k)

t'(l )
0

—(I (—k)
0

—t(—k)

t(k)
0

(2(k)

0
—t*(—k)

0
—6(—k)

This Hamiltonian has been discussed at length
elsewhere ~ ' and we only describe it briefly here.
The dispersions (I and $2 are for the plane and chain
layers, respectively. We assume tight binding disper-
sioIls so that $1 = —20'I [cos(k~a) + cos(kI16) j

—pi and

the penetration depth A for a simple 8 or d wave madel in
the a, b, and c d.irections. In particular, we are interested
in comparing the temperature dependences of A and Ag

with experiment. In our model, the unit cell consists of
a Cu02 plane layer and a CuO chain layer. The Cu02
planes contain the pairing interaction and are coupled to
the CuO chains through coherent single-electron tunnel-
ing so that there is an induced gap in the chains. Calcu-
lations of the penetration depth in a similar model have
been made before, ' although the intrinsically normal
layers were planes and not chains, and the emphasis was
on the anisotropy between A p and A .

In Sec. II we introduce our model Hamiltonian and
And the single-particle Green s functions which we will
need for the penetration depth. In Sec. III we derive
an expression for the penetration depth which is suitable
for a two-band, tight binding model. The calculation
difFers slightly &om one we made previously. In Sec.
IV we discuss the results of numerical calculations of the
penetration depth, and in Sec. V we broaden the scope
to a discussion of the nature of the condensate on the
chains.

—202 cos(k„b) —p2, where a and 6 are the lat-
tice constants in the planes. In optimally doped Y-
123 crystals, a and b differ by l%%uo. For the nu-
merical calculations done in this work, we take a = b.
We take oq ——100 meV so that the full bandwidth of
the Cu02 plane is 0.8 eV. For the chain layer we take
o2 ——80 meV so that A2(T = 0)/A~(T = 0) - 2.5, as
seen experimentally by Basov et al. The chemical po-
tentials are pq ———80 meV and p2 ——40 meV, which
yields a Fermi surface that is in qualitative agreement
with band structure calculations. ' We have absorbed
an arbitrary band ofFset into the chemical potentials so
that pi g p2. The chains and planes are coupled by
the matrix element t(k, ) = tocos—(k, d/2), where d/2
is the distance between the chains and planes. The
chain-plane coupling afFects the penetration depth in two
ways. First, t(k, ) determines the c-axis transport proper-
ties. In a previous paper we have shown that the ratio
A (T = 0)/A s(T = 0) varies inversely with to. Second,
t(k, ) determines the size of the superconducting gap in-
duced on the chains, which is refIected in the temperature
dependence of Ag. In this work we choose to ——50 meV
which yields A, (T = 0)/A2(T = 0) 100, which is in
rough agreement with experimental observations.

The 6nal feature of our Hamiltonian is that there is a
pairing interaction in the plane which drives the super-
conducting transition. As we have mentioned above, the
chains also become superconducting at T through their
coupling to the planes. The pairing interaction in the
planes has the form Vkk ——V~~I with ~ = 1 for an
s-wave superconductor and ~ = cos(k ) —cos(k„) for a
d~2 y2 superconductor. Since the pairing interaction is
separable, the order parameter

1
Ak = —) Vkk' (Cl —k'/elk'$)0

k/
(4)

In Fig. 1 we show the Fermi surface for a range of k,
values between 0 and vr/d. The Fermi surface consists
of two surfaces on which E vanishes in the normal
state. The two surfaces are given by the two solutions
to Q(k)(2(k) = t(k ) . When k = m/d, t(k ) = 0 and
the two pieces of Fermi surface are those of the isolated
chain and plane subsystems. When t(k, ) g 0, the chain
and plane states form hybrid bands whose energies are
given by

(6- (2l + t2,
2 ( 2 )

in the normal state. The shift in the band energy due the

(where 0 is the volume of the crystal) can be written
&~ = &o~.

Diagonalization of the Hamiltonian leads to four en-
ergy bands E~ ——E+, E2 ——E, E3 ———E—,E4 ———E+
with

@2 ~1+'(2+ k +t2
2

2 2++2
+ t'[(&. + &.)' + ~,'1 (5)
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0z

k.=~/d

can find the single-particle Green's functions which
we will require in the following section. Defin-
ing the temperature Green's function G(k; 7.);~
—(1/5)(TC;(k; —iw)C. (k;0)), where T is the fermion
time-ordered product, we have

'. U, (k)U', . (k)("")' =)-,r,(, -E (k)m=1

where

0
0

k, = ~/d

hP

G(k;i()),, = dr e' ' G(k;~);, ,
0

(& = (2l + 1)vr/hP are the fermion Matsubara frequencies
and P = 1/k~T, where k~ is the Boltzmann constant and
T is temperature. In our calculation of the penetration
depth we will need

FIG. 1. The Fermi surface for the model Hamiltonian is
shown for a range of k, between k = 0 and k = vr/d.
When k, = vr/d, the chain-plane coupling vanishes and the
two pieces of Fermi surface are those of the isolated chains
and planes. As the chain-plane coupling increases, the Fermi
surfaces hybridize and are pushed apart. The efFect of the
chain-plane coupling is largest where the two Fermi surfaces
are closest together. There is an induced gap on the chains
whose size is greatest where there is the most chain-plane
mixing.

C, (k) = ) Ut (k)C~(k), (6)

where U(k) is the 4 x 4 matrix which diagonalizes Q:
U = [Ug U2 Us U4] with

(E, —(2)A
—(E~ + &2)&

tA
tB

A = t —(b,~ + E, + (g) (E, + (2),

chain-plane coupling is clearly dependent on the relative
sizes of t and ((q —(2) . The effect of the chain-plane
coupling on the Fermi surfaces shown in Fig. 1 is largest
in the neighborhood of the Fermi surface crossing at (q ——

(2 ——0.
The quasiparticle operators in the diagonalized repre-

sentation are

G(k;~ = 0 );, = —) U, i(k) f[E)(k)]UEt.(k),
1 '-

l=l

where f(x) = 1/[1+ exp(Px)].
We finish this section with a brief discussion of our

usage of the word "gap." In the model presented above,
there is only one order parameter, Li„and it describes
the condensate in the Cu02 planes. For a separable po-
tential, Lp has the symmetry of the pairing interaction.
In a multiband material, however, Lk is not simply re-
lated to the pair wave function. For example, the anoma-
lous Green's function (which is essentially the pair wave
function) in the Cu02 plane is

Notice that the symmetry of G12 is not the same as the
symmetry of Lp. For this reason, the terxn "gap" is kept
distinct &om the term "order parameter, " which refers to
Ag. Perhaps the most useful working definition of "gap"
is that it is the value of E on the Fermi surface. Clearly,
by this definition, the gap is k dependent. In regions of
the Brillouin zone where a section of Fermi surface has
predominantly chain (or plane) character, the gap can
be associated with the chains (or planes). It is wrong to
think of the pairs being localized to the chains or planes,
however; the pairing amplitude between an electron in
the chains and an electron in the planes (measured by
Gq4 and G2s) is nonzero. In fact the picture of a gap
belonging to a plane or a chain breaks down in regions
of the Brillouin zone where the Fermi surface is a strong
hybridization of the chain and plane bands.

& = t' —(&f, + E~ —&~)(E~ —&2)

III. PENETRATION DEPTH

C = A' [t' + (E, —(2)2]

++ [t +(E'+~) ].

Now that we have diagonalized the Hamiltonian, we

The penetration depth is found using an approach
which is suitable for the tight binding limit. This ap-
proach is slightly difFerent than that of our previous
work, 14 although it yields quantitative results which are
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nearly identical. As we shall see, however, the current
method, which is based on one used by Hirsch and Mar-
siglio for a one band tight binding model, is more sat-
isfying from a physical point of view.

We begin by writing out the current operator jo in the
absence of a magnetic field:24

scale of the crystal lattice, and we will make use of the
fact that A(q) is strongly peaked about q = 0 through-
out this section. To linear order in A, then, Eq. (13)
becomes

H =Hp — jp A(q=0)cn

where

30(q = o) —= f&'~J(~)

= —[Hp, P],

P ) R;c,. (R;)c;(R;)

(10)

and Eq. (14) becomes

2

o; r;[r; . A(R;)]ct(R; + r;)c, (R;)h2c" ',R, ,',

) z[z A(R;)] ci(Ri)c2(Ri + zd/2)
Rg

i,R; + ct(Ri)c2(Ri —zd/2) + H.c. (17)

is the polarization vector and H is the Hamiltonian in
the normal state. The operator c,. (R;) creates an elec-
tron in the Wannier state located at the sublattice point
R;. The set of points (Ri) refers to the plane sublattice
while (Rq) refers to the chain sublattice. The Wannier
representation is connected to the k-space representation
by

j(q = 0) = —) Ct(k)pi, C(k)
k

Ct(k) [pi, . A(q = 0)] C(k) (18)

In the presence of a magnetic field, the observable current
is given by (j), and not (jp). We can rewrite Eq. (17) in
a k space representation using Eq. (12):

c;(R;) = ) e'"' 'c;(k),
N

(12)

where N is the number of lattice sites.
In the normal state the Hamiltonian, Eq. (1), can be

written in the Wannier representation as

2

Hp = —) ) o,ct(R; + r;)c;(R;)
i=1 R;,r;
tp ) (ci(Ri)c2(Rz) [8R,+gg2 R,

Rg, Rg

The vector pk is a 4 x 4 matrix with three spatial com-
ponents. It is essentially the Fermi velocity

'"' = (-')' '
ak"

where Q;~ is the Hamiltonian matrix of Eq. (3) and the
factor (—1)' i comes from the fact that C; annihilates
electron states for i = 1, 3 and hole states for i = 2, 4.
The dyadic p& is also a 4 x 4 matrix and it is essentially
the efFective mass tensor

+ SRi —sd(2, Rq + H c ) . (13)

The vector r; is the displacement to the nearest neighbors
of R; within the plane, z is the unit vector in the z direc-
tion, and H.c. indicates the Hermitian conjugate. This
Hamiltonian describes nearest neighbor hopping both
within and between the chains and planes. Substituting
Eqs. (11) and (13) into Eq. (10) we get

The first term in Eq. (18) is jp(q = 0) while the second
term contains the remaining two terms in Eq. (17).

The current (j) which is generated by the applied mag-
netic field is given, to linear order in A, by the Kubo
formula

jp ——) o; r;c,. (R~ + r;)c,(R;)" ',R.-...
45 ) z cti(Ri)c2(Ri + zd/2)

1

—cti (Ri)c2 (Ri —zd/2) —H.c. (14)

In the presence of a finite magnetic vector potential
A(r), the tight binding Wannier states are modified by
a phase so that

~ t

(j(t)) = (j(t)) + dt jo(t ) A(t ) jo(t)c
0

In the London limit, for the case of a static applied field,
this gives

(j(r)) = (j(r))o —
g ) .G',-(o o o)A-(r)

where

ie
c;(R;) w c,(R;) exp ——R; . A(R;) (15)

G~ „(q,q', in~) =— hP
dec' '

AO

x(Tjp (q, —iv)jp (q 0))p.
where c is the speed of light. The assumption is made
that the vector potential is slowly varying over the length G~ is the current-current correlation function, T is the
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boson time-ordered product, ui = 2l7r/hP are the boson
Matsubara kequencies, and p and v refer to the spa-
tial components of jo. The expectation values ()o are
taken with respect to the zero-field wave function. It
is straightforward to evaluate G~ in terms of the single-
particle Green's functions:

2

G~„{0,0;iu)t) = lim ) Tr [G{k;i(„—icui) jk„q-+o 520
n, k

x G(k + q; i(„)jk ] . (20)

The first term in Eq. (19) is the diamagnetic contribu-
tion to the screening current. Using Eqs. (9) and (18) we
may evaluate this explicitly:

(j(r))~'- =
& ).{j(q))~'-e"'

2 ) Tr G(k~ = 0 )pk . A(r)
k

(2la)

where Tr is a trace over the components of the 4 x 4
matrix contained in the square brackets, and
Ut(k) pkU(k). In order to derive Eq. (21a), we have
used the fact that {jo)0 ——0 and that A(q) is peaked
about q = 0. The second term in Eq. (19) is the param-
agnetic contribution to the screening current. Evaluating
Eq. (20) explicitly we have

4

{J)para =
2 ) ) 7kij [Pkji A(r)]

ij=1 k

Of (E*)

f(E') —f (Ej)+ 1 —b';,
2 2

(21b)

where jk = Ut(k)AU(k). This expression for the para-
magnetic current is the same as in Ref. 14 where it was
discussed at length. We will only repeat the points which
are directly relevant to the current work, and the inter-
ested. reader is referred to our earlier work. The total
current produced by the magnetic field is

(j) = (j)dia+ {j)para
= —K.A. (22)

1
PP'

P
(23)

This is the main result for this section. In order to plot
A as a function of temperature in Sec. IV, we must

It is straightforward to show that K~„= 0 if p g v
(recall that p, and v refer to spatial directions) so that
the penetration depth is given by

evaluate the integrals in Eqs. (21a) and (21b) numeri-
cally.

We will finish this section with a few comments about
Eqs. (21a) and (21b). In the usual treatment of the pene-
tration depth the diamagnetic contribution to the screen-
ing current is jg; = ne—A/mc, which is independent of
temperature. The temperature dependence of the pene-
tration depth, then, comes from the paramagnectic con-
tribution to the screening currents which, for a one-band
free electron metal with an isotropic gap, is

ne' „ j], Of(E)
jpara 2 ~

6 v (24)

IV. RESULTS

The question we are attempting to address in this work
is whether a proximity eKect model can account for the
experimentally observed anisotropy in the temperature
dependence of the penetration depth in Y-123. In this
section we will present the results of numerical calcula-
tions of the penetration depth for the model Hamiltonian
introduced in Sec. II. We will compare these results to
experiments and to related calculations made with a two-
plane proximity model (in which the intrinsically normal
layer is a two-dimensional plane). One of the main goals
of this section is to emphasize the difference between two-
plane proximity models and chain-plane models of the

where E = [e2 + A ] ~, v j is the Fermi velocity, and p
is the chemical potential. The paramagnetic term counts
the number of thermal excitations (broken Cooper pairs)
which degrade the screening current. At T = 0 the para-
magnetic term vanishes, so that j = ne A/—mc. When
4 = 0 the paramagnetic term cancels the diamagnetic
term exactly so that j = 0. For systems which are more
complicated than the free electon gas, it is common to
make the aPProximation jara = —Jp ]~ 0. The aPProx-
imation is exact at T = T and, provided the temper-
ature dependence of the diamagnetic term is weak, the
approximation is a good one. This is the approxima-
tion we made in our previous discussion of the two-layer
model. In the current work, however, we have treated
jg; in a fashion which is more consistent with the tight
binding model, so that while Eq. (21b) is the same as
we found previously, Eq. (21a) is difFerent. There is little
quantitative di8'erence between the two approaches, how-
ever, since both expressions for the diamagnetic current
are weakly temperature dependent and both cancel the
paramagnetic current above T .

The most significant difference between Eq. (21a)
and the usual expression for the penetration depth is
the interband term, which is proportional to [f(E;)—
f(Ej)]/[E; Ez]. While th—e intraband term [which is pro-
portional to Of (E,)/OE, ] counts the number of thermally
broken pairs, the interband term describes the degrada-
tion of the screening currents by interband transitions.
The interband term does not vanish at T = 0 so that,
unlike the single band case, there is a finite paramag-
netic contribution to the screening current.
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type studied here.
To begin with, we will discuss calculations of the pen-

etration depth in the two-plane proximity models. ~ '

One of the important features of the proximity model
is that it introduces low energy excitations into the su-
perconducting spectrum. The reason for this is that
the induced gap in the intrinsically normal plane is pro-
portional to the strength of the chain-plane coupling
t(k, ) (which vanishes at k, = vr/d) so that the gap
will have a nodal structure even if the pairing inter-
action has isotropic 8-wave symmetry. The need for a
gap structure with nodes has been suggested, for exam-
ple, by measurements of A s (the in-plane penetration
depth) in twinned single crystals of Y-123. The linear
dependence of A s(T) on T at low temperatures is eas-
ily explained by any gap structure with nodes. While
these measurements are commonly taken as support for
d-wave models, it has also been shown ' that two-
plane proximity models also result in linear low T be-
havior. Since a central theme in much of the work on
proximity models ' o ' is that the pairing interac-
tion in the intrinsically superconducting plane is s-wave,
the low energy excitations in the induced gap are an es-
sential feature of the proximity models.

In Fig. 2(a) we plot the penetration depth for our
plane-chain proximity model for the case of an 8-wave
gap. We find that, unlike the case of the two-plane model,
the temperature dependences of A and Ab are dramati-
cally di8'erent. The most important di8'erence is that the
temperature dependence of A is nearly identical to that
of a single-layer 8-wave material with no chains, while Ab

has a linear low T behavior similar to that found in the
two-plane proximity models. The factor of 2 difference
between A (0) 2 and As(0) 2 comes from the screening
currents carried in the b direction by the chains, and the
linear T dependence in Ab at low temperatures comes
f'rom the node in the induced gap at k, = a/d. The fact

that the low T behavior of A is exponential and not
linear indicates that pairs associated with a axis screen-
ing currents have a finite gap for all values of k . We
can understand this in more concrete terms as follows:
In Sec. III we showed that the screening current has two
parts a diamagnetic part which is roughly independent
of T and a paramagnetic part which accounts for pro-
cesses (such as thermal pair breaking) which degrade the
screening currents. The temperature dependence of the
penetration depth comes &om the paramagnetic screen-
ing current, given in Eq. (21a). Despite its complicated
appearance, Eq. (21b) has a simple physical interpreta-
tion. The factors pp are electron Fermi velocity vectors,
while the two terms involving Fermi functions count the
number of thermally excited quasiparticles which partic-
ipate in intraband (i = j) or interband (i g j) paramag-
netic processes. When we calculate the screening current
in the a direction, then, the integrand in Eq. (2lb) is
weighted by the square of the Fermi velocity in the a di-
rection. In Fig. 1, we can see that this is small both on
segments of the Fermi surface associated with the chains
and on segments of the plane Fermi surface which are
distorted by the chains. The most obvious consequence
of this is that the chains do not participate signi6. cantly
in carrying currents in the a direction. A more subtle
result is that, even though there is a node in the induced
gap in the chains, it is not seen by electrons traveling in
the a direction so that Cooper pairs which are part of
the a axis screening current have a Gnite gap. The onset
of thermal pair breaking, then, occurs at a much lower
temperature in the 6 axis supercurrent than in the a axis
supercurrent.

In Fig. 2(b) we plot the penetration depth for a d-wave
order parameter and And results which are similar to the
s-wave case: A (T) is essentially the same as found in
single-layer d wave mod-els and AI, (T) resembles A b(T)
found in the two-plane proximity models. As for the

3 I I I
f

I I I
i

I I I

i
I I I

i
I I I

g —2
a

0 I I I

0 0.2 0.4 0.6 0.8
T/T.

0.2 0.4 0.6 0.8
T/T.

FIG. 2. (a) In-plane penetration depth for an s-wave order parameter. The penetration depth in the a direction (perpen-
dicular to the chains) is nearly that of a pure s-wave superconductor in the absence of chains. The penetration depth in the
b direction has a very different temperature dependence from that in the a direction because the size of the induced gap in
the chains is much different from the size of the gap in the planes. The relative bandwidths of the chains and planes were
determined by setting A (0)/Az(0) 2.5, in accordance with experiment. (b) In-plane penetration depth for a d-wave order
parameter. Again, A (T) is essentially the same as for a single-layer d-wave superconductor, while the shape of A&(T) reflects
the structure of the induced gap in the chains as well as the planes.
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case of an 8-wave gap, the reason is that there are a
larger number of low energy excitations in the chains than
in the planes. The d-wave gap in the planes has nodes
along k = kk» while the induced gap has nodes along
k = +k„and k, = vr/d.

The large temperature dependence of the ab anisotropy
seen in Figs. 2(a) and 2(b) is difBcult to reconcile with
measurements of A (T) and Ab(T) in untwinned crystals.
In these experiments A and Ab have a nearly identical
temperature dependence, although their absolute magni-
tude differs by a factor of 1.5 at T = 0. In our model, the
temperature dependence of the anisotropy is a result of
the fact that Cooper pairs in the chains are more easily
broken than Cooper pairs in the planes. Clearly, then, in
a realistic model, the density of low energy excitations in
the chains must be similar to that in the planes. This is
not a trivial requirement. It implies that both the nodal
structure and the magnitude of the gaps in the chains and
planes be similar. It is possible to eliminate the nodes
in the induced gap at k, = m'/d by, for example, making
the ansatz that t(k, ) = to (this would describe a single
bilayer). However, this is not sufficient to eliminate the
temperature dependence of the anisotropy. For regions of
the chain Fermi surface where ~(i~ && ~t(k, )~, the induced
gap is of the order Ai, t(k, ) /(i2. In Fig. 1, the smallest
induced gap occurs at the intersection of the chain Fermi
surface with the Brillouin zone boundary (at k = vr/a)
at which to/(i(k)2 0.023. The onset of thermal pair
breaking in the chains, therefore, will occur at a much
lower temperature than in the planes.

The penetration depth in the c direction as a func-
tion of temperature is shown in Fig. 3. The shapes of the
curves are similar to what we found in previous work in
which we examined a model with two planes per unit cell.
Experimental observations of A, in Y-123 (Refs. 20, 22,
and 29 and Y-124 are contradictory. All of the experi-

0.8

0.2

0.2

FIG. 3. Penetration depth in the c direction for both an
s-wave (solid line) and a d-wave (dashed line) order parame-
ter. The strength of the chain-plane coupling is chosen to be
to = 50 meV so that A, (0)/A (0) 100, as observed experi-
mentally.

ments find that at low temperatures A, (T) can be fitted
by a linear T dependence, A (0) /A, (T) 1 —nT/T„
but the slope of the fit varies dramatically. Two of the in-
frared experiments find that o, (( 1, while the third
finds that o, ~ 1 and the microwave experiment finds
that o )) 1. Until some sort of consensus is achieved, it
will be diFicult to say anything about our model.

V. CONCLUSIONS

It is clear that our proximity efFect model cannot de-
scribe the temperature dependence of the ab anisotropy
of the penetration depth which has been observed ex-
perimentally by Zhang et al. Essentially, the problem
with our proximity model is that, unlike the case of the
two-plane model, there are always regions of the chain
Fermi surface on which the gap is small, so that the tem-
perature scale over which the penetration depth parallel
to the chains varies is much lower than the scale per-
pendicular to the chains. The question that needs to be
answered, then, is to what extent is our model represen-
tative of proximity models in general.

The common feature of proximity models is that the
chains are intrinsically normal but driven superconduct-
ing by their coupling to the planes. Where proximity
models dier is in the nature of the chain-plane cou-
pling. In our model we have made the assumption that
the chain-plane coupling is coherent, so that chain states
are coupled to plane states with the same value of k. The
amount of mixing between the two states depends on the
difference in energy between them so that, for example,
in Fig. 1 the chain and plane Fermi surfaces are most
strongly mixed in the neighborhood of their crossing. In
a similar fashion, the induced gap on the chain is small
(of the order of a few percent of the intrinsic gap in the
plane) wherever the chain and plane Fermi surfaces are
far apart. This is the reason for the large difFerence in
the temperature dependence of A and Ab.

One solution to this is to couple the chains and planes
incoherently, so that every state k on the planes is cou-
pled equally to every state k' on the chains. There is
some evidence that there is incoherence along the c axis:
Kleiner and Muller have found an intrinsic Josephson
efFect in Bi2Sr2CaCu208 and, more recently, in under-
doped Y-123. The dc resistivity of Y-123 in the nor-
mal state shows semiconducting behavior in underdoped
samples, and the optical conductivity along the c axis
(see, e.g. , Ref. 22, and references contained therein) has
a nonmetallic response. For an incoherent model of the
type described above, the induced gap on the chains is
proportional to the average over the Fermi surface of the
gap on the planes. The difBculty with this model is that,
for a d-wave order parameter, the induced gap in the
chains will vanish. It is, in fact, a general feature of d-
wave order parameters that they do not contribute to
incoherent processes (see, for example, Refs. 31 and 15).
If on the other hand, we assume that the order parameter
in the planes has an isotropic 8-wave symmetry, then the
induced gap on the chains will not vanish. The problem
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now, however, is that incoherent coupling does not in-
troduce a nodal structure into the gap the way coherent
coupling does so that it is difBcult to reconcile such a
model with a linear low temperature penetration depth.
For a model with incoherent chain-plane coupling to suc-
cessfully describe the low temperature penetration depth,
it would have to have an order parameter with nodes on
the Fermi surface but whose Fermi surface average was
nonzero, and the induced gap in the chains would have to
be of the order of T so that the temperature dependence
of A and Ab would be similar.

Leaving, for a moment, the discussion of the nature of
the chain-plane coupling, we will now turn to a more con-
ceptual problem —that of the size of the chain-plane cou-
pling. The coupling strength to is chosen to account both
for the fact that A, (T = 0)/A (T = 0) 10 (Refs. 19—22)
and for the size of the induced gap in the chains. As
is well known, the chain-plane coupling can degrade T
substantially. We find that for to ——50 meV, T is only
65'% of its value at to ——0. It is also difBcult to recon-
cile the picture of weakly coupled two-dimensional planes
with such large values of the chain-plane coupling. In our
model the ratio of the electron hopping strengths along
the c and in-plane directions is to/2crq ——0.25, so that
it is difBcult to imagine that the c axis coupling is a
weak perturbation in an otherwise two-dimensional sys-
tem. The challenge, therefore, for theories which begin
with models of a single Cu02 plane is to explain the large
anisotropy between the a and b supercurrents in YBCO
without invoking a large chain-plane coupling.

Kresin and Wolf have suggested that proximity effect
models require an inelastic channel for the chain-plane
coupling. In their two-plane model, electrons can hop be-
tween the planes through coherent tunneling or through
scattering &om a phonon. Their model is more three-
dimensional than the ones discussed above since the in-
elastic interplane coupling acts as a pairing process which
leads to an increase in T, . It is possible that in a chain-
plane model, some kind of inelastic transport mechanism
along the c axis might lead to a suKciently large gap in

the chains that A and Ab would have similar T depen-
dences. The idea of a mixture of pairing interactions has
recently been proposed by Song and Annett, although
they have limited their discussion to mixing phonons and
Coulomb interactions within a single plane.

There is also the issue of whether a simple two-band
model can be representative of Y-123. More careful band
structure calculations ' find that the Fermi surface has
four pieces instead of two. The two additional pieces of
Fermi surface come from the internal structure of the
Cu02 bilayer (which we have treated as a single-layer)
and 6.om the internal structure of the CuO chains. The
inclusion of these two pieces of Fermi surface is not likely
to affect the important results contained within this pa-
per however: the additional piece of Fermi surface due to
the Cu02 bilayer has a nearly tetragonal symmetry (and
will therefore not contribute to the anisotropy in the pen-
etration depth) and the piece 'due to the CuO chains is
small and will only make a small change to the screening
currents.

Our final conclusion, then, is as follows: A proxim-
ity model for Y-123 in which the superconducting pair-
ing interaction is localized to the planes and the chain-
plane coupling is coherent will not account for the tem-
perature dependence of the anisotropy of the penetra-
tion depth seen in experiments. It is possible that other
models for the chain-plane coupling will be able to ad-
equately describe the ab anisotropy. The single largest
problem faced by proximity models is that penetration
depth experiments seem to indicate that the gap in the
chains is of the same order as the gap in the planes.
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